首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Sevoflurane, the most commonly used inhaled anesthetic in pediatric anesthesia, has been reported to induce cognitive impairment in developing brain in preclinical and clinical settings. However, the mechanism and therapeutic measures of this developmental neurotoxicity need to be further investigated. Resveratrol, a natural polyphenolic agent, has been reported to improve cognitive function in neurological disorders and aging models through anti-inflammatory activity. However, its effect on sevoflurane-induced cognitive impairment in developing mice remains unknown. The present study was designed to investigate the therapeutic potential of resveratrol on sevoflurane-induced cognitive impairment. Six-day-old mice received anesthesia with 3% sevoflurane 2 h daily on postnatal days (P) 6, P7 and P8. About 100 mg/kg resveratrol were intraperitoneally administered for 6 consecutive days to neonatal mice before anesthesia. Sevoflurane exposure significantly suppressed the expression of Sirtuin 1 (SIRT1) and activated microglia in hippocampi. Furthermore, the levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were markedly increased after sevoflurane exposure. Strikingly, resveratrol pretreatment ameliorated sevoflurane-induced SIRT1 inhibition and microglial activation. Of note, resveratrol reversed sevoflurane-induced imbalance of M1/M2 microglia ratio revealed by increasing mRNA level of clusters of differentiation 206 (CD206) and decreasing mRNA levels of clusters of differentiation 86 (CD86) and suppressor of cytokine signaling 3 (SOCS3). Consequently, sevoflurane-induced cognitive impairment in developing mice was ameliorated by resveratrol pretreatment. Taken together, repeated sevoflurane exposure to the developing brain resulted in SIRT1 inhibition, NF-κB acetylation, and microglial activation. Resveratrol pretreatment ameliorated cognitive impairment in developing mice received sevoflurane exposure by modulating SIRT1-NF-κB pathway in microglia. In this regard, our findings open novel directions to explore promising therapeutic targets for preventing the developmental neurotoxicity of sevoflurane.  相似文献   

2.
Dimethyl sulfoxide (DMSO) is a polar organic solvent that is used to dissolve neuroprotective or neurotoxic agents in neuroscience research. However, DMSO itself also has pharmacological and pathological effects on the nervous system. Astrocytes play a central role in maintaining brain homeostasis, but the effect and mechanism of DMSO on astrocytes has not been studied. The present study showed that exposure of astrocyte cultures to 1% DMSO for 24 h did not significantly affect cell survival, but decreased cell viability and glial glutamate transporter expression, and caused mitochondrial swelling, membrane potential impairment and reactive oxygen species production, and subsequent cytochrome c release and caspase-3 activation. DMSO at concentrations of 5% significantly inhibited cell variability and promoted apoptosis of astrocytes, accompanied with more severe mitochondrial damage. These results suggest that mitochondrial impairment is a primary event in DMSO-induced astrocyte toxicity. The potential cytotoxic effects on astrocytes need to be carefully considered during investigating neuroprotective or neurotoxic effects of hydrophobic agents dissolved by DMSO.  相似文献   

3.
Resveratrol (3,5,4'-trihydroxystilbene) is a natural polyphenol which is rich in grape seeds and skin. Several studies have revealed that resveratrol possesses neuroprotective effects. In the case of global brain ischemia, there are few reports regarding the protective effect of resveratrol. Therefore, the influence of resveratrol on neuronal damage after transient global brain ischemia remains to be clarified. In the current study, C57BL/6 black mice were subjected to 20 min of transient global brain ischemia and followed by 72 h of reperfusion. Resveratrol (20 or 40 mg/kg, once daily, dissolved in 0.5% carboxymethylcellulose) was administered orally for 7 days before ischemia and daily until the mice were euthanized. The effect of lower or higher dose of resveratrol on neuronal damage, matrix metalloproteinase (MMP) activity and in situ DNA fragmentation (TUNEL) assay in the hippocampus after global ischemia was examined. Neuronal damages were remarkable in CA1 and CA2 pyramidal cell layers after global ischemia. In resveratrol-treated mice (40 mg/kg), neuronal damage was significantly reduced compared with vehicle-treated mice. Mice treated with resveratrol showed reduced MMP-9 activity. Resveratrol also inhibited TUNEL staining. These data suggest that resveratrol, a natural polyphenol, reduces hippocampal neuronal cell damage following transient global ischemia by reducing MMP-9 activity.  相似文献   

4.
Luo  Jian-Sheng  Ning  Jia-Qi  Chen  Zhuo-Ya  Li  Wen-Jing  Zhou  Rui-Ling  Yan  Ru-Yu  Chen  Meng-Jie  Ding  Ling-Ling 《Neurochemical research》2022,47(8):2158-2172

Type 2 diabetes (T2DM) is a well known risk factor for Alzheimer’s disease. Mitochondria are the center of intracellular energy metabolism and the main source of reactive oxygen species. Mitochondrial dysfunction has been identified as a key factor in diabetes-associated brain alterations contributing to neurodegenerative events. Defective insulin signaling may act in concert with neurodegenerative mechanisms leading to abnormalities in mitochondrial structure and function. Mitochondrial dysfunction triggers neuronal energy exhaustion and oxidative stress, leading to brain neuronal damage and cognitive impairment. The normality of mitochondrial function is basically maintained by mitochondrial quality control mechanisms. In T2DM, defects in the mitochondrial quality control pathway in the brain have been found to lead to mitochondrial dysfunction and cognitive impairment. Here, we discuss the association of mitochondrial dysfunction with T2DM and cognitive impairment. We also review the molecular mechanisms of mitochondrial quality control and impacts of mitochondrial quality control on the progression of cognitive impairment in T2DM.

  相似文献   

5.
Sharma M  Gupta YK 《Life sciences》2002,71(21):2489-2498
We have recently shown free radical generation is associated with cognitive impairment in intracerebroventricular (ICV) streptozotocin (STZ) model of sporadic dementia of Alzheimer's type in rats. Trans resveratrol is a polyphenolic compound and is known to have antioxidant activity. In the present study, the effect of trans resveratrol was investigated on ICV STZ induced cognitive impairment and oxidative stress in rats. Adult male Wistar rats were injected with ICV STZ bilaterally, on day 1 and day 3. The learning and memory behavior was assessed using passive avoidance paradigms, elevated plus maze and the closed field activity test while the parameters of oxidative stress assessed were malondialdehyde [MDA] and glutathione. The rats were treated with trans resveratrol chronically at doses of 10 and 20 mg/kg,i.p. for 21 days starting from day 1 of STZ injection. Trans resveratrol treatment significantly prevented ICV STZ induced cognitive impairment. There was a rise in brain glutathione and an insignificant increase in brain MDA in trans resveratrol treated ICV STZ rats as compared to significantly elevated brain MDA levels in the vehicle treated ICV STZ animals. The study demonstrates the effectiveness of trans resveratrol in preventing the cognitive deficits as well as the oxidative stress caused by ICV STZ in rats and it's potential in the treatment of neurodegenerative diseases such as Alzheimer's disease.  相似文献   

6.
Chronic alcohol intake is known to induce permanent cognitive deficits along with enhanced oxidative–nitrosative stress and activation of neuroinflammatory cascade. In the present study, we investigated the protective effect of resveratrol, a natural polyphenolic phytoalexin against chronic alcohol-induced cognitive dysfunction and neuroiflammatory cascade in the brain of adult rats chronically administered ethanol. Male Wistar rats were adminstered ethanol (10 g/kg; oral gavage) for ten weeks and treated with resveratrol (5, 10 and 20 mg/kg) for the same duration. Ethanol-exposed rats showed impaired spatial navigation in the Morris water maze test and poor retention in the elevated plus maze task which was coupled with enhanced acetylcholinesterase activity, increased oxidative–nitrosative stress, cytokines (TNF-alpha and IL-1beta), NF-kappa β and caspase-3 levels in different brain regions (cerebral cortex and hippocampus) of ethanol-treated rats. Co-administration with resveratrol significantly and dose-dependently prevented all the behavioral, biochemical and molecular deficits. Correlatively, the results of the present study revealed that treatment with resveratrol significantly prevented cognitive deficits induced by chronic ethanol exposure not only by modulating oxido–nitrosative stress but also by attenuating the enhanced levels of pro-inflammatory cytokines (TNF-α and IL-1β), NF-kβ and caspase-3 in different brain regions of ethanol treated rats. Therefore, mechanism underlying the neuroprotective effects of resveratrol observed in our study may be due to its antioxidant, anti-inflammatory and neuromodulating activities.  相似文献   

7.

Ischemic stroke is a major cause of morbidity and mortality worldwide and only few affected patients are able to receive treatment, especially in developing countries. Detailed pathophysiology of brain ischemia has been extensively studied in order to discover new treatments with a broad therapeutic window and that are accessible to patients worldwide. The nucleoside guanosine (Guo) has been shown to have neuroprotective effects in animal models of brain diseases, including ischemic stroke. In a rat model of focal permanent ischemia, systemic administration of Guo was effective only when administered immediately after stroke induction. In contrast, intranasal administration of Guo (In-Guo) was effective even when the first administration was 3 h after stroke induction. In order to validate the neuroprotective effect in this larger time window and to investigate In-Guo neuroprotection under global brain dysfunction induced by ischemia, we used the model of thermocoagulation of pial vessels in Wistar rats. In our study, we have found that In-Guo administered 3 h after stroke was capable of preventing ischemia-induced dysfunction, such as bilateral suppression and synchronicity of brain oscillations and ipsilateral cell death signaling, and increased permeability of the blood-brain barrier. In addition, In-Guo had a long-lasting effect on preventing ischemia-induced motor impairment. Our data reinforce In-Guo administration as a potential new treatment for brain ischemia with a more suitable therapeutic window.

  相似文献   

8.
The immunosuppressant cyclosporin A (CsA) has been shown to have neuroprotective action. The inhibition of both calcineurin activation and mitochondrial permeability transition pore (mtPTP) opening are considered the primary neuroprotective mechanisms of CsA. Here we have evaluated the effect of CsA on significantly reducing infarct size induced by transient middle cerebral artery occlusion (MCAO) in rats, and examined variable therapeutic applications for brain infarction. Experimental rats were divided into 12 groups according to: CsA administration time (immediately after occlusion or immediately after reperfusion); dosage (between 10 and 50 mg/kg); route (i.v. or i.p.); and with or without needle insertion, which hypothetically disrupts the blood brain barrier (BBB). Neuroprotective effects of CsA were hardly noticeable when administered immediately after occlusion or by i.v. injection. By needle insertion, CsA administration significantly reduced infarct size, although vehicle treatment also reduced infarct size compared with nontreatment animals, i.e. no needle insertion. These results suggest that needle insertion allows endogenous neuroprotective substances to pass into the brain. Furthermore, single dosages over 30 mg/kg CsA were excessive and negated potential neuroprotective effects. However, two i.p. administrations of 20 mg/kg CsA immediately and 24 hrs after reperfusion significantly ameliorated the infarct size compared to the vehicle-treated group. We conclude that CsA exhibits significant neuroprotective activity, although its therapeutic application for stroke may be limited by very strict and precise management requirements.  相似文献   

9.
10.
Resveratrol (3,5,4-trihydroxystilbene), a viniferin polyphenolic compound, has been shown to have neuroprotective effects and we tested its possible antioxidant activity in young and aged rat brain, evaluating, in vitro, synaptosomal 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha) production as a marker of oxidative stress. We found that in young rat brain synaptosomes resveratrol perfusion had no effect on basal 8-iso-PGF2alpha production, but quenched to basal levels the increased 8-iso-PGF2alpha production induced by hydrogen peroxide. On the other hand, in aged rats, resveratrol was able to decrease 8-iso-PGF2alpha production both basally and after hydrogen peroxide-induced oxidative stimulus. In conclusion, our findings show that the antioxidant effects of resveratrol in rat brain could play a neuroprotective role in aging, when the increased burden of oxidative stress is faced by defective antioxidant mechanisms.  相似文献   

11.
Neonatal hypoxia‐ischemia (HI) injury caused by oxygen deprivation is the most common cause of mortality and severe neurologic deficits in neonates. The present work evaluated the preventative effect of photobiomodulation (PBM) preconditioning, and its underlying mechanism of action on brain damage in an HI model in neonatal rats. According to the optimal time response of ATP levels in brain samples removed from normal rats, a PBM preconditioning (PBM‐P) regimen (808 nm CW laser, 1 cm2 spot, 100 mW/cm2, 12 J/cm2) was delivered to the scalp 6 hours before HI. PBM‐P significantly attenuated cognitive impairment, volume shrinkage in the brain, neuron loss, dendritic and synaptic injury after HI. Further mechanistic investigation found that PBM‐P could restore HI‐induced mitochondrial dynamics and inhibit mitochondrial fragmentation, followed by a robust suppression of cytochrome c release, and prevention of neuronal apoptosis by inhibition of caspase activation. Our work suggests that PBM‐P can attenuate HI‐induced brain injury by maintaining mitochondrial dynamics and inhibiting the mitochondrial apoptotic pathway.   相似文献   

12.
Brain damage and neuronal loss caused by traumatic brain injury, ischemic stroke, and symptomatic status epilepticus can lead to severe long-term consequences, such as impairment in learning and memory and cognitive functions, and development of chronic epilepsy. This can be the result of morphologic and functional changes underlying temporal lobe epilepsy. Epilepsy patients have increased risk of status epilepticus. It is a life-threatening condition when seizures last for more than 30 min and trigger processes leading to neuronal apoptosis and necrosis in various parts of brain. Administration of neuroprotective drugs preventing these pathologic processes could improve the prognosis for such patients. However despite of active research of neuroprotective drugs, the effective ways to prevent brain damage resulting from prolonged seizures are yet to be found. Studies of neuroprotective properties of classic and novel anticonvulsant drugs showed that most of them do not have the sufficient neuroprotective effect and are not able to prevent epileptogenesis. Thus the studies of other potential neuroprotective drugs seem to be promising.  相似文献   

13.
Chlorpyrifos exposure leads to various neurological disorders adverting disturbance in molecular pathways and normal brain functions. Major complications arise when these potent nerve agents access neuronal mechanisms causing adverse effect on acetylcholinesterase and brain lipids with generation of reactive oxygen species. Chlorpyrifos elicits chronic intoxication leading to redox disturbance with irreversible brain damage and oxidative stress. In the present study, neuroprotective and anti-apoptotic effects of eugenol (EO), a phenolic antioxidant, against chlorpyrifos-induced neurotoxicity was explored on rat brain cortex. Rats treated orally with chlorpyrifos [89.4 mg/kg body weight (BW)] for 15 consecutive days showed changes in brain lipid profile, increased levels of lipid peroxidation, inhibition of acetylcholinesterase activity, and changes in antioxidant enzymes. EO (250 mg/kg BW), administered 1 h after chlorpyrifos treatment, restored lipid, acetylcholinesterase, and antioxidant enzyme levels of brain cortex by suppressing chlorpyrifos-induced oxidative stress and neurotoxicity. Histological findings further demonstrated damage to brain morphology with increased protein levels of caspase-3 in CPF-treated animals. Alterations caused by neurotoxic effects of chlorpyrifos were attenuated by EO administration with decreased protein expressions of caspase-3. Thus, through its antioxidant and anti-apoptotic activities, EO showed protective effect against chlorpyrifos-induced neuronal damage.  相似文献   

14.
In addition to its intracellular roles, the nucleoside guanosine (GUO) also has extracellular effects that identify it as a putative neuromodulator signaling molecule in the central nervous system. Indeed, GUO can modulate glutamatergic neurotransmission, and it can promote neuroprotective effects in animal models involving glutamate neurotoxicity, which is the case in brain ischemia. In the present study, we aimed to investigate a new in vivo GUO administration route (intranasal, IN) to determine putative improvement of GUO neuroprotective effects against an experimental model of permanent focal cerebral ischemia. Initially, we demonstrated that IN [3H] GUO administration reached the brain in a dose-dependent and saturable pattern in as few as 5 min, presenting a higher cerebrospinal GUO level compared with systemic administration. IN GUO treatment started immediately or even 3 h after ischemia onset prevented behavior impairment. The behavior recovery was not correlated to decreased brain infarct volume, but it was correlated to reduced mitochondrial dysfunction in the penumbra area. Therefore, we showed that the IN route is an efficient way to promptly deliver GUO to the CNS and that IN GUO treatment prevented behavioral and brain impairment caused by ischemia in a therapeutically wide time window.  相似文献   

15.
Metabolic stress induced by high-fat (HF) diet leads to cognitive dysfunction and aging, but the physiological mechanisms are not fully understood. Senescence-accelerated prone mouse (SAMP8) models were conducted under metabolic stress conditions by feeding HF for 15 weeks, and the preventive effect of resveratrol was studied. This dietary strategy demonstrates cognitive impairment in SAMP8-HF and significant preventive effect by resveratrol-treated animals. Hippocampal changes in the proteins involved in mitochondrial dynamics optic atrophy-1 protein (OPA1) and mitofusin 2 (MFN2) comprised a differential feature found in SAMP8-HF that was prevented by resveratrol. Electronic microscopy showed a larger mitochondria in SAMP8-HF + resveratrol (SAMP8-HF + RV) than in SAMP8-HF, indicating increases in fusion processes in resveratrol-treated mice. According to the mitochondrial morphology, significant increases in the I-NDUFB8, II-SDNB, III-UQCRC2, and V-ATPase complexes, in addition to that of voltage-dependent anion channel 1 (VDAC1)/porin, were found in resveratrol-treated animals with regard to SAMP8-HF, reaching control-animal levels. Moreover, tumor necrosis factor alpha (TNF-α) and interleukin (IL-6) were increased after HF, and resveratrol prevents its increase. Moreover, we found that the HF diet affected the Wnt pathway, as demonstrated by β-catenin inactivation and modification in the expression of several components of this pathway. Resveratrol induced strong activation of β-catenin. The metabolic stress rendered in the cognitive and cellular pathways altered in SAMP8 focus on different targets in order to act on preventing cognitive impairment in neurodegeneration, and resveratrol can offer therapeutic possibilities for preventive strategies in aging or neurodegenerative conditions.  相似文献   

16.
Traumatic brain injury (TBI) survivors often suffer from long-lasting cognitive impairment that stems from hippocampal injury. Systemic administration of insulin-like growth factor-1 (IGF-1), a polypeptide growth factor known to play vital roles in neuronal survival, has been shown to attenuate posttraumatic cognitive and motor dysfunction. However, its neuroprotective effects in TBI have not been examined. To this end, moderate or severe contusion brain injury was induced in mice with conditional (postnatal) overexpression of IGF-1 using the controlled cortical impact (CCI) injury model. CCI brain injury produces robust reactive astrocytosis in regions of neuronal damage such as the hippocampus. We exploited this regional astrocytosis by linking expression of hIGF-1 to the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter, effectively targeting IGF-1 delivery to vulnerable neurons. Following brain injury, IGF-1Tg mice exhibited a progressive increase in hippocampal IGF-1 levels which was coupled with enhanced hippocampal reactive astrocytosis and significantly greater GFAP levels relative to WT mice. IGF-1 overexpression stimulated Akt phosphorylation and reduced acute (1 and 3d) hippocampal neurodegeneration, culminating in greater neuron survival at 10d after CCI injury. Hippocampal neuroprotection achieved by IGF-1 overexpression was accompanied by improved motor and cognitive function in brain-injured mice. These data provide strong support for the therapeutic efficacy of increased brain levels of IGF-1 in the setting of TBI.  相似文献   

17.
Formation of nitric oxide by astrocytes has been suggested to contribute, via impairment of mitochondrial function, to the neurodegenerative process. Mitochondria under oxidative stress are thought to play a key role in various neurodegenerative disorders; therefore protection by antioxidants against oxidative stress to mitochondria may prove to be beneficial in delaying the onset or progression of these diseases. Carnosine has been recently proposed to act as antioxidant in vivo. In the present study, we demonstrate its neuroprotective effect in astrocytes exposed to LPS- and INFγ-induced nitrosative stress. Carnosine protected against nitric oxide-induced impairment of mitochondrial function. This effect was associated with decreased formation of oxidatively modified proteins and with decreased up-regulation oxidative stress-responsive genes, such as Hsp32, Hsp70 and mt-SOD. Our results sustain the possibility that carnosine might have anti-ageing effects to brain cells under pathophysiological conditions leading to degenerative damage, such as aging and neurodegenerative disorders.  相似文献   

18.
We questioned if acute administration of n-3 fatty acids (FA) carried in n-3 rich triglyceride (TG) emulsions provides neuroprotection in neonatal mice subjected to hypoxic-ischemic (H/I) brain injury. We examined specificity of FA, optimal doses, and therapeutic windows for neuroprotection after H/I. H/I insult was induced in C57BL/6J 10-day-old mice by right carotid artery ligation followed by exposure to 8% O2 for 15 minutes at 37°C. Intraperitoneal injection with n-3-rich TG emulsions, n-6 rich TG emulsions or saline for control was administered at different time points before and/or after H/I. In separate experiments, dose responses were determined with TG containing only docosahexaenoic acid (Tri-DHA) or eicosapentaenoic acid (Tri-EPA) with a range of 0.1–0.375 g n-3 TG/kg, administered immediately after H/I insult. Infarct volume and cerebral blood flow (CBF) were measured. Treatment with n-3 TG emulsions both before- and after- H/I significantly reduced total infarct volume by a mean of 43% when administered 90 min prior to H/I and by 47% when administered immediately after H/I. In post-H/I experiments Tri-DHA, but not Tri-EPA exhibited neuroprotective effects with both low and high doses (p<0.05). Moreover, delayed post-H/I treatment with Tri-DHA significantly decreased total infarct volume by a mean of 51% when administered at 0 hr, by 46% at 1 hr, and by 51% at 2 hr after H/I insult. No protective effect occurred with Tri-DHA injection at 4 hr after H/I. There were no n-3 TG related differences in CBF. A significant reduction in brain tissue death was maintained after Tri-DHA injection at 8 wk after the initial brain injury. Thus, n-3 TG, specifically containing DHA, is protective against H/I induced brain infarction when administered up to 2 hr after H/I injury. Acute administration of TG-rich DHA may prove effective for treatment of stroke in humans.  相似文献   

19.
Mesenchymal stem cell (MSC) administration via the intranasal route could become an effective therapy to treat neonatal hypoxic-ischemic (HI) brain damage. We analyzed long-term effects of intranasal MSC treatment on lesion size, sensorimotor and cognitive behavior, and determined the therapeutic window and dose response relationships. Furthermore, the appearance of MSCs at the lesion site in relation to the therapeutic window was examined. Nine-day-old mice were subjected to unilateral carotid artery occlusion and hypoxia. MSCs were administered intranasally at 3, 10 or 17 days after hypoxia-ischemia (HI). Motor, cognitive and histological outcome was investigated. PKH-26 labeled cells were used to localize MSCs in the brain. We identified 0.5×106 MSCs as the minimal effective dose with a therapeutic window of at least 10 days but less than 17 days post-HI. A single dose was sufficient for a marked beneficial effect. MSCs reach the lesion site within 24 h when given 3 or 10 days after injury. However, no MSCs were detected in the lesion when administered 17 days following HI. We also show for the first time that intranasal MSC treatment after HI improves cognitive function. Improvement of sensorimotor function and histological outcome was maintained until at least 9 weeks post-HI. The capacity of MSCs to reach the lesion site within 24 h after intranasal administration at 10 days but not at 17 days post-HI indicates a therapeutic window of at least 10 days. Our data strongly indicate that intranasal MSC treatment may become a promising non-invasive therapeutic tool to effectively reduce neonatal encephalopathy.  相似文献   

20.
Resveratrol is known to exert a cardioprotective effect against hypoxia/reoxygenation (H/R) injury. HS-1793 is a novel, more stable resveratrol analog, but its cardioprotective effects were unknown. The present study aimed to test the cardioprotective effect of HS-1793 against H/R injury and investigate the role of mitochondria in Sprague Dawley rat heart damage using an ex vivo Langendorff system. HS-1793 ameliorated H/R-induced mitochondrial dysfunction by reducing mitochondrial reactive oxygen species production, improving mitochondrial oxygen consumption and suppressing mitochondrial calcium (Ca2+) overload during reperfusion. Moreover, HS-1793-treated rat heart showed reduced infarct size. Our data suggest that HS-1793 can protect cardiac against mitochondrial damage following H/R, thereby suppressing injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号