首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The discovery of novel mucosal adjuvants will help to develop new formulations to control infectious and allergic diseases. In this work we demonstrate that U-Omp16 from Brucella spp. delivered by the nasal route (i.n.) induced an inflammatory immune response in bronchoalveolar lavage (BAL) and lung tissues. Nasal co-administration of U-Omp16 with the model antigen (Ag) ovalbumin (OVA) increased the amount of Ag in lung tissues and induced OVA-specific systemic IgG and T helper (Th) 1 immune responses. The usefulness of U-Omp16 was also assessed in a mouse model of food allergy. U-Omp16 i.n. administration during sensitization ameliorated the hypersensitivity responses of sensitized mice upon oral exposure to Cow’s Milk Protein (CMP), decreased clinical signs, reduced anti-CMP IgE serum antibodies and modulated the Th2 response in favor of Th1 immunity. Thus, U-Omp16 could be used as a broad Th1 mucosal adjuvant for different Ag formulations.  相似文献   

2.
The Th2 locus control region (LCR) has been shown to be a crucial cis-acting element for Th2 cytokine expression and Th2 cell differentiation. To study the role of Th2 LCR in ifng locus regulation, we examined the expression of IFN-γ in Th2 cells from Th2 LCR-deficient mice. We found IFN-γ to be aberrantly up-regulated. In addition, histone 3(H3)-acetylation and histone 3 lysine 4 (H3-K4)-methylation greatly increased at the ifng locus of the Th2 cells. GATA-3 and STAT6 bound to the ifng promoter in Th2 cells from the wild type but not from the Th2 LCR-deficient mice, and they directly repressed ifng expression in transient reporter assay. Moreover, ectopic expression of GATA-3 and STAT6-VT repressed the aberrant expression of the ifng gene and restored repressive chromatin state at the ifng locus in Th2 cells from Th2 LCR-deficient mice. These results suggest that expression of the ifng gene and chromatin remodeling of the ifng locus are under the control of a Th2 LCR-mediated Th2 differentiation program.  相似文献   

3.
Undernourished mice infected (UI) submitted to low and long-lasting infections by Schistosoma mansoni are unable to develop the hepatic periportal fibrosis that is equivalent to Symmers’ fibrosis in humans. In this report, the effects of the host’s nutritional status on parasite (worm load, egg viability and maturation) and host (growth curves, biology, collagen synthesis and characteristics of the immunological response) were studied and these are considered as interdependent factors influencing the amount and distribution of fibrous tissue in hepatic periovular granulomas and portal spaces. The nutritional status of the host influenced the low body weight and low parasite burden detected in UI mice as well as the number, viability and maturation of released eggs. The reduced oviposition and increased number of degenerated or dead eggs were associated with low protein synthesis detected in deficient hosts, which likely induced the observed decrease in transformation growth factor (TGF)-β1 and liver collagen. Despite the reduced number of mature eggs in UI mice, the activation of TGF-β1 and hepatic stellate cells occurred regardless of the unviability of most miracidia, due to stimulation by fibrogenic proteins and eggshell glycoproteins. However, changes in the repair mechanisms influenced by the nutritional status in deficient animals may account for the decreased liver collagen detected in the present study.  相似文献   

4.
Although one of the several chronic effects of ionizing radiation is aging, there are no experimental data on radiation-induced immunological aging. The most interesting change in aging was a helper T (Th) 1/Th2 imbalance. We investigated chronic effect on immune responses after ionizing radiation and its effects in irradiated mice were compared with those of aged mice. The 2-month-old mice received a whole-body irradiation of 5 Gy. At 6 months after irradiation, we compared the immune functions of the irradiated mice with those of normal mice of the same age and with those of older. Interferon (IFN)-γ and antigen-specific immunoglobulin (Ig)G2a level were lower in the irradiated mice than in normal mice of same age, showing similar levels to those of old normal mice. In contrast, interleukin (IL)-4 and IL-5 and antigen-specific IgG1 level were increased in irradiated mice when compared with the same aged-normal mice. Next, we investigated the low expression of IL-12p70, IL-12 receptors and IL-18 receptors in irradiated and old mice. Also, the decrease of natural killer cell activity was intensified in the irradiated mice, showing lower than values to those of old mice. Interestingly, in irradiated mice, the absolute numbers and the percentages of natural killer (NK) cells was extremely decreased. But the absolute numbers of Th cells and cytotoxic T (Tc) cells in old mice were significantly decreased. In conclusion, an immunological imbalance by the whole-body irradiation of 5 Gy induces to persist in the long term, resulting in the similar results with aging. Our results suggest that the downregulation of the Th1-like immune response shown in old mice rapidly occurred through exposure of ionizing radiation.  相似文献   

5.
Cell death can be divided into the anti-inflammatory process of apoptosis and the pro-inflammatory process of necrosis. Necrosis, as apoptosis, is a regulated form of cell death, and Poly-(ADP-Ribose) Polymerase-1 (PARP-1) and Receptor-Interacting Protein (RIP) 1/3 are major mediators. We previously showed that absence or inhibition of PARP-1 protects mice from nephritis, however only the male mice. We therefore hypothesized that there is an inherent difference in the cell death program between the sexes. We show here that in an immune-mediated nephritis model, female mice show increased apoptosis compared to male mice. Treatment of the male mice with estrogens induced apoptosis to levels similar to that in female mice and inhibited necrosis. Although PARP-1 was activated in both male and female mice, PARP-1 inhibition reduced necrosis only in the male mice. We also show that deletion of RIP-3 did not have a sex bias. We demonstrate here that male and female mice are prone to different types of cell death. Our data also suggest that estrogens and PARP-1 are two of the mediators of the sex-bias in cell death. We therefore propose that targeting cell death based on sex will lead to tailored and better treatments for each gender.  相似文献   

6.
7.
Th22 cells are a novel subset of CD4+ T cells that primarily mediate biological effects through IL-22, with both Th22 cells and IL-22 being closely associated with multiple autoimmune and chronic inflammatory diseases. In this study, we investigated whether and how Th22 cells affect atherosclerosis. ApoE−/− mice and age-matched C57BL/6J mice were fed a Western diet for 0, 4, 8 or 12 weeks. The results of dynamic analyses showed that Th22 cells, which secrete the majority of IL-22 among the known CD4+ cells, play a major role in atherosclerosis. ApoE−/− mice fed a Western diet for 12 weeks and administered recombinant mouse IL-22 (rIL-22) developed substantially larger plaques in both the aorta and aortic root and higher levels of CD3+ T cells, CD68+ macrophages, collagen, IL-6, Th17 cells, dendritic cells (DCs) and pSTAT3 but lower smooth muscle cell (SMC) α-actin expression than the control mice. Treatment with a neutralizing anti–IL-22 monoclonal antibody (IL-22 mAb) reversed the above effects. Bone marrow-derived DCs exhibited increased differentiation into mature DCs following rIL-22 and ox-LDL stimulation. IL-17 and pSTAT3 were up-regulated after stimulation with IL-22 and ox-LDL in cells cocultured with CD4+ T cells and mature DC supernatant, but this up-regulation was significantly inhibited by IL-6mAb or the cell-permeable STAT3 inhibitor S31-201. Thus, Th22 cell-derived IL-22 aggravates atherosclerosis development through a mechanism that is associated with IL-6/STAT3 activation, DC-induced Th17 cell proliferation and IL-22–stimulated SMC dedifferentiation into a synthetic phenotype.  相似文献   

8.
9.
Adel Ben Ali 《Andrologie》2004,14(3):312-316
Chronic prostatitis/Chronic pelvic pain syndrome (CP/CPPS) represents an important health problem resulting in considerable morbidity and of health care expenditure. CP/CPPS is a multifactorial problem affecting men of all ages and all demographic characteristics. Over recent years, progress has been made in the epidemiology and diagnosis of CP/CPPS. A new universally accepted classification system has become the gold standard in the contemporary literature. Men with CP/CPPS have significantly higher leukocyte counts in all segmented urine samples and expressed prostatic secretion (EPS) but not in semen. In segmented cultures, the urethral culture (first 10 ml of urine), EPS and first 10 ml of urine avoided immediately after prostatic massage are the “optimal” samples to detect the microbial agent. According to the four-glass test with polymerase chain reaction testing (PCR), Chlamydia and/or Ureaplasma infection can be suspected in several cases, but their role in the pathogenesis of prostatitis remains speculative. However, testing for these infections is highly recommended in non-documented infections. Quantification, speed and specificity make real-time PCR a promising approach for the quantitative detection and identification of prostatic bacteria from CP/CPPS patients. Several antibiotics have a good correlation between pharmacokinetic/pharmacodynamic parameters and efficacy for antibiotics in the treatment of chronic prostatitis. Fluoroquinolones, cotrimoxazole and ceftriaxone have a bactericidal concentration to the main pathogens in the prostatic fluid of patients with subacute and chronic prostatitis and in prostatic tissue.  相似文献   

10.
Uncontrolled inflammation in systemic lupus erythematosus (SLE) could cause dysfunction in multiple organs. T helper 17 (Th17) cells are a main branch of inflammatory responses in the pathogenesis of SLE, and by producing interleukin 17 (IL-17), represent a major functional tool in the progression of inflammation. Animal models provide a special field for better studies of the pathogenesis of diseases. Tolergenic probiotics could decrease inflammation in autoimmune diseases by modulating the immune system and maintaining homeostasis. The aim of this project was to evaluate the effects of Lactobacillus rhamnosus and Lactobacillus delbrueckii on Th17 cells and their related mediators in a pristane-induced BALB/c mice model of SLE. The mice were divided into pretreatment groups, which received probiotics or prednisolone at Day 0, and treatment groups, which received probiotics and prednisolone 2 months after injection. The presence of antinuclear antibody (ANA), anti-double-stranded DNA (anti-dsDNA), and anti-ribonucleoprotein (anti-RNP) and lipogranuloma was evaluated; also, the population of Th1–Th17 cells as well as interferon γ (IFN-γ), IL-17, and IL-10 levels, and the expression of RAR-related orphan related receptor gamma (RORγt) and IL-17 were determined. We observed that probiotics and prednisolone could delay SLE in pretreatment and treatment mice groups, with a reduction in ANA, anti-dsDNA, anti-RNP, and mass of lipogranuloma. Probiotics and prednisolone decreased the population of Th1–Th17 cells and reduced IFN-γ and IL-17 as inflammatory cytokines in the pretreatment and treatment groups in comparison with SLE-induced mice. Our results indicated that, due to their anti-inflammatory properties and reduction of Th17, Th1, and cytotoxic T lymphocyte (CTL) cells, the use of these probiotics could probably represent a new tool for the better management of SLE.  相似文献   

11.
12.
13.
The bacterium Streptomyces anulatus 9663, isolated from the intestine of different arthropods, produces prenylated derivatives of phenazine 1-carboxylic acid. From this organism, we have identified the prenyltransferase gene ppzP. ppzP resides in a gene cluster containing orthologs of all genes known to be involved in phenazine 1-carboxylic acid biosynthesis in Pseudomonas strains as well as genes for the six enzymes required to generate dimethylallyl diphosphate via the mevalonate pathway. This is the first complete gene cluster of a phenazine natural compound from streptomycetes. Heterologous expression of this cluster in Streptomyces coelicolor M512 resulted in the formation of prenylated derivatives of phenazine 1-carboxylic acid. After inactivation of ppzP, only nonprenylated phenazine 1-carboxylic acid was formed. Cloning, overexpression, and purification of PpzP resulted in a 37-kDa soluble protein, which was identified as a 5,10-dihydrophenazine 1-carboxylate dimethylallyltransferase, forming a C–C bond between C-1 of the isoprenoid substrate and C-9 of the aromatic substrate. In contrast to many other prenyltransferases, the reaction of PpzP is independent of the presence of magnesium or other divalent cations. The Km value for dimethylallyl diphosphate was determined as 116 μm. For dihydro-PCA, half-maximal velocity was observed at 35 μm. Kcat was calculated as 0.435 s-1. PpzP shows obvious sequence similarity to a recently discovered family of prenyltransferases with aromatic substrates, the ABBA prenyltransferases. The present finding extends the substrate range of this family, previously limited to phenolic compounds, to include also phenazine derivatives.The transfer of isoprenyl moieties to aromatic acceptor molecules gives rise to an astounding diversity of secondary metabolites in bacteria, fungi, and plants, including many compounds that are important in pharmacotherapy. However, surprisingly little biochemical and genetic data are available on the enzymes catalyzing the C-prenylation of aromatic substrates. Recently, a new family of aromatic prenyltransferases was discovered in streptomycetes (1), Gram-positive soil bacteria that are prolific producers of antibiotics and other biologically active compounds (2). The members of this enzyme family show a new type of protein fold with a unique α-β-β-α architecture (3) and were therefore termed ABBA prenyltransferases (1). Only 13 members of this family can be identified by sequence similarity searches in the data base at present, and only four of them have been investigated biochemically (36). Up to now, only phenolic compounds have been identified as aromatic substrates of ABBA prenyltransferases. We now report the discovery of a new member of the ABBA prenyltransferase family, catalyzing the transfer of a dimethylallyl moiety to C-9 of 5,10-dihydrophenazine 1-carboxylate (dihydro-PCA).2 Streptomyces strains produce many of prenylated phenazines as natural products. For the first time, the present paper reports the identification of a prenyltransferase involved in their biosynthesis.Streptomyces anulatus 9663, isolated from the intestine of different arthropods, produces several prenylated phenazines, among them endophenazine A and B (Fig. 1A) (7). We wanted to investigate which type of prenyltransferase might catalyze the prenylation reaction in endophenazine biosynthesis. In streptomycetes and other microorganisms, genes involved in the biosynthesis of a secondary metabolite are nearly always clustered in a contiguous DNA region. Therefore, the prenyltransferase of endophenazine biosynthesis was expected to be localized in the vicinity of the genes for the biosynthesis of the phenazine core (i.e. of PCA).Open in a separate windowFIGURE 1.A, prenylated phenazines from S. anulatus 9663. B, biosynthetic gene cluster of endophenazine A.In Pseudomonas, an operon of seven genes named phzABCDEFG is responsible for the biosynthesis of PCA (8). The enzyme PhzC catalyzes the condensation of phosphoenolpyruvate and erythrose-4-phosphate (i.e. the first step of the shikimate pathway), and further enzymes of this pathway lead to the intermediate chorismate. PhzD and PhzE catalyze the conversion of chorismate to 2-amino-2-deoxyisochorismate and the subsequent conversion to 2,3-dihydro-3-hydroxyanthranilic acid, respectively. These reactions are well established biochemically. Fewer data are available about the following steps (i.e. dimerization of 2,3-dihydro-3-hydroxyanthranilic acid, several oxidation reactions, and a decarboxylation, ultimately leading to PCA via several instable intermediates). From Pseudomonas, experimental data on the role of PhzF and PhzA/B have been published (8, 9), whereas the role of PhzG is yet unclear. Surprisingly, the only gene cluster for phenazine biosynthesis described so far from streptomycetes (10) was found not to contain a phzF orthologue, raising the question of whether there may be differences in the biosynthesis of phenazines between Pseudomonas and Streptomyces.Screening of a genomic library of the endophenazine producer strain S. anulatus now allowed the identification of the first complete gene cluster of a prenylated phenazine, including the structural gene of dihydro-PCA dimethylallyltransferase.  相似文献   

14.
The anesthetic mixture of medetomidine (MED), midazolam (MID) and butorphanol (BUT) produced anesthetic duration of around 40 minutes (min) in ICR mice. We reported that this anesthetic mixture produced almost the same anesthetic effects in both male and female BALB/c and C57BL/6J strains. Intraperitoneal (IP) administration of drugs has been widely used in mice. However, various injectable routes of the anesthetic mixture may cause different anesthetic effects. First, we examined effects of the anesthetic mixture by subcutaneous (SC) and intravenous (IV) injection compared to IP injection. After injection of the anesthetic mixture, administration of atipamezole (ATI) induced mice recovery from anesthesia. Secondly, we examined how different dosage and optimum injection timing of ATI affected mice recovery from anesthesia. We used an anesthetic score to measure anesthetic duration and a pulse oximeter to monitor vital signs under anesthesia. Usually, drugs from SC injection work more weakly than IP or IV injection. However, we found no significant differences of anesthetic duration among the three different injection routes. Antagonistic effects of ATI (0.3 mg/kg and 1.5 mg/kg) worked equally when administered at 30 min after injection of the anesthetic mixture. Antagonistic effects of ATI (1.5 mg/kg) were stronger than ATI (0.3 mg/kg) at 10 min after injection of the anesthetic mixture. The anesthetic mixture is a useful drug to induce nearly the same anesthetic effects by different injection routes and has an antagonist of ATI which helps mice quickly recover from anesthesia. These results may contribute to the welfare of laboratory animals.  相似文献   

15.
Tumor growth requires angiogenesis, which in turn requires an imbalance in the presence of angiogenic and angiostatic factors. We have shown that the CXC chemokine family, consisting of members that are either angiogenic or angiostatic, is a major determinant of tumor-derived angiogenesis in non-small-cell lung cancer (NSCLC). Intratumor injection of interferon-inducible protein 10 (IP-10, or CXCL10), an angiostatic CXC chemokine, led to reduced tumor growth in a SCID mouse model of NSCLC. In this study, we hypothesized that treatment with CXCL10 would, by restoring the angiostatic balance, improve long-term survival in NSCLC-bearing SCID mice. To test this hypothesis, A549 NSCLC cells were injected in the subcutis of the flank, followed by intratumor injections with CXCL10 continuously (group I), or for ten weeks (group II), or a control group (human serum albumin). Median survival was 169, 130, and 86 days respectively (P<0.0001). We extended these studies to examine the mechanism of prolonged survival in CXCL10-treated mice. CXCL10 treatment inhibited lung metastases, but was dependent upon continued treatment, and was associated with an increased rate of apoptosis in the primary tumor, with no direct effect on the proliferation of the NSCLC cells. Furthermore, the inhibition of lung metastases was due to the angiostatic effect of CXCL10 on the primary tumor, since the rate of apoptosis within lung metastases was unaffected. These data suggest that anti-angiogenic therapy of human lung cancer should be continued indefinitely to realize persistent benefit, and confirms the anti-metastatic capacity of localized angiostatic therapy.  相似文献   

16.
Although ligand-selective regulation of G protein-coupled receptor-mediated signaling and trafficking are well documented, little is known about whether ligand-selective effects occur on endogenous receptors or whether such effects modify the signaling response in physiologically relevant cells. Using a gene targeting approach, we generated a knock-in mouse line, in which N-terminal hemagglutinin epitope-tagged α2A-adrenergic receptor (AR) expression was driven by the endogenous mouse α2AAR gene locus. Exploiting this mouse line, we evaluated α2AAR trafficking and α2AAR-mediated inhibition of Ca2+ currents in native sympathetic neurons in response to clonidine and guanfacine, two drugs used for treatment of hypertension, attention deficit and hyperactivity disorder, and enhancement of analgesia through actions on the α2AAR subtype. We discovered a more rapid desensitization of Ca2+ current suppression by clonidine than guanfacine, which paralleled a more marked receptor phosphorylation and endocytosis of α2AAR evoked by clonidine than by guanfacine. Clonidine-induced α2AAR desensitization, but not receptor phosphorylation, was attenuated by blockade of endocytosis with concanavalin A, indicating a critical role for internalization of α2AAR in desensitization to this ligand. Our data on endogenous receptor-mediated signaling and trafficking in native cells reveal not only differential regulation of G protein-coupled receptor endocytosis by different ligands, but also a differential contribution of receptor endocytosis to signaling desensitization. Taken together, our data suggest that these HA-α2AAR knock-in mice will serve as an important model in developing ligands to favor endocytosis or nonendocytosis of receptors, depending on the target cell and pathophysiology being addressed.G protein-coupled receptors (GPCRs)4 represent the largest family of cell surface receptors mediating responses to hormones, cytokines, neurotransmitters, and therapeutic agents (1). In addition to regulating downstream signaling, ligand binding to a receptor can initiate phosphorylation of the active conformation of the receptor by G protein receptor kinases (GRKs) and subsequent binding of arrestins, thus restricting the magnitude and duration of the ligand-evoked signaling responses (2, 3). Binding of arrestins to GPCRs also leads to GPCR internalization (4, 5), a process that has been proposed as a means to desensitize receptor signaling at the cell surface, resensitize receptors, and/or initiate intracellular signaling (6, 7).Different ligands are able to induce distinct signaling and internalization profiles of the same receptor (8-14). However, the lack of available tools to study trafficking of endogenous GPCRs in native target cells has limited our understanding of ligand-selective endocytosis profiles and the relative contribution of receptor endocytosis to desensitization in native biological settings.To specifically test hypotheses regarding ligand-selective effects on GPCR internalization, and functional consequences of this trafficking on signaling, we utilized a homologous recombination gene targeting strategy to introduce a hemagglutinin (HA) epitope-tagged wild type α2A-adrenergic receptor (AR) into the mouse ADRA2A gene locus (“knock-in”). The α2AAR is a prototypical GPCR that couples to the Gi/o subfamily of G proteins (15). Studies on genetically engineered mice made null or mutant for the α2AAR have revealed that this subtype mediates the therapeutic effects of α2-adrenergic agents on blood pressure, pain perception, volatile anesthetic sparing, analgesia, and working memory enhancement (16-18). Two classic α2-ligands, clonidine and guanfacine, have been widely used to treat hypertension (19), attention deficit and hyperactivity disorder (20), and to elicit analgesia (19, 21) mediated via the α2AAR. Clinically guanfacine has a much longer duration of action than clonidine (22-24); this longer duration of action cannot be accounted for by the pharmacokinetic profile of these agents in human beings, as both drugs have a half-life of 12-14 h (25, 26). Because ligand-induced desensitization and trafficking of GPCRs have been implicated as critical mechanisms for modulating response duration in vivo (3), one hypothesis underlying the difference in duration between clonidine and guanfacine is that clonidine provokes accelerated desensitization of the α2AAR via one or several mechanisms, whereas guanfacine does not. Signaling desensitization in response to these two agonists has not been compared under the same experimental settings. To specifically test this hypothesis, we have exploited our HA-α2AAR knock-in mice so that we could examine these properties of guanfacine and clonidine in native target cells.We compared internalization of the α2AAR and inhibition of Ca2+ currents induced by clonidine and guanfacine in primary superior cervical ganglia (SCG) neurons, where the α2AAR is the major adrenergic receptor subtype controlling norepinephrine release and sympathetic tone (17, 27). Our data revealed a differential regulation of α2AAR trafficking and signaling duration by clonidine versus guanfacine, i.e. clonidine induced a more dramatic desensitization of the α2AAR than guanfacine, and this desensitization was largely because of α2AAR internalization. These studies reveal the powerful tool that the HA-α2AAR knock-in mice provide for identifying endocytosis-dependent and -independent physiological phenomena for this receptor subtype as a first step in defining novel loci for therapeutic intervention in the α2AAR signaling/trafficking cascade.  相似文献   

17.
We present here three expression plasmids for Trypanosoma cruzi adapted to the Gateway® recombination cloning system. Two of these plasmids were designed to express trypanosomal proteins fused to a double tag for tandem affinity purification (TAPtag). The TAPtag and Gateway® cassette were introduced into an episomal (pTEX) and an integrative (pTREX) plasmid. Both plasmids were assayed by introducing green fluorescent protein (GFP) by recombination and the integrity of the double-tagged protein was determined by western blotting and immunofluorescence microscopy. The third Gateway adapted vector assayed was the inducible pTcINDEX. When tested with GFP, pTcINDEX-GW showed a good response to tetracycline, being less leaky than its precursor (pTcINDEX).  相似文献   

18.
Integrin receptor plays key roles in mediating both inside-out and outside-in signaling between cells and the extracellular matrix. We have observed that the tissue-specific loss of the integrin β1 subunit in striated muscle results in a near complete loss of integrin β1 subunit protein expression concomitant with a loss of talin and to a lesser extent, a reduction in F-actin content. Muscle-specific integrin β1-deficient mice had no significant difference in food intake, weight gain, fasting glucose, and insulin levels with their littermate controls. However, dynamic analysis of glucose homeostasis using euglycemichyperinsulinemic clamps demonstrated a 44 and 48% reduction of insulin-stimulated glucose infusion rate and glucose clearance, respectively. The whole body insulin resistance resulted from a specific inhibition of skeletal muscle glucose uptake and glycogen synthesis without any significant effect on the insulin suppression of hepatic glucose output or insulin-stimulated glucose uptake in adipose tissue. The reduction in skeletal muscle insulin responsiveness occurred without any change in GLUT4 protein expression levels but was associated with an impairment of the insulin-stimulated protein kinase B/Akt serine 473 phosphorylation but not threonine 308. The inhibition of insulin-stimulated serine 473 phosphorylation occurred concomitantly with a decrease in integrin-linked kinase expression but with no change in the mTOR·Rictor·LST8 complex (mTORC2). These data demonstrate an in vivo crucial role of integrin β1 signaling events in mediating cross-talk to that of insulin action.Integrin receptors are a large family of integral membrane proteins composed of a single α and β subunit assembled into a heterodimeric complex. There are 19 α and 8 β mammalian subunit isoforms that combine to form 25 distinct α,β heterodimeric receptors (1-5). These receptors play multiple critical roles in conveying extracellular signals to intracellular responses (outside-in signaling) as well as altering extracellular matrix interactions based upon intracellular changes (inside-out signaling). Despite the large overall number of integrin receptor complexes, skeletal muscle integrin receptors are limited to seven α subunit subtypes (α1, α3, α4, α5, α6, α7, and αν subunits), all associated with the β1 integrin subunit (6, 7).Several studies have suggested an important cross-talk between extracellular matrix and insulin signaling. For example, engagement of β1 subunit containing integrin receptors was observed to increase insulin-stimulated insulin receptor substrate (IRS)2 phosphorylation, IRS-associated phosphatidylinositol 3-kinase, and activation of protein kinase B/Akt (8-11). Integrin receptor regulation of focal adhesion kinase was reported to modulate insulin stimulation of glycogen synthesis, glucose transport, and cytoskeleton organization in cultured hepatocytes and myoblasts (12, 13). Similarly, the integrin-linked kinase (ILK) was suggested to function as one of several potential upstream kinases that phosphorylate and activate Akt (14-18). In this regard small interfering RNA gene silencing of ILK in fibroblasts and conditional ILK gene knockouts in macrophages resulted in a near complete inhibition of insulin-stimulated Akt serine 473 (Ser-473) phosphorylation concomitant with an inhibition of Akt activity and phosphorylation of Akt downstream targets (19). However, a complex composed of mTOR·Rictor·LST8 (termed mTORC2) has been identified in several other studies as the Akt Ser-473 kinase (20, 21). In addition to Ser-473, Akt protein kinase activation also requires phosphorylation on threonine 308 Thr-30 by phosphoinositide-dependent protein kinase, PDK1 (22-24).In vivo, skeletal muscle is the primary tissue responsible for postprandial (insulin-stimulated) glucose disposal that results from the activation of signaling pathways leading to the translocation of the insulin-responsive glucose transporter, GLUT4, from intracellular sites to the cell surface membranes (25, 26). Dysregulation of any step of this process in skeletal muscle results in a state of insulin resistance, thereby predisposing an individual for the development of diabetes (27-33). Although studies described above have utilized a variety of tissue culture cell systems to address the potential involvement of integrin receptor signaling in insulin action, to date there has not been any investigation of integrin function on insulin action or glucose homeostasis in vivo. To address this issue, we have taken advantage of Cre-LoxP technology to inactivate the β1 integrin receptor subunit gene in striated muscle. We have observed that muscle creatine kinase-specific integrin β1 knock-out (MCKItgβ1 KO) mice display a reduction of insulin-stimulated glucose infusion rate and glucose clearance. The impairment of insulin-stimulated skeletal muscle glucose uptake and glycogen synthesis resulted from a decrease in Akt Ser-473 phosphorylation concomitant with a marked reduction in ILK expression. Together, these data demonstrate an important cross-talk between integrin receptor function and insulin action and suggests that ILK may function as an Akt Ser-473 kinase in skeletal muscle.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号