首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Gender Medicine》2012,9(4):278-286
BackgroundPreterm female infants have a survival advantage and enhanced lung development, which is an important determinant of preterm survival.ObjectiveGiven the modulation of lung development by fetal exposure to infection/inflammation, we hypothesized that female fetuses have enhanced lung maturational responses to chorioamnionitis compared with male fetuses.MethodsTime-pregnant ewes received intra-amniotic injections with saline (n = 60) or lipopolysaccharide (LPS) at 2 days (n = 30) or 7 days (n = 45) before surgical delivery at 123 to 125 days of gestation (term: ∼147 days). We assessed inflammatory responses in bronchoalveolar lavage fluid and cord blood, lung maturation with pressure-volume curves, and lung structure.ResultsLung gas volume showed differences between the sexes after 2 days LPS (male 4.6 [1.2] mL/kg, female 7.7 [4.4] mL/kg; P = 0.02) and 7 days LPS (male 20.5 [9.3] mL/kg, female 27.0 [7.0] mL/kg; P = 0.01). The control group was not different by sex (male 8.0 [3.6] mL/kg, female 8.9 [3.9] mL/kg; P > 0.05). No difference in lung structure and in pulmonary and systemic inflammatory response was evident by sex.ConclusionPreterm female sheep fetuses had increased lung gas volumes after exposure to LPS, without any detectable differences in fetal inflammatory responses.  相似文献   

2.
3.

Background

The impact of the intrauterine environment on the developmental programming of adult female reproductive success is still poorly understood and potentially underestimated. Litter size variation in a nonhuman primate, the common marmoset monkey (Callithrix jacchus), allows us to model the effects of varying intrauterine environments (e.g. nutrient restriction, exposure to male womb-mates) on the risk of losing fetuses in adulthood. Our previous work has characterized the fetuses of triplet pregnancies as experiencing intrauterine nutritional restriction.

Methodology/Principal Findings

We used over a decade of demographic data from the Southwest National Primate Research Center common marmoset colony. We evaluated differences between twin and triplet females in the number of pregnancies they produce and the proportion of those pregnancies that ended in fetal loss. We found that triplet females produced the same number of total offspring as twin females, but lost offspring during pregnancy at a significantly higher rate than did twins (38% vs. 13%, p = 0.02). Regardless of their own birth weight or the sex ratio of the litter the experienced as fetuses, triplet females lost more fetuses than did twins. Females with a male littermate experienced a significant increase in the proportion of stillbirths.

Conclusions/Significance

These striking findings anchor pregnancy loss in the mother’s own fetal environment and development, underscoring a "Womb to Womb" view of the lifecourse and the intergenerational consequences of development. This has important translational implications for understanding the large proportion of human stillbirths that are unexplained. Our findings provide strong evidence that a full understanding of mammalian life history and reproductive biology requires a developmental foundation.  相似文献   

4.
Maternal environment during early developmental stages plays a seminal role in the establishment of adult phenotype. Using a rabbit model, we previously showed that feeding dams with a diet supplemented with 8% fat and 0.2% cholesterol (HH diet) from the prepubertal period and throughout gestation induced metabolic syndrome in adult offspring. Here, we examined the effects of the HH diet on feto-placental phenotype at 28 days post-coïtum (term = 31days) in relation to earlier effects in the blastocyst (Day 6). At 28 days, both male and female HH fetuses were intrauterine growth retarded and dyslipidemic, with males more affected than females. Lipid droplets accumulated in the HH placentas’ trophoblast, consistent with the increased concentrations in cholesteryl esters (3.2-fold), triacylglycerol (2.5-fold) and stored FA (2.12-fold). Stored FA concentrations were significantly higher in female compared to male HH placentas (2.18-fold, p<0.01), whereas triacylglycerol was increased only in HH males. Trophoblastic lipid droplet accumulation was also observed at the blastocyst stage. The expression of numerous genes involved in lipid pathways differed significantly according to diet both in term placenta and at the blastocyst stage. Among them, the expression of LXR-α in HH placentas was reduced in HH males but not females. These data demonstrate that maternal HH diet affects the blastocyst and induces sex-dependent metabolic adaptations in the placenta, which appears to protect female fetuses from developing severe dyslipidemia.  相似文献   

5.
Our study is the first investigation of the effects of advanced paternal age (APA) on the developmental trajectory of social behavior in rodent offspring. Given the strong epidemiological association between APA and sexually dimorphic neurodevelopmental disorders that are characterized by abnormalities in social behavior (autism, schizophrenia), we assessed sociability in male and female inbred mice (C57BL/6J) across postnatal development (N = 104) in relation to paternal age. We found differences in early social behavior in both male and female offspring of older breeders, with differences in this social domain persisting into adulthood in males only. We showed that these social deficits were not present in the fathers of these offspring, confirming a de novo origin of an altered social trajectory in the offspring generation. Our results, highly novel in rodent research, support the epidemiological observations in humans and provide evidence for a causal link between APA, age‐related changes in the paternal sperm DNA and neurodevelopmental disorders in their offspring.  相似文献   

6.
The mammalian gonad arises as a bipotential primordium from which a testis or ovary develops depending on the chromosomal sex of the individual. We have previously used DNA microarrays to screen for novel genes controlling the developmental fate of the indifferent embryonic mouse gonad. Maestro (Mro), which encodes a HEAT-repeat protein, was originally identified as a gene exhibiting sexually dimorphic expression during mouse gonad development. Wholemount in situ hybridisation analysis revealed Mro to be expressed in the embryonic male gonad from approximately 11.5 days post coitum, prior to overt sexual differentiation. No significant expression was detected in female gonads at the same developmental stage. In order to address its physiological function, we have generated mice lacking Maestro using gene targeting. Male and female mice homozygous for a Mro null allele are viable and fertile. We examined gonad development in homozygous male embryos in detail and observed no differences when compared to wild-type controls. Immunohistochemical analysis of homozygous mutant testes of adult mice revealed no overt abnormalities. Expression profiling using DNA microarrays also indicated no significant differences between homozygote embryonic male gonads and controls. We conclude that Maestro is dispensable for normal male sexual development and fertility in laboratory mice; however, the Mro locus itself does have utility as a site for insertion of transgenes for future studies in the fields of sexual development and Sertoli cell function.  相似文献   

7.
We examined effects of maternal stress on prenatal serum concentrations of testosterone and estradiol and on postnatal reproductive traits in female mice from different intrauterine positions. On Day 18 of fetal life, control females positioned in utero between two male fetuses (2M females) had higher concentrations of testosterone and lower concentrations of estradiol in serum than control female fetuses located between two females (0M females). Control females positioned between a male and a female fetus (1M females) had intermediate levels of both hormones. Prior intrauterine position in control females accounted for differences in genital morphology (length of the anogenital separation) at birth and length of estrous cycles during adulthood. Maternal stress eliminated these postnatal differences due to prior intrauterine position: all 0M, 1M, and 2M female offspring of stressed mothers exhibited postnatal traits that were indistinguishable from those of control 2M females. Maternal stress resulted in an increase of over 1 ng/ml in serum testosterone in all female fetuses; the magnitude of the increase was similar for 0M, 1M, and 2M females. There was no effect of maternal stress on serum concentrations of estradiol in 0M and 2M female fetuses. Maternal stress resulted in a dramatic change in the postnatal traits of 0M females, whereas 2M females showed no change. Since the effect of maternal stress on sex steroids was similar among fetuses from different intrauterine positions but postnatal response to maternal stress varied by intrauterine position, other components of the endocrine system may mediate effects of maternal stress on these postnatal characteristics.  相似文献   

8.
9.
10.
Animal studies have shown that maternal resource allocation can be sex-biased in order to maximize reproductive success, yet this basic concept has not been investigated in humans. In this study, we explored relationships between maternal factors, offspring sex and prenatal and postnatal weight gain. Sex-specific regression models not only indicated that maternal ethnicity impacted male (n = 2456) and female (n = 1871) childrens postnatal weight gain differently but also that parity and mode of feeding influenced weight velocity of female (β ± s.e. = −0.31 ± 0.11 kg, p = 0.005; β ± s.e. = −0.37 ± 0.11 kg, p < 0.001) but not male offspring. Collectively, our findings imply that maternal resource allocation to consecutive offspring increases after a male firstborn. The absence of this finding in formula fed children suggests that this observation could be mediated by breast milk. Our results warrant further mechanistic and epidemiological studies to elucidate the role of breastfeeding on the programming of infant growth as well as of metabolic and cardiovascular diseases, with potential implications for tailoring infant formulae according to sex and birth order.  相似文献   

11.
Wing polymorphisms observed in many Insecta are important topics in developmental biology and ecology; these polymorphisms are a consequence of trade-offs between flight and other abilities. The pea aphid, Acyrthosiphon pisum, possesses 2 types of wing polymorphisms: One is a genetic wing polymorphism occurring in males, and the other is an environmental wing polyphenism seen in viviparous females. Although genetic and environmental cues for the 2 wing polymorphisms have been studied, differences in their developmental regulation have not been elucidated. In particular, there is little knowledge regarding the developmental processes in male wing polymorphism. Therefore, in this study, the development of flight apparatuses and external morphologies was compared among 3 male wing morphs (winged, wingless, and intermediate). These male developmental processes were subsequently compared with those of female wing morphs. Developmental differences between the male and female polymorphisms were identified in flight muscle development and degeneration but not in wing bud development. Furthermore, the nymphal periods of wingless and intermediate males were significantly shorter than that of winged males, indicating the adaptive significance of male winglessness. Overall, this study indicates that the male and female wing polymorphisms are based on different regulatory systems for flight apparatus development, which are probably the result of different adaptations under different selection pressures.  相似文献   

12.
A link has been established between prenatal nutrition and the development of metabolic and cardiovascular diseases later in life, a process referred to as developmental programming. It has been suggested that the trajectory of development is shifted by alterations in the maternal nutritional state leading to changes in developmental plasticity, in part underpinned by epigenetic changes in gene regulation. However, to date, only candidate gene approaches have been used to assess expression and molecular changes in the offspring of maternally undernourished animals. Furthermore, most work has focused on animals at an age where the programmed phenotype is already manifest and little is known about changes in gene expression in the offspring prior to development of obesity and related metabolic disorders. Gene expression profiles of liver, retroperitoneal white adipose fat, and biceps femoris skeletal muscle tissue from young adult male rats (55 days old) in which nutritional status had been manipulated in utero by maternal undernutrition (UN) were compared to the profiles of offspring of ad libitum fed mothers serving as the control group (AD) (8 offspring/group). The expression profiles were determined using the Illumina RatRef-12 BeadChip. No significant changes in expression were identified for skeletal muscle or white adipose tissue. However, studies of liver tissue showed 249 differentially expressed genes (143 up regulated, 106 down regulated). Although the animals at day 55 have yet to develop obesity they already show biochemical abnormalities and by day 110 express a phenotype characterized by increased adiposity and altered insulin sensitivity. An analysis of pathways affected suggests that intrauterine programming of UN animals to favor fat as an energy source results in mitochondrial dysfunction which initially affects the postnatal hepatic function and subsequently, via the resultant metabolic changes in other organs leads to the evolution of a phenotype similar to that of the metabolic syndrome.  相似文献   

13.
Galls develop in different plant organs and are induced by the activity of various organisms. Some studies have investigated the ecological interactions between species of Clusia and gall-inducing insects. The goal of our study is to characterise changes in leaf anatomy caused by the activity of gall insects in Clusia lanceolata. Additionally, we also investigated the chemical composition of volatile compounds of normal leaves and those with galls to detect possible effects on the host plants. For anatomical studies, we used botanical material fixed in FAA50. Transversal sections of the leaf blade were obtained from samples of leaves located on the third and fourth nodes from both male and female individuals. Material was studied from both sexes both with unaffected leaves and leaves containing galls. Fresh leaves of C. lanceolata were used for the extraction of volatile compounds, which were submitted to stem distillation using a modified Clevenger apparatus determining the oil yields subsequently (w/w). The unaffected leaves of female and male individuals of C. lanceolata exhibit similar anatomical structures. However, galls on leaves of both sexes show anatomical differences. The activity of the gall insect Clusiamyia nitida induces several changes in the foliar anatomy and the distribution of metabolic compounds in new tissues during gall development. However, the larvae are not able to induce significant changes in the volatile compounds of inflected leaves from male and female individuals.  相似文献   

14.
Cyclic GMP concentration and cyclic GMP phosphodiesterase activity were studied in rat mothers and fetuses at 17, 19 and 21 days of intrauterine life and 0, 1, 4, 10, 15,20, 30 and 45 days after birth. During this developmental period, the increase in cyclic GMP concentration was discrete and the value in 15-day-old rats was already similar to the adult level. Cyclic GMP phosphodiesterase activity increased from 17- to 19-day fetuses and was significantly reduced in 21-day fetuses, neonates, and 1-day-old rats. This reduction may be a result of fetal endocrine preparation for parturition. During postnatal development, cyclic GMP phosphodiesterase activity increased in a parallel way in the limbic system, corpora striata, cerebral hemispheres, and diencephalon, reaching maximal level between 20 and 30 days after birth, and then decreasing to the adult value. The highest activity was found in corpora striata and the lowest in diencephalon. Cerebellar cyclic GMP phosphodiesterase activity was very high in the 4-day-old rat (257% of adult value) and diminished significantly in the 10-day-old rat with no subsequent changes. Kinetic analysis of the enzyme during postnatal forebrain development showed an increase in both the Vmax and the apparent Km. A decrease in the enzyme's Vmax was observed only in the cerebellum.The importance of cyclic GMP phosphodiesterase regulation of cyclic GMP concentrations in the brain during development is discussed.  相似文献   

15.
Women of reproductive age are protected from metabolic disease relative to postmenopausal women and men. Most preclinical rodent studies are skewed toward the use of male mice to study obesity-induced metabolic dysfunction because of a similar protection observed in female mice. How sex differences in obesity-induced inflammatory responses contribute to these observations is unknown. We have compared and contrasted the effects of high fat diet-induced obesity on glucose metabolism and leukocyte activation in multiple depots in male and female C57Bl/6 mice. With both short term and long term high fat diet, male mice demonstrated increased weight gain and CD11c+ adipose tissue macrophage content compared with female mice despite similar degrees of adipocyte hypertrophy. Competitive bone marrow transplant studies demonstrated that obesity induced a preferential contribution of male hematopoietic cells to circulating leukocytes and adipose tissue macrophages compared with female cells independent of the sex of the recipient. Sex differences in macrophage and hematopoietic cell in vitro activation in response to obesogenic cues were observed to explain these results. In summary, this report demonstrates that male and female leukocytes and hematopoietic stem cells have cell-autonomous differences in their response to obesity that contribute to an amplified response in males compared with females.  相似文献   

16.

Background

There is a large sex difference in the prevalence of attention deficit disorder; yet, relatively little is known about sex differences in the development of prefrontal attention circuitry. In male rats, nicotinic acetylcholine receptors excite corticothalamic neurons in layer VI, which are thought to play an important role in attention by gating the sensitivity of thalamic neurons to incoming stimuli. These nicotinic currents in male rats are significantly larger during the first postnatal month when prefrontal circuitry is maturing. The present study was undertaken to investigate whether there are sex differences in the nicotinic currents in prefrontal layer VI neurons during development.

Methodology/Principal Findings

Using whole cell recording in prefrontal brain slice, we examined the inward currents elicited by nicotinic stimulation in male and female rats and two strains of mice. We found a prominent sex difference in the currents during the first postnatal month when males had significantly greater nicotinic currents in layer VI neurons compared to females. These differences were apparent with three agonists: acetylcholine, carbachol, and nicotine. Furthermore, the developmental sex difference in nicotinic currents occurred despite male and female rodents displaying a similar pattern and proportion of layer VI neurons possessing a key nicotinic receptor subunit.

Conclusions/Significance

This is the first illustration at a cellular level that prefrontal attention circuitry is differently affected by nicotinic receptor stimulation in males and females during development. This transient sex difference may help to define the cellular and circuit mechanisms that underlie vulnerability to attention deficit disorder.  相似文献   

17.
Bian C  Zhu K  Guo Q  Xiong Y  Cai W  Zhang J 《Steroids》2012,77(1-2):149-156
The structure and function including synaptic plasticity of the hippocampus are deeply affected by steroids in a sex-dependant manner, these processes are believed to be mediated by steroid receptors though their coactivators. Our previous studies have reported the developmental profiles of steroid receptor coactivator-1 (SRC-1) and PSD-95 in the hippocampus of postnatal female rats and the sex-differences of SRC-1 immunoreactivities in the brain of adult mice. However, whether there are any sex differences about postnatal development of SRC-1 and synaptic proteins in the hippocampus remain unclear. In this study, we investigated the postnatal profile of SRC-1 and key synaptic protein synaptophysin (SYN), PSD-95 and GluR1 in the hippocampus of female and male mice using immunohistochemistry and Western blot. The results showed that in the female hippocampus, the highest levels of SRC-1 were detected at P14, SYN and GluR1 at P30 and PSD-95 at P60; while in the males, the highest levels of SRC-1, SYN and GluR1 were detected at P30, and PSD-95 at P60. Female hippocampus tended to have higher levels of SRC-1, SYN and GluR1 before P30 and PSD-95 before P14; while male hippocampus have higher levels of PSD-95 at P14, P60 and GluR1 at P0. Correlation analysis showed the profiles of SRC-1 were highly correlated with each synaptic protein. The above results showed that in the hippocampus, except some minor sex differences detected at some time-point examined, females and males shared similar postnatal developmental profile and SRC-1 may be deeply involved in the regulation of hippocampal synaptogenesis.  相似文献   

18.
19.
While developmental consequences of parental investment on species-typical social behaviors has been extensively characterized in same-sex parent-offspring interactions, the impact of opposite-sex relationships is less clear. In the bi-parental California mouse (Peromyscus californicus), paternal retrieval behavior induces territorial aggression and the expression of arginine vasopressin (AVP) in adult male offspring. Although similar patterns of territorially emerge among females, the sexually dimorphic AVP system has not been considered since it is generally thought to regulate male-typical behavior. However, we recently demonstrated that male and female P. californicus offspring experience increases in plasma testosterone following paternal retrieval. Since AVP expression is androgen-dependent during development, we postulate that increases in AVP expression may accompany territoriality in female, as well as male offspring. To explore this aim, adult P. californicus offspring that received either high or low levels of paternal care (retrievals) during early development were tested for territoriality and immunohistochemical analysis of AVP within the bed nucleus of the stria terminalis (BNST), paraventricular nucleus (PVN), and supraoptic nucleus (SON). Consistent with previous studies, high care offspring were more aggressive than low care offspring. Moreover, high care offspring had significantly more AVP immunoreactive (AVP-ir) cells within the BNST than low care offspring. This pattern was observed within female as well as male offspring, suggesting an equally salient role for paternal care on female offspring physiology. Regardless of early social experience, sex differences in AVP persisted in the BNST, with males having greater expression than females.  相似文献   

20.
Maternal fructose consumption affects the metabolic functions of offspring later in life. However, the molecular mechanism remains poorly understood. Differences of microRNA expression profile and DNA methylation status are a candidate mechanism to explain the developmental programming that contributes to the development of a metabolic disorder. This study examined the transgenerational effect of maternal fructose consumption from the perspective of epigenetic modification. To do this, we collected serum and liver tissues from male offspring rats that were exposed to maternal distilled water or 20% fructose water during gestation and lactation. A decreased serum high-density lipoprotein cholesterol (HDL-C) level was observed in the offspring of fructose-fed dams at postnatal day (PD) 160. Given research indicating a role of liver X receptor alpha (LXRA) in cholesterol metabolism, we analyzed Lxra expression. Real-time polymerase chain reaction analysis demonstrated that offspring that were delivered from fructose-fed dams exhibited decreased Lxra gene expression in their liver tissue. There is a well-established association between Lxra expression and the level of DNA methylation and miR-206 expression. Pyrosequencing assays revealed no differences in the level of DNA methylation in the Lxra promoter region, whereas miR-206 expression was increased in the liver at PD 60 and 160. Our data indicate that early-life exposure to maternal fructose results in changing of miR-206 expression level in the liver that suppresses the expression of Lxra. This phenomenon may be associated with the decreased serum HDL-C level in offspring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号