首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results are presented from experiments on studying the plasma behavior in the L-2M stellarator in regimes with a high power deposition in electrons during electron cyclotron heating at the second harmonic of the electron gyrofrequency (X mode) at heating powers of P in=120–400 kW and average plasma densities from n e≤3×1019 to 0.3×1019 m?3. It is shown that, as the plasma density decreases and the heating power increases, the electron cyclotron emission spectrum is modified; this may be attributed to a deviation of the electron energy distribution from a Maxwellian and the generation of suprathermal electrons. At low plasma densities, the emission intensity at the second harmonic of the electron gyrofrequency increases, whereas the plasma energy measured by diamagnetic diagnostics does not increase. This poses the question of the correctness of determining the plasma electron temperature by electron cyclotron emission diagnostics under these conditions.  相似文献   

2.
Charge-transfer-to-solvent excited iodide–polar solvent molecule clusters, [I(Solv)n]*, have attracted substantial interest over the past 20 years as they can undergo intriguing relaxation processes leading ultimately to the formation of gas-phase molecular analogues of the solvated electron. In this review article, we present a comprehensive overview of the development and application of state-of-the-art first-principles molecular dynamics simulation approaches to understand and interpret the results of femtosecond photoelectron spectroscopy experiments on [I(Solv)n]* relaxation, which point to a high degree of solvent specificity in the electron solvation dynamics. The intricate molecular details of the [I(Solv)n]* relaxation process are presented, and by contrasting the relaxation mechanisms of clusters with several different solvents (water, methanol and acetonitrile), the molecular basis of the solvent specificity of electron solvation in [I(Solv)n]* is uncovered, leading to a more refined view of the manifestation of electron solvation in small gas-phase clusters.  相似文献   

3.
Potassium toxicity to survival and growth of Microcystis has been investigated for the first time by taking photosynthetic parameters and change in internal pH of Microcystis. The concentration of potassium reducing 50% population of Microcystis was found to be 6 mM. At this concentration, the internal pH of cells increased from 7.2 to 9.8 in comparison to control. 6.0 mM concentration of potassium reduced protein content by 44% and generated Na+ efflux of 55% as compared to control. O2 evolution, ATP content and CO2 fixation were found to be very sensitive to above K+ concentration and registered a respective decline of 38, 32 and 36%. PS II was the primary site of action depicting about 35% inhibition at above K+ concentration. PS I and whole electron transport chain were also inhibited but the extent was less pronounced in comparison to PS II. A definite correlation between requirement of Na+ for growth and maintenance of cytoplasmic pH was observed. K+-induced loss of Na+ from cells of Microcystis could result in increase in internal pH, which in turn affects survival, growth, and other physiological parameters of Microcystis. Thus, K+ appears to hold excellent potential for the control of Microcystis blooms in fresh water ponds and lakes.  相似文献   

4.
The naked mole-rat (Heterocephalus glaber) is a strictly subterranean mammal inhabiting the arid zones of north-east Africa. These animals have no access to free water and water balance thus might be facilitated by regulating renal water loss. The urinary concentrating ability of the naked mole-rat was determined using five dietary manipulations in which both water and salt content were altered. Control animals (n=7) received a high quality protein cereal mixed to a thin paste with water (1 g cereal: 85 g water). Water stress was induced by reducing the water content of the diet by either 50% (n=7) or 65% (n=7). Salt loading was facilitated by replacing the water with the same volume of either 0.9% salt (n=7) or 3.0% salt (n=4) solutions. Changes in body mass, food consumption and urine volume were measured daily. The effect of diet on osmolality and electrolyte concentrations of urine and plasma were determined on termination of the diet trials. Although energy intake was not reduced, naked mole-rats lost body weight with both water stress treatments. Urine volume voided per day decreased significantly with both water stress treatments (P<0.05), such that the most extreme water stress led to an 80% reduction in urine volume. Mildly salt-loaded animals gained weight, yet underwent a sodium diuresis, as indicated by a 1.3-fold increase in the daily volume of urine voided (P<0.05). Maximum urine concentration (1521±250 mmol·kg-1) was achieved with mild water stress and was 4.6±0.9 times that of plasma. Neither further water stress nor salt loading further increased urine osmolality (P>0.05). The naked mole-rat exhibits a moderate kidney concentrating ability and cannot maintain plasma osmolality or body mass with either extreme water stress or salt loading. Although this species succesfully inhabits arid zones, survival in these areas is not facilitated by renal water conservation, but rather by their underground existence in a microhabitat where humidities are high and radiant heat loads low. In this milieu a moderate kidney concentrating ability is adequate.Abbreviations Bm body mass - ESL extreme salt load - EWS extreme water stress - MSL mild salt load - MWS mild water stress  相似文献   

5.
Cyclic electron flow (CEF) plays an important role in photoprotection for angiosperms under environmental stresses. However, ferns are more sensitive to drought and their water transport systems are not as efficient as those of angiosperms, it is unclear whether CEF also contributes to photoprotection in these plants. Using Microsorum punctatum and Paraleptochillus decurrens, we studied the electron fluxes through both photosystem I (PSI) and photosystem II (PSII) under water stress and their leaf anatomies. Our goal was to determine if CEF functions in the photoprotection of these ferns and, if so, whether CEF stimulation is related to leaf anatomy. Compared with P. decurrens, M. punctatum had thicker leaves and cuticles and higher water storage capacity, but lower stomatal density and slower rate of water loss. During induced drought, the decrease in leaf water potential (Ψleaf) was more pronounced in P. decurrens than in M. punctatum. For both species, the decline in Ψleaf was associated with a lower effective PSII quantum yield, photochemical quantum yield of PSI and electron transport rate (ETR), whereas increases were found in the quantum yield of regulated energy dissipation, CEF and CEF/ETR(II) ratio. Values for CEF and the CEF/ETR(II) ratio peaked in M. punctatum at a light intensity of 500–600 µmol m?2 s?1 vs only 150–200 µmol m?2 s?1 in P. decurrens. Therefore, our results indicate that the stimulation of CEF in tropical ferns contributes to their photoprotection under water stress, and is related to their respective drought tolerance and leaf anatomy.  相似文献   

6.
In the previous experiments on ECR heating of a low-density plasma with n e =(0.3?0.5)×1019 m?3 in the L-2M stellarator, the electron temperature profile measured from the intensity of electron cyclotron emission was found to be asymmetric about the magnetic axis and the electron temperature measured by this diagnostics turned out to be higher than that expected from diamagnetic measurements. To find out the character of distortion of the electron energy distribution function, the soft X-ray spectrum was measured in regimes with large values of the specific heating power η (1.5 MW per 1019 particles). Under these conditions, the X-ray spectrum plotted on a semilogarithmic scale has no linear segments in the photon energy range from 1.5 to 12 keV. This indicates that the electron distribution function is non-Maxwellian over the entire energy range under study.  相似文献   

7.
The water balance of nectarivores is tightly linked to their energy balance. When nectar is dilute, consumption of a large water excess is inevitable. We investigated energy and water balance in lesser double-collared sunbirds, Nectarinia chalybea (8 g), kept at 20 °C and fed different nectar concentrations (0.4, 0.8 M sucrose or 1.2 M sucrose). The mass of sucrose consumed, body mass, day-time mass gain and night-time mass loss were the same irrespective of diet, the birds compensating energetically for changes in sucrose concentration by drinking greater volumes of the more dilute solutions. Sunbirds consumed between 0.5 times and 1.8 times their body mass in preformed water per day, depending on sucrose concentration, and excreted around 75% of the water. The difference between water gain (preformed and metabolic water) and excreted water is assumed to equal evaporative water loss, and was similar on 1.2 M and 0.8 M sucrose, but was higher on a diet of 0.4 M sucrose. The osmolalities and K+ and Na+ concentrations of the excreted fluid were extremely low, so that sunbird urine resembled that of hummingbirds and freshwater vertebrates rather than that of typical terrestrial vertebrates. N. chalybea is able to maintain energy and water balance over a range of nectar concentrations by adjusting the volume of solution consumed and by excreting copious, dilute fluid. Accepted: 2 January 1999  相似文献   

8.
The photoacoustic technique was used to measure energy storage by cyclic electron transfer around photosystem I in intact Chlamydomonas reinhardtii cells illuminated with far-red light (>715 nm). The in-vivo cyclic pathway was characterized by investigating the effects of various chemicals on energy storage. Participation of plastoquinone and ferredoxin in the cyclic electron flow was confirmed by the complete suppression of energy storage in the presence of the plastoquinol antagonist 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) and the ferredoxin inhibitors/competitors methylviologen, phenylmercuric acetate and p-benzoquinone. Two alternative electron cycles are demonstrated to operate in vivo. One cycle is sensitive to antimycin A, myxothiazol and 2-(n-heptyl)-4-hydroxyquinoline N-oxide (HQNO) and is catalyzed by ferredoxin which reduces plastoquinone through a route involving cytochrome b 6 and its protonmotive Q-cycle. The other cycle is unaffected by the above-mentioned inhibitors but is sensitive to N-ethylmaleimide (NEM), an inhibitor of the ferredoxin-NADP reductase, and 2-monophosphoadenosine-5-diphosphoribose (PADR), an analogue of NADP, showing that the electron recycling was mediated by NADPH. Possibly, electrons enter the plastoquinone pool through the action of a NAD(P)H dehydrogenase, which is insensitive to classical inhibitors of the mitochondrial NADH dehydrogenase. Loss of energy storage by photosystem-I-driven cyclic electron transfer in farred light was observed only when antimycin A, myxothiazol or HQNO was used in combination with NEM or PADR. Analysis of the light-intensity dependence and the rate of in-vivo cyclic electron transfer in the presence of various inhibitors indicates that the NADPH-dependent electron-cycle is the preferential cyclic pathway in Chlamydomonas cells illuminated with far-red light.Abbreviations Amax maximal photothermal signal - Cyt cytochrome - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU (diuron) 3-(3,4-dichlorophenyl)-1,1-dimethylurea - ES photochemical energy storage - FNR ferredoxin NADP+ reductase - HQNO 2-(n-heptyl)-4-hydroxyquinoline N-oxide - NEM N-ethylmaleimide - P700 reaction-center pigment of PSI - PADR 2-monophosphoadenosine-5-diphosphoribose - pBQ p-benzoquinone - PMA phenylmercuric acetate We are very grateful to Dr. M.-H. Montane (Cadarache, Saint-Paul-lez-Durance, France) for her advice in the electroporation experiments.  相似文献   

9.
In this study we document growth, milk intake and energy consumption in nursing pups of icebreeding grey seals (Halichoerus grypus). Change in body composition of the pups, change in milk composition as lactation progresses, and mass transfer efficiency between nursing mothers and pups are also measured. Mass transfer efficiency between mother-pup pairs (n=8) was 42.5±8.4%. Pups were gaining a daily average of 2.0±0.7 kg (n=12), of which 75% was fat, 3% protein and 22% water. The total water influx was measured to be 43.23±8.07 ml·kg-1·day-1. Average CO2 production was 0.85±0.20 ml·g-1·h-1, which corresponds to a field metabolic rate of 0.55±0.13 MJ·kg-1·day-1, or 4.5±0.9 times the predicted basal metabolic rate based on body size (Kleiber 1975). Water and fat content in the milk changed dramatically as lacation progressed. At day 2 of nursing, fat and water content were 39.5±1.9% and 47.3±1.5%, respectively, while the corresponding figures for day 15 were 59.6±3.6% fat and 28.4±2.6% water. Protein content of the milk remained relatively stable during the lactation period with a value of 11.0±0.8% at day 2 and 10.4±0.3% at day 15. Pups drank an average of 3.5±0.9 kg of milk daily, corresponding to a milk intake of 1.75 kg per kg body mass gained. The average daily energy intake of pups was 82.58±19.80 MJ, while the energy built up daily in the tissue averaged 61.72±22.22 MJ. Thus, pups assimilated 74.7% of the energy they received via milk into body tissue. The lactation energetics of ice-breeding grey seals is very similar to that of their land-breeding counterparts.Abbreviations bm body mass - BMR basal metabolic rate - FMR field metabolic rate - IU international unit - RQ respiration quotient - HTO tritiated water - HT18O doubly labeled water - TBW total body water - VHF very high frequency  相似文献   

10.
11.
Summary Ionic calcium concentration was measured in the gonidial zone of fresh coralloid roots by means of calcium microelectrodes. It was 10−6 M in the apical segments of coralloid roots and increased to 10−5 M in the gonidial zones of median and basal segments. Loosely membrane-bound calcium was evidenced by using chlorotetracycline (CTC) or ethylene glycol-bis-(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) and CTC, in cell walls of columnar cells ofCycas and in the cytoplasm of cyanobiont. Sub-cellular localization of calcium was obtained by electron spectroscopic imaging (ESI) and electron energy loss spectroscopy (EELS) analyses applied at transmission electron microscopy on thin, unstained sections of gonidial zone of coralloid roots. By means of these techniques, bound-calcium was detected inside the mucilage of apical and median segments whereas, in the basal segments, it was completely absent. In the heterocysts of apical segments of coralloid, calcium was localized on the envelope, cell walls, thylakoids and cyanophycin granules. In the gonidial zone of the basal segments, dead or degenerating heterocysts completely lacked calcium. Therefore, the high ionic calcium amounts detected in the gonidial zone of median and basal segments could represent a minor calcium uptake by the cells or release by lysed ones. The decreases in nitrogenase activity recorded in the median and basal segments of the coralloid roots paralleled the decrease in calcium amount in heterocyst envelope.  相似文献   

12.
Observations of the interior structure of cells and subcellular organelles are important steps in unraveling organelle functions. Microscopy using helium ions can play a major role in both surface and subcellular imaging because it can provide subnanometer resolutions at the cell surface for slow helium ions, and fast helium ions can penetrate cells without a significant loss of resolution. Slow (e.g., 10–50 keV) helium ion beams can now be focused to subnanometer dimensions (∼0.25 nm), and keV helium ion microscopy can be used to image the surfaces of cells at high resolutions. Because of the ease of neutralizing the sample charge using a flood electron beam, surface charging effects are minimal and therefore cell surfaces can be imaged without the need for a conducting metallic coating. Fast (MeV) helium ions maintain a straight path as they pass through a cell. Along the ion trajectory, the helium ion undergoes multiple electron collisions, and for each collision a small amount of energy is lost to the scattered electron. By measuring the total energy loss of each MeV helium ion as it passes through the cell, we can construct an energy-loss image that is representative of the mass distribution of the cell. This work paves the way to use ions for whole-cell investigations at nanometer resolutions through structural, elemental (via nuclear elastic backscattering), and fluorescence (via ion induced fluorescence) imaging.  相似文献   

13.
Irradiating a tumor bed with boost dose after whole breast irradiation helps reducing the probability of local recurrence. However, the success of electron beam treatment with a small area aiming to cover a superficial lesion is a dual challenge as it requires an adequate dosimetry beside a double check for dose coverage with an estimation of various combined uncertainty of tumor location and losing lateral electron equilibrium within small field dimensions.Aim of workthis work aims to measure the electron beam fluence within different field dimensions and the deviation from measurement performed in standard square electron applicator beam flatness and symmetry, then to calculate the average range of the correction factor required to overcome the loss of lateral electron equilibrium.Material and methodthe electron beam used in this work generated from the linear accelerator model ELEKTA Precise and dosimetry system used were a pair of PTW Pin Point ion chambers for electron beam dosimetry at standard conditions and assessment of beam quality at a reference depth of measurement, with an automatic water phantom, then a Roos ion chamber was used for absolute dose measurement, and PTW 2Darray to investigate the beam fluence of four applicators 6, 10, 14 and 20 cm2 and 4 rectangular cutouts 6 × 14, 8 × 14, 6 × 17 and 8 × 17 cm2, the second part was clinical application which was performed in a precise treatment planning system and examined boost dose after whole breast irradiation.Resultsrevealed that lower energy (6MeV and 8MeV) showed the loss of lateral electron equilibrium and deviation from measurements of a standard applicator more than the high energy (15 MeV) which indicated that the treatment of superficial dose with 6MeV required higher monitor unit to allow for the loss of lateral electron equilibrium and higher margin as well.  相似文献   

14.
The effect of the nonlocal nature of the electron distribution function on the dissociation rate of oxygen molecules in a dc glow discharge is studied. The concentration of oxygen atoms and the probability of their loss at the discharge tube wall are measured as functions of the discharge parameters by means of the timeresolved actinometric method involving argon atoms. An analysis of the measurement data in terms of both a discharge model in which the effect of the nonlocal nature of the electron energy spectrum is taken into account and a model in which this effect is ignored makes it possible to thoroughly investigate the balance of oxygen atoms in the discharge. The production rate of O(3P) atoms and their concentration in the plasma are calculated with allowance for the nonlocal nature of the electron energy distribution function. The calculated values agree well with the experimental data and differ substantially from those obtained using a spatially homogeneous distribution function.  相似文献   

15.
Liver -glucuronidase is structurally altered in inbred strain PAC so that a peptide subunit with a more basic isoelectric point, GUS-SN, is produced. This allele of -glucuronidase was transferred to strain C57BL/6J by 12 backcross matings to form the congenic line B6 · PAC-Gus n. Liver -glucuronidase activity was halved in males of the congenic strain compared to normal males. The lowered activity was specifically accounted for by a decrease in the lysosomal component. There was no alteration in the concentration of microsomal activity. This alteration in the subcellular distribution of -glucuronidase in Gus n/Gus n mice was confirmed by two independent gel electrophoretic systems which separate microsomal and lysosomal components. -Glucuronidase activity was likewise approximately halved in mutant spleen, lung, and brain, organs which contain exclusively or predominantly lysosomal -glucuronidase. The loss of liver lysosomal -glucuronidase activity was shown by immunotitration to be due to a decrease in the number of -glucuronidase molecules in lysosomes of the congenic strain. The Gus n structural alteration likely causes the lowered lysosomal -glucuronidase activity since the two traits remain in congenic animals. Heterozygous Gus n/Gus b animals had intermediate levels of liver -glucuronidase. Also, the effect was specific, in that three other lysosomal enzymes were not reproducibly lower in Gus n/Gus n mice. Gus n is, therefore, an unusual example of a mutation which causes a change in the subcellular distribution of a two-site enzyme.This work was supported by National Institutes of Health Grants GM-33559 and GM-33160 and National Science Foundation Grant PCM-8215808.  相似文献   

16.
In recent years, attempts have been made in linking pressure–volume parameters and the leaf economics spectrum to expand our knowledge of the interrelationships among leaf traits. We provide theoretical and empirical evidence for the coordination of the turgor loss point and associated traits with net CO2 assimilation (An) and leaf mass per area (LMA). We measured gas exchange, pressure–volume curves and leaf structure in 45 ferns and angiosperms, and explored the anatomical and chemical basis of the key traits. We propose that the coordination observed between mass-based An, capacitance and the turgor loss point (πtlp) emerges from their shared link with leaf density (one of the components of LMA) and, specially, leaf saturated water content (LSWC), which in turn relates to cell size and nitrogen and carbon content. Thus, considering the components of LMA and LSWC in ecophysiological studies can provide a broader perspective on leaf structure and function.  相似文献   

17.
Electron energy loss spectroscopy (EELS) is a high spatial resolution electron microscopic technique with the potential to quantify elements at the subcellular level. The presence of each element is demonstrated by the electron energy loss edge at the energy characteristic of that element. The area of the edge may indicate the quantity of element present. Electron spectroscopic imaging (ESI) is a similar technique generating graphic images of elemental localization in the specimens. An ESI of an aluminum (Al)-loaded rabbit hippocampus showed Al only in pyramidal cell lysosomes, but no EELS edge could be obtained. To determine the sensitivity of EELS for Al and to be able to adjust the instrument to optimal operating conditions, standards containing 50–5000 ppm Al were produced. An Al-chloride:dicyclohexano-18-crown-6 (Al:crown) complex was synthesized. The purity of the complex was confirmed by nuclear magnetic resonance (NMR) spectroscopy and the percentage of Al in the complex was determined by electrothermal atomic absorption spectroscopy (ETAAS). The complex was introduced into a biological tissue embedding resin (Spurr medium) and appeared to be compatible with the resin at Al concentrations ≤500 ppm. EELS signals from the Al K edge could be obtained at a spatial resolution of 3.3 nm in a 30-nm thick section from 2.78×10?21 g of Al, representing a sample concentration of 1% Al.  相似文献   

18.
The energy budget, water balance and osmoregulation of the fruit bat, Rousettus aegyptiacus, were studied during normal hydration and during water restriction (oven-dried apple diet). The water input and output were balanced during both normal hydration and water restriction. The kidney of the fruit bat is well adapted to handle the water load from its fruit diet by excreting large volumes (14% of the body mass per day) of dilute urine (113±25 mosmol·kg H2P-1) as well as reducing urine volume (-95%) and increasing urine osmotic concentration (555±280 mosmol·kg H2O-1) during water restriction. The haematocrit, plasma haemoglobin and total protein concentrations did not increase during water restriction and heat exposure, suggesting the conservation of plasma volume. Gross energy intake was not alfected by water restriction. However, digested energy intake and digestibility were significantly reduced. The effective regulation of energy and water budgets during water restriction suggests that the fruit bat can cope with seasonal climatic changes and with variable fruit supply during various seasons.Abbreviations BM body mass - DEI digested energy intake - EWL evaporative water loss - GEL gross energy intake - NH normal hydration - T a ambient temperature - WR water restriction  相似文献   

19.
Palladium(II) complexes of type [Pd(Ln)Cl2] and [Pd(bdt)(Ln)] have been synthesized using 2-acetyl pyridine derivatives(Ln) and benzene-12-dithiol(bdt). The synthesized complexes have been characterized by various analytical techniques like thermo gravimetric analysis, elemental analysis, conductance measurement, and spectroscopic techniques like elemental analysis, mass spectra, absorption spectra, IR, 1H NMR, energy-dispersive X-ray spectroscopy. The interaction of the complexes with calf-thymus DNA (CT-DNA) has been explored by absorption titration, viscosity measurement methods. Based on the observations, an intercalative binding mode of DNA has been proposed. In order to provide additional evidence for the intercalation mode of binding between the complex and CT-DNA, fluorescence titration experiment was performed. In addition, molecular modeling study has been carried out with the aim of establishing the complex’s binding mode. Antibacterial activity study of the complexes have been screened against pathogenic bacteria such as Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Serratia marcescens, and Pseudomonas aeruginosa. Gel electrophoresis assay demonstrates that all the complexes can cleave the pUC19 plasmid DNA.  相似文献   

20.
Saradhi  P. Pardha  Alia  Vani  B. 《Plant and Soil》1993,155(1):465-468
The concentration of proline in shoots of rice (Oryza sativa) seedlings raised in distilled water was about 3.3 times higher than in the seedlings raised in modified B5 medium. The shoots of seedlings raised in B5 medium which was depleted of calcium, iron, magnesium or potassium had a higher concentration of proline than those grown in standard B5 medium. The shoots of seedlings raised in distilled water with iron had a lower level of proline than those in distilled water. These results suggest that iron deficiency leads to high proline accumulation.The electron transport activity of mitochondria from shoots of etiolated seedlings raised in distilled water or iron-depleted B5 medium was significantly lower than those from equivalent seedlings raised with an iron source. As suppression in mitochondrial electron transport leads to an increase in NADH/NAD+ ratio, we propose that the prime cause of the proline accumulation during iron deficiency is to readily maintain NADH/NAD+ ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号