首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Telazol–xylazine and ketamine–xylazine are versatile and safe drug combinations that are used frequently for chemical immobilization of cervids. Although neither combination consistently offers rapid induction and recovery, we hypothesized that a combination of Telazol, ketamine, and xylazine (TKX) would provide a safe and effective alternative for immobilization of white-tailed deer (Odocoileus virginianus). During a 2-stage study, we evaluated the effectiveness of yohimbine and tolazoline as alpha2-adrenergic antagonists (2005–2006), and characterized the factors that affected chemical immobilization of male deer with a targeted dose of telazol (2.20 mg/kg), ketamine (1.76 mg/kg), and xylazine (0.44 mg/kg), using explosive-charged darts (2007–2010). During the first stage, we randomly assigned deer to antagonist treatments, including a control group that did not receive an antagonist (n = 8), a tolazoline (4 mg/kg) treatment (n = 16), and a yohimbine (0.11 mg/kg) treatment (n = 15). Recovery times were longer (P = 0.0013) for control (150.6 ± 21.7 min) and yohimbine (74.5 ± 13.1 min), compared with tolazoline (12.5 ± 12.3 min). Tolazoline resulted in faster and more complete recovery compared with the frequent incomplete antagonism and ataxia observed with yohimbine. During the second stage, 56 immobilization events (2007–2010) with TKX yielded a mean induction time of 7.8 minutes (SE = 0.44). Repeated-measures analyses indicated that induction and recovery were affected by body weight, with larger males taking longer to become recumbent (P = 0.08), but they recovered more rapidly (P = 0.003) following administration of tolazoline. Physiological parameters we measured under anesthesia were within normal ranges for white-tailed deer; however, initial temperature was higher (β = −0.86) for younger males (P = 0.014). Final physiological parameters were closely related to initial measurements, with rectal temperature being the most preserved (β = 0.90); heart and respiration rate declined (β < 0.60) during anesthesia. Our results indicate that TKX may be useful for chemically immobilizing white-tailed deer, and we recommend tolazoline as an antagonist for xylazine. © 2012 The Wildlife Society.  相似文献   

2.
Fourteen wolves (Canis lupus L.) were singularly or repeatedly immobilized with 30 mg xylazine hydrochloride (HCl) and 400 mg ketamine HCl. Mean induction time was 5.3 +/- 4.6 min (mean +/- SD). Administration of 8.0 mg/kg tolazoline HCl as an antagonist significantly reduced immobilization times from 148.0 +/- 52.7 to 47.9 +/- 8.9 min (F = 63.69, df = 1,17, P less than 0.05). The average times from injection to ambulation for 2.0, 4.0, and 8.0 mg/kg tolazoline HCl were 35.2 +/- 31.8, 18.5 +/- 11.7, and 10.2 +/- 9.1 min. Tolazoline HCl increased heart rates significantly (P less than 0.001) from 75 +/- 14 to 120 +/- 23 beats/min, reversing a xylazine HCl-induced bradycardia. Respiratory rates also increased significantly (P less than 0.01) after tolazoline HCl injection from 19 +/- 7 to 28 +/- 8 breaths/min. Immobilization resulted in an initial hypertension which was normalized after tolazoline HCl administration. One female wolf had a single sinoatrial block within 1 min of receiving tolazoline HCl. Tolazoline HCl appears to be an effective antagonist for xylazine HCl-ketamine HCl immobilization of wolves.  相似文献   

3.
We captured 10 free-ranging desert mule deer (Odocoileus hemionus crooki) (five males and five females) by net-gun from a helicopter and immobilized them with xylazine hydrochloride (HCl) (100 mg) and ketamine HCl (300 to 400 mg) injected intramuscularly. Arousal and ambulation times were 13.9 +/- 4.2 and 14.3 +/- 4.2 min in eight deer injected intravenously with tolazoline HCl (3.0 mg/kg). We observed a curvilinear relationship (R = 0.50, P less than 0.01) between rectal temperature and time after induction of anesthesia. Mean peak temperature (41.4 C) occurred at 23.7 +/- 3.2 min postinduction and was greater (P less than 0.01) than the mean temperature measured initially (40.8 C). Heart and respiratory rates (108 beats/min and 75 breaths/min) were elevated prior to immobilization. Mean heart rate increased (P less than 0.05) from 90 +/- 9 beats/min in anesthetized deer to 120 +/- 13 beats/min after tolazoline HCl injection. A 20% capture-related mortality rate suggests this combination of physical and chemical capture has serious limitations. Captive deer permitted to recover from xylazine HCl-ketamine HCl immobilization without a reversal agent were able to walk in 290 +/- 79 min.  相似文献   

4.
Chemical immobilization is often needed for safe and effective capture and handling of wildlife. We evaluated medetomidine (125, 150, 175, or 200 μg/kg; for synergistic effects and relaxation) mixed with ketamine (1.5 mg/kg; for relatively shorter recovery) and tiletamine-zolazepam (1.0 mg/kg; for rapid induction) in 22 female white-tailed deer (Odocoileus virginianus) at the University of Georgia Whitehall Deer Research Facility in Athens, Georgia, USA, on 14-15 and 21 May 2009. Deer were weighed before treatment, hand-injected intramuscularly (IM) while restrained in a squeeze chute, and released into a pen for monitoring. We measured rectal temperature, respiration rate, heart rate, hemoglobin saturation (using pulse oximetry), and arterial blood gases at 0, 10, and 20 min postimmobilization. We found no differences in induction time with different doses of medetomidine. Deer became laterally recumbent for all treatments combined at a median of 4.2 (2.6-21.3) min and were approachable by a median of 4.8 (3.5-21.8) min. Twelve of the 22 deer had rectal temperatures >40 C at time 0 and were treated with a cold-water enema. Hemoglobin saturation, estimated using pulse oximetry, was 79.5, 82.0, and 82.3% at times 0, 10, and 20, respectively. We injected atipamezole (0.35 mg/kg, IM) for reversal. Recovery occurred sooner and was more consistent for 125 and 150 μg/kg medetomidine whereby deer stood with minimal sedation to moderate ataxia within 60-90 min after atipamezole administration. We recommend using 150 μg of medetomidine with ketamine (1.5 mg/kg) and tiletamine-zolazepam (1.0 mg/kg) to provide effective and safe chemical immobilization of white-tailed deer.  相似文献   

5.
Cardiopulmonary effects and the utility of a butorphanol/xylazine/ketamine combination were evaluated during twenty immobilizations of sixteen Baird's tapirs (Tapirus bairdii) between March 1996 and January of 1998 in Corcovado National Park (Costa Rica). The animals were attracted to a bait site and darted from tree platforms. The tapirs were estimated to weigh between 200 to 300 kg. Actual weights of three tapirs taken at later dates fell within the estimated range. A butorphanol, 48+/-1.84 (x +/- SE) mg/animal IM, and xylazine, 101+/-2.72 mg/animal IM, combination was used to immobilize the animals. In some instances, ketamine was used either IM or IV at 187+/-40.86 mg/animal to prolong the immobilization period in addition to the butorphanol/xylazine combination. Naltrexone was used IM to reverse butorphanol at 257+/-16.19 mg/animal. Either yohimbine, 34+/-0.61 or tolazoline at 12+/-10.27 mg/animal, was used to reverse xylazine. The mean time from dart impact to first visible effect was 4.63+/-0.50 min (x +/- SE). Mean time to sternal recumbency was 12.21+/-1.08 min. Mean time the tapirs were immobilized was 45.63+/-3.6 min. Mean time to return to sternal recumbency and standing in animals that received yohimbine and naltrexone was 3.16+/-1.06 and 5.33+/-1.45 min, respectively. Mean time to return to sternal recumbency and standing in animals that received tolazoline and naltrexone was 1.57+/-0.39 and 3.14+/-0.51 min, respectively. Cardiopulmonary parameters including heart rate, respiratory rate, body temperature, electrocardiogram, percent oxygen satoration, and indirect blood pressure were recorded. Arterial blood gas analysis was performed on four animals. A mild degree of hypoxemia was evidenced by low arterial oxygen saturations. Five of 14 (36%) animals measured had oxygen saturations below 90%. Bradycardia (heart rates <45 BPM) was an expected finding in 11 (55%) immobilizations. Induction, recovery and muscle relaxation of each immobilization was graded. Premature arousal, which occurred in six (30%) animals, was the only problem associated with the immobilizations. Butorphanol/xylazine is a recommended protocol for immobilization of calm, free-ranging tapirs lasting less than 30 min. Supplemental intravenous administration of ketamine is recommended for longer procedures. Nasal insufflation of oxygen is recommended.  相似文献   

6.
October 2001 to January 2002, captive free-ranging white-tailed deer (Odocoileus virginianus) were immobilized with a combination of carfentanil citrate and xylazine hydrochloride. From this study, we selected a dose of carfentanil/xylazine for the purpose of comparing immobilization parameters and physiologic effects with those of a combination of tiletamine and zolazepam (Telazol) and xylazine. Animals were initially given intramuscular injections of 10 mg xylazine and one of four doses of carfentanil (i.e., 0.5, 1.0, 1.5, and 2.0 mg). A carfentanil dose of 1.2 mg (x +/- SD = 23.5 +/- 3.2 microg/kg) and 10 mg xylazine (0.2 +/- 0.03 mg/kg) were selected, based on induction times and previously published reports, to compare with a combination of 230 mg of Telazol (4.5 +/- 0.6 mg/kg) and 120 mg xylazine (2.3 +/- 0.3 mg/kg). Time to first observable drug effects and to induction were significantly longer for deer treated with carfentanil/xylazine than with Telazol/xylazine (P < 0.01). Hyperthermia was common in deer immobilized with carfentanil/xylazine, but heart rate, respiration rate, and hemoglobin saturation were within acceptable levels. Degree of anesthesia of deer immobilized with Telazol/xylazine was superior to deer immobilized with carfentanil/xylazine. The combination of 120 mg of naltrexone hydrochloride and 6.5 mg of yohimbine hydrochloride provided rapid and complete reversal (1.9 +/- 1.1 min) of carfentanil/xylazine immobilization. Animals immobilized with Telazol/xylazine had long recovery times with occasional resedation after antagonism with 6.5 mg of yohimbine. The combination of carfentanil and xylazine at the doses tested did not provide reliable induction or immobilization of white-tailel (leer even though drug reversal was rapid and safe using naltrexone and yohimbine.  相似文献   

7.
The mean time to arousal (MTA), the mean time to sternal recumbency (MTSR) and the mean time to walking (MTW) were measured in 10 adult guineafowl (Numida meleagris) immobilized with a combination of xylazine hydrochloride (1 mg/kg) and ketamine hydrochloride (25 mg/kg). Yohimbine hydrochloride, given intravenously (1 mg/kg) at 40 min after the injection of the xylazine-ketamine, significantly shortened the MTA, the MTSR and the MTW compared to saline controls. Increasing the dosage of yohimbine to 2.5 mg/kg did not shorten recovery when compared to the lower dosage. No adverse effects were noted at either dosage of yohimbine. Yohimbine appeared to be a safe and effective antagonist of xylazine-ketamine immobilization in guineafowl and may prove useful in other avian species to produce more rapid recovery from xylazine-ketamine immobilization, xylazine sedation or xylazine overdosage.  相似文献   

8.
A combination of 0.05 mg/kg medetomidine and 1.5 mg/kg ketamine was used to immobilize nine adult free-ranging hog deer (Axis porcinus) captured in drive nets in the Royal Bardia National Park, Nepal, 22-23 February 2000. The drugs were administered intramuscularly from separate syringes and the mean time (+/-SD) to complete immobilization was 4.6+/-1.0 min. Muscle relaxation was good and no major clinical side effects were seen. Mean values for physiologic parameters, recorded at 10-12 and 18-20 min after drug administration, were 40.6+/-0.5 and 41.1+/-0.6 C, 87+/-5 and 84+/-4%, 107+/-16 and 113+/-16 beats/ min, and 46+/-9 and 40+/-8 breaths/min for rectal temperature, SpO2, pulse rate, and respiratory rate, respectively. All animals received 0.25 mg/ kg atipamezole intramuscularly 20-22 min after administration of medetomidine-ketamine and the mean time to coordinated running was 4.8+/-0.8 min. All animals survived for at least 5 mo post-capture. To reduce stress and to facilitate handling, medetomidine-ketamine and atipamezole are recommended for reversible immobilization of free-ranging hog deer captured in drive nets.  相似文献   

9.
Nine-banded (n = 47) and great (n = 31) long-nosed armadillos (Dasypus novemcinctus and Dasypus kappleri) were immobilized for clinical examination and collection of biological samples as part of a wildlife rescue during the filling of a hydroelectric dam (Petit Saut, French Guiana) from May 1994 to April 1995. Three intramuscular (i.m.) anesthetic combinations were evaluated: (1) tiletamine/zolazepam (T/Z) at a dose of 8.5 mg/kg in 12 nine-banded long-nosed armadillos (NBA) and 10 great long-nosed armadillos (GLA), (2) ketamine at 40 mg/kg combined with xylazine at 1.0 mg/kg (K/X) in 18 NBA and nine GLA, and (3) ketamine at 7.5 mg/kg combined with medetomidine at 75 microng/kg (K/M) in 17 NBA and 12 GLA, antagonized by 375 microg/kg atipamezole. Induction was smooth, ranged from mean +/- SD = 2.8+/-0.6 to 4.3+/-1.8 min, and did not differ significantly between protocols, species, or sex. In NBA, immobilization time ranged from 43.8+/-27.8 to 66.5+/-40.0 min and did not differ between protocols or sex. Muscle relaxation was judged to be better with K/X and K/M versus T/Z. In GLA, the response to the anesthetic protocols was more variable and immobilization time ranged from 30.4+/-6.2 to 98.4+/-33.7 min. The main difference was observed in GLA females receiving the T/Z combination, in which immobilization time was significantly longer versus males, but also versus GLA K/M group, and versus NBA T/Z group. Effects on body temperature, heart rate and respiratory rate were limited. Thirty six to 50% of the individuals showed hypoxemia (SpO2 < 85%) throughout anesthesia and values <80% also were recorded but the hypoxemia was not associated with clinical signs. With T/Z and K/X, recovery was irregular and prolonged up to 2 to 3 hr in some individuals. In K/M groups, first standing was observed 1.0 to 16.4 min after i.m. atipamezole injection without adverse effects. Finally, the three anesthetic combinations used in this study were effective and safe agents for 30 to 40 min immobilizations including minor surgery procedures. The ability to antagonize the medetomidine-induced sedation with atipamezole significantly reduces the recovery time, making the K/M combination preferable, especially in field conditions.  相似文献   

10.
Forty wild sika deer (Cervus nippon) were immobilized with medetomidine and ketamine and reversed by atipamezole in summer and fall captures from September 1994 to October 1995. For large yearling and older deer, mean +/- SD doses of 57.0+/-15.6 microg/kg medetomidine and 1.64+/-0.49 mg/kg (male) or 4.02+/-1.16 mg/kg (female) of ketamine were administered by intramuscular injection. For calves and small yearlings, 69.3+/-7.0 microg/kg medetomidine and 2.69+/-0.44 mg/kg ketamine were administered. While immobilized, deer were easy to handle, and muscles were well relaxed. After intramuscular administration of atipamezole (about 5 times the dose of medetomidine), deer recovered rapidly and smoothly.  相似文献   

11.
We evaluated thiafentanil oxalate (A-3080) for the immobilization of mule deer (Odocoileus hemionus) under laboratory and field conditions. In a crossover experiment comparing recommended (0.1 mg/kg) and 2x recommended thiafentanil doses in captive deer, both produced rapid induction and immobilization. Mean induction was shorter (P = 0.013) for the 2x group (1.9 vs. 3 min); mean reversals for both groups were rapid (recommended = 0.9 min after naltrexone injection; 2x = 1 min) and did not differ (P = 0.29). Six free-ranging mule deer were immobilized with 7 mg thiafentanil and four with 10 mg; mean induction was 2.3 min for both groups (95% confidence interval [CI]: 7 mg, 1.2-3.4; 10 mg, 1.9-2.8), and mean reversal was <1 min for both groups. Of 165 free-ranging deer darted with various combinations of thiafentanil and xylazine, we successfully immobilized 148 (90%). Mean induction ranged from 2.1 to 4.9 min for different drug combinations. Reversals were not compared because naltrexone and yohimbine doses varied, but overall mean reversal was 1.9 min (95% CI, 1.7-2.1 min) after injection of naltrexone and yohimbine intravenously (i.v.); naltrexone:thiafentanil ratios ranging from 10:1 to 43:1 provided mean recoveries ranging from 1.5 to 2.3 min. All 25 deer fitted with radio collars were alive at 30 days postcapture. On the basis of overall reliability and effectiveness, drug volumes, and ease of handling drugged animals, we recommend using a combination of 10-12 mg thiafentanil (0.15-0.2 mg/kg) and 100 mg xylazine to immobilize mule deer; immobilization can be effectively reversed with 100 mg naltrexone or more and 15 mg yohimbine or more i.v. Where feasible, we also recommend the use of transmitter darts when immobilizing mule deer with opioids in order to maximize recovery of darted deer and to ensure that missed darts are found.  相似文献   

12.
The intraperitoneal injection of anaesthetic agents is a simple and convenient method of anaesthetizing rats. However, all of the anaesthetic combinations in current use which are administered by intraperitoneal injection produce prolonged sedation, and full recovery of consciousness may take several hours. Fentanyl, a mu agonist opioid, and medetomidine, an alpha 2-adrenoceptor agonist were mixed and administered as a single intraperitoneal injection. Combinations of 300 micrograms/300 micrograms/kg and 300 micrograms/200 micrograms/kg of fentanyl/medetomidine were shown to produce surgical anaesthesia in the rat. This anaesthetic regimen produced significant respiratory depression (P less than 0.01) and animals did not regain their righting reflex until 193 +/- 21 min (mean +/- 1 SD) after injection. Administration by intraperitoneal injection of atipamezole, a specific alpha 2-adrenoceptor antagonist (1 mg/kg) mixed with a mu antagonist/k agonist opioid (nalbuphine, 2 mg/kg or butorphanol 0.4 mg/kg), resulted in a rapid (less than 8 min) reversal of anaesthesia and the associated respiratory depression, and apparent full recovery of consciousness.  相似文献   

13.
Captive gray wolves (Canis lupus) were given 2.2 mg/kg xylazine hydrochloride intramuscularly resulting in profound sedation in 9.1 +/- 0.6 min (mean +/- SE). Heart rate was 42.0 +/- 1.0 beats per minute and respiratory rate was 20.1 +/- 1.6 respirations per minute during sedation. A variety of manipulations could be performed on sedated animals in relative safety. Thirty min after xylazine administration, the animals were given either 0.15 mg/kg yohimbine hydrochloride or 5% dextrose solution intravenously causing recovery in 5.3 +/- 1.0 and 97.1 +/- 14.0 min, respectively (P less than 0.001).  相似文献   

14.
The use of medetomidine and ketamine, alone and in combination with isoflurane, with atipamezole reversal was evaluated for immobilizing 51 California sea lions (Zalophus californianus) for a variety of medical procedures at a rehabilitation center in northern California (USA) between May 1997 and August 1998. Animals were given 140 microg/kg medetomidine with 2.5 mg/kg ketamine intramuscularly. Mean (+/-SD) time to maximal effect was 8+/-5 min. At the end of the procedure, animals were given 200 microg/kg atipamezole intramuscularly. Immobilization and recovery times were, respectively, 25+/-12 and 9+/-7 min for 35 animals maintained with medetomidine and ketamine alone and 58+/-30 and 9+/-9 min for 16 animals intubated and maintained with isoflurane. No mortalities occurred as a result of the immobilizations. Disadvantages of the medetomidine and ketamine combination included a moderate variation in time to maximal effect and plane of sedation, a large injection volume and high cost. However, this combination offers safe and reversible immobilization that can be easily administered by the intramuscular route and that produces a plane of anesthesia that is sufficient to carry out most routine diagnostic procedures.  相似文献   

15.
White-tailed deer (Odocoileus virginianus) were immobilized with either 4.0 mg etorphine hydrochloride (ETOR) or 3.5 mg ETOR and 50.0 mg xylazine (XYL). Deer immobilized with ETOR only were given 4.0 mg nalmefene hydrochloride (NAL), a new opioid antagonist, 20 min after induction. Deer immobilized with ETOR and XYL received 3.5 mg NAL and 0.125 mg/kg yohimbine hydrochloride (YOH). The dose of 4.0 mg ETOR did not provide acceptable immobilization and was discontinued. A NAL:ETOR ratio of 1:1 was insufficient for complete and sustained antagonism of ETOR. Subsequently, deer were immobilized with ETOR and XYL as before which was then antagonized with 35.0 mg NAL and 0.125 mg/kg YOH. The 10:1 ratio of NAL:ETOR appeared to provide complete antagonism with no evidence of renarcotization. Although more study is required, NAL could become a useful antagonist for opioid-induced immobilizations.  相似文献   

16.
Gray wolves (Canis lupus) were immobilized with 0.5 mg/kg xylazine plus 7.5 micrograms/kg of either sufentanil (n = 8), etorphine (n = 8), or carfentanil (n = 2). Drug doses used in this study were selected to provide consistency for comparison and are not recommended doses for effective immobilization of wolves. Induction times were similar among groups (11.9 +/- 1.0 min). Thirty min after induction, wolves were given either 0.5 mg/kg naloxone hydrochloride plus 0.15 mg/kg yohimbine hydrochloride or saline only intravenously. Arousal times for wolves given naloxone and yohimbine (1.2 +/- 0.1 min) were shorter than wolves given saline (35.5 +/- 6.4 min). Respiratory rates were similar among the three drug groups (6.9 +/- 1.0 breaths/min). One animal given sufentanil then saline was found dead 108 min after induction. Presumptive diagnosis was renarcotization and hypothermia. Results indicated that sufentanil is an effective opioid immobilizing agent for gray wolves.  相似文献   

17.
A combination of medetomidine-tiletamine-zolazepam was used to conduct six immobilizations of free-ranging lions (Panthera leo) in Waza National Park, Cameroon, during 1999 and 2000. Drugs were administered by dart injection at 0.07+/-0.01 (mean+/-SD) mg/kg of medetomidine and 1.8+/-0.5 mg/kg of tiletamine-zolazepam. Chemical immobilization was characterized by smooth inductions (14.1+/-6 min), satisfactory analgesia, and muscle relaxation. One animal was treated for bradypnea. No major alterations of physiologic parameters (heart and respiratory rates, rectal temperature) were seen during immobilization in the other lions. Relative arterial oxygen saturation was measured in two animals and revealed mild hypoxemia. The animals received atipamezole at 0.3+/-0.1 mg/kg intramuscularly for reversal of anesthesia. Recoveries were uneventful. All animals were radiocollared, and no mortalities occurred during an 18-mo follow-up period. Use of medetomidine-tiletamine-zolazepam for anesthesia and reversal of anesthesia with atipamezole appear to be useful for reversible immobilization of free-ranging lions.  相似文献   

18.
Using an iteration method, optimal hand-injected immobilization dosages of carfentanil/xylazine (CAR/XYL) were determined for 13 adult white-tailed deer (Odocoileus virginianus). Deer were temporarily restrained in a squeeze chute and were repeatedly immobilized one to four times at 2-5-wk intervals from December 2002 to March 2003. A fixed ratio of 1 mg CAR:10 mg XYL intramuscularly was used, increasing or decreasing the dosage until the optimal dosage (defined by an induction time < 3 min and PaCO(2)< 60 mmHg) was reached for each animal. Inductions were video-recorded and reviewed by observers blinded to drugs and dosages, who rated qualitative aspects of each induction. There were significant (P < 0.05) dosage-dependent decreases in induction time, time to first effect, PaO(2), SaO(2), and arterial pH, and significant dosage-dependent increases in PaCO(2) and quality ratings. The median optimal dosage (mOD) was 0.03 (range, 0.015-0.06) mg/kg CAR+0.3 (range, 0.15-0.6) mg/kg XYL. Induction times using the mOD were rapid (median 3.0 min [range, 1.8-10.0]), but quality ratings were considered undesirable for nine of 13 deer. Increased rectal body temperatures of 40.6+/-0.5 C (mean +/- SD) were noted in all deer and hyperthermia (T > 41 C) was noted in three. There was a positive correlation between body temperature and induction time (r=0.44). Heart rates significantly decreased from 5 to 15 min postinduction and remained decreased at the 20-min reading; there was occasional bradycardia. There was a significant increase in pH from 10 to 20 min postinduction, but metabolic acidemia (pH<7.3) persisted throughout the immobilization periods for all deer. Possible hypoxemia (SaO(2) and SpO(2)<90 mmHg but PaO(2)>60 mmHg) was present after induction, while hypercapnea (PaCO(2) > 60 mmHg) did not occur. Reversal times with naltrexone and yohimbine were rapid (mean 3.7+/-1.5 min) and uneventful, with no evidence of renarcotization. Although the median optimal dosage produced rapid inductions, no respiratory depression, complete reversal after antagonist administration, and no renarcotization, negative attributes included elevated body temperatures, acidemia, and undesirable induction qualities.  相似文献   

19.
This study examined the contribution of intrarenal alpha(2)-adrenoceptor mechanisms to the enhanced urine flow rate (V) and urinary sodium excretion (U(Na)V) responses in ketamine-xylazine-anesthetized rats. Ten minutes after left renal artery (LRA) injection, the alpha(2)-adrenoceptor antagonist yohimbine (5 microg) significantly decreased V from 58 +/- 8 to 35 +/- 7 microl. min(-1). g kidney wt(-1) and U(Na)V from 2.8 +/- 0.4 to 2.1 +/- 0.4 microeq. min(-1). g kidney wt(-1) without altering right kidney function. The renal effects of the LRA injection of yohimbine were completely abolished in chronic bilaterally renal-denervated (RDNX) rats. In RDNX rats, a higher LRA dose of yohimbine (15 microg) significantly reduced left and right kidney V, with no effects on U(Na)V. In separate bladder-catheterized rats, yohimbine (0.5 mg/kg), 20 min after intravenous injection, significantly decreased V from 63 +/- 9 to 13 +/- 2 microl. min(-1). g kidney wt(-1 )and U(Na)V from 4.5 +/- 0.5 to 1.1 +/- 0.1 microeq. min(-1). g kidney wt(-1). In RDNX rats, this dose of yohimbine reduced V and U(Na)V, but the magnitude was blunted compared with intact rats. In contrast, 0.1 mg/kg iv yohimbine significantly reduced V and U(Na)V to similar magnitudes in intact and RDNX groups. Together, these findings indicate that intravenous xylazine acts by renal nerve-dependent and -independent mechanisms to enhance renal excretory function in ketamine-anesthetized rats. Because the effects of the LRA dose of yohimbine were abolished in renal-denervated animals, it appears that xylazine has a direct renal action to augment the renal excretion of water and sodium via a presynaptic alpha(2)-adrenoceptor pathway that inhibits the release of neurotransmitters from renal sympathetic nerve terminals.  相似文献   

20.
Immobilization features and physiologic effects of combinations of xylazine-zolazepam-tiletamine (XZT) and zolazepam-tiletamine (ZT or Telazol) were compared in nine captive and 17 free-ranging polar bears (Ursus maritimus) between 1998 and 2001. Although induction time was similar between drugs, induction dosage and volume were less with XZT. Induction of immobilization with XZT was predictable and smooth, muscle relaxation was good, and all bears remained completely immobilized and unresponsive to stimuli throughout a 1 hr handling period. The combination XZT was safely tolerated at two to three times the recommended dosage of 5 mg/kg (i.e., xylazine at 2 mg/kg + Telazol at 3 mg/kg). Bears immobilized with XZT had slower pulse rates, higher mean arterial pressures, and lower arterial oxygen tensions than bears immobilized with ZT. Rectal temperature increased slowly over time (approximately 0.5 C per hr) following immobilization with XZT. Based on response to a painful stimulus (compression of a claw bed), XZT was a more effective analgesic than ZT. Although the immobilization effects of XZT could not be reversed with the alpha 2-antagonist drug tolazoline, they were reversed with yohimbine or atipamezole. However, the time to complete reversal of effects (i.e., standing and ambulatory) was highly variable among bears.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号