首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retinoid signaling plays an important role in the developmental patterning of the hindbrain. Studies of the teratogenic effects of retinoids showed early on that the hindbrain suffered patterning defects in cases of retinoid excess or deficiency. Closer examination of these effects in animal models suggested that retinoids might play a physiological role in specifying the antero-posterior axis of the hindbrain. This idea was supported by the localization of retinoid synthetic and degradative enzymes, binding proteins, and receptors to the hindbrain and neighboring regions of the neuroepithelium and the mesoderm. In parallel, it became clear that the molecular patterning of the hindbrain, in terms of the regionalized expression of Hox genes and other developmental regulatory genes, is profoundly influenced by retinoid signaling.  相似文献   

2.
Retinoic acid synthesis and hindbrain patterning in the mouse embryo   总被引:13,自引:0,他引:13  
Targeted disruption of the murine retinaldehyde dehydrogenase 2 (Raldh2) gene precludes embryonic retinoic acid (RA) synthesis, leading to midgestational lethality (Niederreither, K., Subbarayan, V., Dolle, P. and Chambon, P. (1999). Nature Genet. 21, 444-448). We describe here the effects of this RA deficiency on the development of the hindbrain and associated neural crest. Morphological segmentation is impaired throughout the hindbrain of Raldh2-/- embryos, but its caudal portion becomes preferentially reduced in size during development. Specification of the midbrain region and of the rostralmost rhombomeres is apparently normal in the absence of RA synthesis. In contrast, marked alterations are seen throughout the caudal hindbrain of mutant embryos. Instead of being expressed in two alternate rhombomeres (r3 and r5), Krox20 is expressed in a single broad domain, correlating with an abnormal expansion of the r2-r3 marker Meis2. Instead of forming a defined r4, Hoxb1- and Wnt8A-expressing cells are scattered throughout the caudal hindbrain, whereas r5/r8 markers such as kreisler or group 3/4 Hox genes are undetectable or markedly downregulated. Lack of alternate Eph receptor gene expression could explain the failure to establish rhombomere boundaries. Increased apoptosis and altered migratory pathways of the posterior rhombencephalic neural crest cells are associated with impaired branchial arch morphogenesis in mutant embryos. We conclude that RA produced by the embryo is required to generate posterior cell fates in the developing mouse hindbrain, its absence leading to an abnormal r3 (and, to a lesser extent, r4) identity of the caudal hindbrain cells.  相似文献   

3.
4.
Spontaneous activity regulates many aspects of central nervous system development. We demonstrate that in the embryonic chick hindbrain, spontaneous activity is expressed between embryonic days (E) 6–9. Over this period the frequency of activity decreases significantly, although the events maintain a consistent rhythm on the timescale of minutes. At E6, the activity is pharmacologically dependent on serotonin, nACh, GABAA, and glycine input, but not on muscarinic, glutamatergic, or GABAB receptor activation. It also depends on gap junctions, t‐type calcium channels and TTX‐sensitive ion channels. In intact spinal cord‐hindbrain preparations, E6 spontaneous events originate in the spinal cord and propagate into lateral hindbrain tissue; midline activity follows the appearance of lateral activity. However, the spinal cord is not required for hindbrain activity. There are two invariant points of origin of activity along the midline, both within the caudal group of serotonin‐expressing cell bodies; one point is caudal to the nV exit point while the other is caudal to the nVII exit point. Additional caudal midline points of origin are seen in a minority of cases. Using immunohistochemistry, we show robust differentiation of the serotonergic raphe near the midline at E6, and extensive fiber tracts expressing GAD65/67 and the nAChR in lateral areas; this suggests that the medial activity is dependent on serotonergic neuron activation, while lateral activity requires other transmitters. Although there are differences between species, this activity is highly conserved between mouse and chick, suggesting that developmental event(s) within the hindbrain are dependent on expression of this spontaneous activity. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

5.
Embryo development proceeds under strict temporal control and an embryonic molecular clock (EC), evidenced by cyclic gene expression, is operating during somite formation and limb development, providing temporal information to precursor cells. In somite precursor cells, EC gene expression and periodicity depends on Retinoic acid (RA) signaling and this morphogen is also essential for limb initiation, outgrowth and patterning. Since the limb EC gene hairy2 is differentially expressed along the proximal-distal axis as growth proceeds, concomitant with changes in flank-derived RA activity in the mesenchyme, we have interrogated the role of RA signaling on limb hairy2 expression regulation. We describe RA as a positive regulator of limb hairy2 expression. Ectopic supplementation of RA induced hairy2 in a short time period, with simultaneous transient activation of Erk/MAPK, Akt/PI3K and Gli3 intracellular pathways. We further found that FGF8, an inducer of Erk/MAPK, Akt/PI3K pathways, was not sufficient for ectopic hairy2 induction. However, joint treatment with both RA and FGF8 induced hairy2, indicating that RA is creating a permissive condition for p-Erk/p-Akt action on hairy2, most likely by enhancing Gli3-A/Gli3-R levels. Finally, we observed an inhibitory action of BMP4 on hairy2 and propose a model whereby RA shapes limb hairy2 expression during limb development, by activating its expression and counteracting the inhibitory action of BMP4 on hairy2. Overall, our work reports a novel role for RA in the regulation of limb clock hairy2 gene expression and elucidates the temporal response of multiple intracellular pathways to RA signaling in limb development.  相似文献   

6.
7.
8.
Retinoic acid (RA) is a morphogen derived from retinol (vitamin A) that plays important roles in cell growth, differentiation, and organogenesis. The production of RA from retinol requires two consecutive enzymatic reactions catalyzed by different sets of dehydrogenases. The retinol is first oxidized into retinal, which is then oxidized into RA. The RA interacts with retinoic acid receptor (RAR) and retinoic acid X receptor (RXR) which then regulate the target gene expression. In this review, we have discussed the metabolism of RA and the important components of RA signaling pathway, and highlighted current understanding of the functions of RA during early embryonic development.  相似文献   

9.
10.
The vertebrate hindbrain is segmented into a series of transient structures called rhombomeres. Despite knowing several factors that are responsible for the segmentation and maintenance of the rhombomeres, there are still large gaps in understanding the genetic pathways that govern their development. To find previously unknown genes that are expressed within the embryonic hindbrain, a subtracted chick hindbrain cDNA library has been made and 445 randomly picked clones from this library have been analysed using whole mount in situ hybridisation. Thirty-six of these clones (8%) display restricted expression patterns within the hindbrain, midbrain or cranial neural crest and of these, twenty-two are novel and eleven encode peptides that correspond to or are highly related to proteins with previously uncharacterised roles during early neural development. The large proportion of genes with restricted expression patterns and previously unknown functions in the embryonic brain identified during this screen provides insights into the different types of molecules that have spatially regulated expression patterns in cranial neural tissue.  相似文献   

11.
Chatzi C  Brade T  Duester G 《PLoS biology》2011,9(4):e1000609
Although retinoic acid (RA) has been implicated as an extrinsic signal regulating forebrain neurogenesis, the processes regulated by RA signaling remain unclear. Here, analysis of retinaldehyde dehydrogenase mutant mouse embryos lacking RA synthesis demonstrates that RA generated by Raldh3 in the subventricular zone of the basal ganglia is required for GABAergic differentiation, whereas RA generated by Raldh2 in the meninges is unnecessary for development of the adjacent cortex. Neurospheres generated from the lateral ganglionic eminence (LGE), where Raldh3 is highly expressed, produce endogenous RA, which is required for differentiation to GABAergic neurons. In Raldh3?/? embryos, LGE progenitors fail to differentiate into either GABAergic striatal projection neurons or GABAergic interneurons migrating to the olfactory bulb and cortex. We describe conditions for RA treatment of human embryonic stem cells that result in efficient differentiation to a heterogeneous population of GABAergic interneurons without the appearance of GABAergic striatal projection neurons, thus providing an in vitro method for generation of GABAergic interneurons for further study. Our observation that endogenous RA is required for generation of LGE-derived GABAergic neurons in the basal ganglia establishes a key role for RA signaling in development of the forebrain.  相似文献   

12.
Neurovascular development in the embryonic zebrafish hindbrain   总被引:1,自引:0,他引:1  
The brain is made of billions of highly metabolically active neurons whose activities provide the seat for cognitive, affective, sensory and motor functions. The cerebral vasculature meets the brain's unusually high demand for oxygen and glucose by providing it with the largest blood supply of any organ. Accordingly, disorders of the cerebral vasculature, such as congenital vascular malformations, stroke and tumors, compromise neuronal function and survival and often have crippling or fatal consequences. Yet, the assembly of the cerebral vasculature is a process that remains poorly understood. Here we exploit the physical and optical accessibility of the zebrafish embryo to characterize cerebral vascular development within the embryonic hindbrain. We find that this process is primarily driven by endothelial cell migration and follows a two-step sequence. First, perineural vessels with stereotypical anatomies are formed along the ventro-lateral surface of the neuroectoderm. Second, angiogenic sprouts derived from a subset of perineural vessels migrate into the hindbrain to form the intraneural vasculature. We find that these angiogenic sprouts reproducibly penetrate into the hindbrain via the rhombomere centers, where differentiated neurons reside, and that specific rhombomeres are invariably vascularized first. While the anatomy of intraneural vessels is variable from animal to animal, some aspects of the connectivity of perineural and intraneural vessels occur reproducibly within particular hindbrain locales. Using a chemical inhibitor of VEGF signaling we determine stage-specific requirements for this pathway in the formation of the hindbrain vasculature. Finally, we show that a subset of hindbrain vessels is aligned and/or in very close proximity to stereotypical neuron clusters and axon tracts. Using endothelium-deficient cloche mutants we show that the endothelium is dispensable for the organization and maintenance of these stereotypical neuron clusters and axon tracts in the early hindbrain. However, the cerebellum's upper rhombic lip and the optic tectum are abnormal in clo. Overall, this study provides a detailed, multi-stage characterization of early zebrafish hindbrain neurovascular development with cellular resolution up to the third day of age. This work thus serves as a useful reference for the neurovascular characterization of mutants, morphants and drug-treated embryos.  相似文献   

13.
The mechanisms involved in the generation of axial structures in the chick are well documented, yet, little is known about the actual factors that generate such a complex pattern. The recent demonstrations that all-trans-retinoic acid (RA) acts as a morphogen during limb development (Thaller and Eichele, 1987) lead us to examine whether during axis formation in the developing chick, RA could be one of the factors involved. We now show that retinoic acid can block a very unusual property of normal early chick embryonic cells, mainly their capacity to grow in semisolid medium. We also present experiments that suggest that RA may play a direct role during axis formation in the developing chick.  相似文献   

14.
Retinoic acid is a very potent teratogen and has also been implicated as an endogenous developmental signalling molecule in vertebrate embryos. One of the regions of the embryo reliably affected by exogenously applied RA is the hindbrain. In this paper, we describe in detail the hindbrain of Xenopus laevis embryos briefly treated with various levels of RA at gastrula stages. Such treatments lead to development of embryos with loss of anterior structures. In addition, RA has a general effect on rhombomere morphology and specific effects on the development of the anterior rhombomeres. This effect is demonstrated using neurofilament antibodies, HRP staining and in situ hybridisation using a probe for expression of the Xenopus Krox-20 gene. Anatomically it is evident that the development of the hindbrain normally anterior to the otocyst (rhombomeres 1-4) is abnormal following RA treatment. Sensory and motor axons of cranial nerves V and VII form a single root and the peripheral paths of V and VII and IX and X are also abnormal, as is the more anterior location of the otocyst. These anatomical changes are accompanied by changes in the pattern of expression for the gene XKrox-20, which normally expresses in rhombomeres 3 and 5, but is found in a single band in the anterior hindbrain of treated embryos which standardly fail to generate the normal external segmental appearance. The results are discussed in terms of both the teratogenic and possible endogenous roles of RA during normal development of the central nervous system. We conclude that low doses of RA applied during gastrulation have specific effects on the anterior Xenopus hindbrain which appear to be evolutionarily conserved in the light of similar recent findings in zebrafish.  相似文献   

15.
Mutants mice carrying targeted inactivations of both retinoic acid receptor (RAR) alpha and RAR gamma (A alpha/A gamma mutants) were analyzed at different embryonic stages, in order to establish the timing of appearance of defects that we previously observed during the fetal period. We show that embryonic day (E)9.5 A alpha/A gamma embryos display severe malformations, similar to those already described in retinaldehyde dehydrogenase 2 null mutants. These malformations reflect early roles of retinoic acid signaling in axial rotation, segmentation and closure of the hindbrain; formation of otocysts, pharyngeal arches and forelimb buds; and in the closure of the primitive gut. The hindbrain of E8.5 A alpha/A gamma embryos shows a posterior expansion of rhombomere 3 and 4 (R3 and R4) markers, but fails to express kreisler, a normal marker of R5 and R6. This abnormal hindbrain phenotype is strikingly different from that of embryos lacking RAR alpha and RAR beta (A alpha/A beta mutants), in which we have previously shown that the territory corresponding to R5 and R6 is markedly enlarged. Administration of a pan-RAR antagonist at E8.0 to wild-type embryos cultured in vitro results in an A alpha/A beta-like hindbrain phenotype, whereas an earlier treatment at E7.0 yields an A alpha/A gamma-like phenotype. Altogether, our data suggest that RAR alpha and/or RAR gamma transduce the RA signal that is required first to specify the prospective R5/R6 territory, whereas RAR beta is subsequently involved in setting up the caudal boundary of this territory.  相似文献   

16.
During development of the chick embryo, early neuronal differentiation and axonogenesis in the hindbrain follow a segmented pattern in register with the segmented morphology of this region. Cell marking experiments have shown that the segments, or rhombomeres, are lineage-restriction units each constructing a defined piece of the hindbrain. This raises the interesting possibility that, as in the developing fly, metamerism is used to generate level-specific anatomical structures with great and reliable precision. In the hindbrain, as for many invertebrates, lineage ancestry may be important in the determination of cell fate. The segmentation seen in this body region could therefore reflect a similar condition once present in the ancestor common to vertebrates and invertebrates.  相似文献   

17.
18.
Embryonic stem cells (ESCs) are pluripotent cells derived from the inner cell mass (ICM) that are able to self-renew or undergo differentiation depending on a complex interplay of extracellular signals and intracellular factors. However, the feedback regulation of differentiation-dependent ESC self-renewal is poorly understood. Retinoic acid (RA), a derivative of vitamin A, plays a critical role in ESC differentiation and embryogenesis. In the present study, we demonstrate that short-term treatment of murine (m) ESCs with RA during the early differentiation stage prevented spontaneous differentiation of mESCs. The RA-treated cells maintained self-renewal capacity and could differentiate into neuronal cells, cardiomyocytes, and visceral endoderm cells derived from three germ layers. The differentiation-inhibitory effect of RA was mimicked by conditioned medium from RA-treated ESCs and was accompanied with up-regulated expression of leukemia inhibitory factor (LIF), Wnt3a, Wnt5a, and Wnt6. Such RA-induced prevention of ESC differentiation was attenuated by a neutralizing antibody against LIF or by a specific Wnt antagonist Fz8-Fc and was totally reversed in the presence of both of them. Furthermore, knock-down of beta-catenin, a component of the Wnt signaling pathway, by small interfering RNA counteracted the effect of RA. In addition, RA treatment enhanced expression of endodermal markers GATA4 and AFP but inhibited expression of primitive ectodermal marker Fgf-5 and mesodermal marker Brachyury. These findings reveal a novel role of RA in ESC self-renewal and provide new insight into the regulatory mechanism of differentiation-dependent self-renewal of ESCs, in which Wnt proteins and LIF induced by RA have the synergistic action. The short-term treatment of ESCs with RA also offers a unique model system for study of the regulatory mechanism that controls self-renewal and specific germ-layer differentiation of ESCs.  相似文献   

19.
Retinoic acid (RA) plays a critical role in neural patterning and organogenesis in the vertebrate embryo. Here we characterize a mutant of the zebrafish named giraffe (gir) in which the gene for the RA-degrading enzyme Cyp26a1 is mutated. The gir mutant displayed patterning defects in multiple organs including the common cardinal vein, pectoral fin, tail, hindbrain, and spinal cord. Analyses of molecular markers suggested that the lateral plate mesoderm is posteriorized in the gir mutant, which is likely to cause the defects of the common cardinal vein and pectoral fin. The cyp26a1 expression in the rostral spinal cord was strongly upregulated in the gir mutant, suggesting a strong feedback control of its expression by RA signaling. We also found that the rostral spinal cord territory was expanded at the expense of the hindbrain territory in the gir mutant. Such a phenotype is the opposite of that of the mutant for Raldh2, an enzyme that synthesizes RA. We propose a model in which Cyp26a1 attenuates RA signaling in the prospective rostral spinal cord to limit the expression of hox genes and to determine the hindbrain-spinal cord boundary.  相似文献   

20.
Summary Injection of retinoic acid (3×62.5 g or 3×125 g) into the amniotic sac of chick embryos between 10 and 12 days of incubation resulted in the formation of club-shaped feathers within the feather tracts, and the development of feathers in the scale-forming areas of the feet. The latter finding is interpreted as caused by a disturbance of the tissue interactions which occur in the skin of the feet at this time. The address for correspondence: Universitè Scientifique et Médicale de Grepoble, Laboratoire de Zoologie et Biologie animale, Boîte Postale no 53-Centre de Tri, F-38041 Grenoble Cedex, France  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号