首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Calnexin, calreticulin, and ERp57   总被引:3,自引:0,他引:3  
In eukaryotic cells, the endoplasmic reticulum (ER) plays an essential role in the synthesis and maturation of a variety of important secretory and membrane proteins. For glycoproteins, the ER possesses a dedicated maturation system, which assists folding and ensures the quality of final products before ER release. Essential components of this system include the lectin chaperones calnexin (CNX) and calreticulin (CRT) and their associated co-chaperone ERp57, a glycoprotein specific thiol-disulfide oxidoreductase. The significance of this system is underscored by the fact that CNX and CRT interact with practically all glycoproteins investigated to date, and by the debilitating phenotypes revealed in knockout mice deficient in either gene. Compared to other important chaperone systems, such as the Hsp70s, Hsp90s and GroEL/GroES, the principles whereby this system works at the molecular level are relatively poorly understood. However, recent structural and biochemical data have provided important new insights into this chaperone system and present a solid basis for further mechanistic studies.  相似文献   

2.
The production of erythrocytes requires the massive synthesis of red cell-specific proteins including hemoglobin, cytoskeletal proteins, as well as membrane glycoproteins glycophorin A (GPA) and anion exchanger 1 (AE1). We found that during the terminal differentiation of human CD34+ erythroid progenitor cells in culture, key components of the endoplasmic reticulum (ER) protein translocation (Sec61α), glycosylation (OST48), and protein folding machinery, chaperones BiP, calreticulin (CRT), and Hsp90 were maintained to allow efficient red cell glycoprotein biosynthesis. Unexpected was the loss of calnexin (CNX), an ER glycoprotein chaperone, and ERp57, a protein-disulfide isomerase, as well as a major decrease of the cytosolic chaperones, Hsc70 and Hsp70, components normally involved in membrane glycoprotein folding and quality control. AE1 can traffic to the cell surface in mouse embryonic fibroblasts completely deficient in CNX or CRT, whereas disruption of the CNX/CRT-glycoprotein interactions in human K562 cells using castanospermine did not affect the cell-surface levels of endogenous GPA or expressed AE1. These results demonstrate that CNX and ERp57 are not required for major glycoprotein biosynthesis during red cell development, in contrast to their role in glycoprotein folding and quality control in other cells.The production of red blood cells involves the terminal differentiation of hematopoietic stem cells in the bone marrow followed by release into the peripheral blood (1, 2). Red blood cells remain in circulation for ∼120 days and require the prior production of abundant red cell-specific proteins including hemoglobin, cytoskeletal proteins, and membrane glycoproteins such as anion exchanger 1 (AE1)3 and glycophorin A (GPA). During differentiation, erythroid progenitor cells undergo extensive remodeling of their cytoskeleton and loss of nuclei and other organelles like the endoplasmic reticulum (ER). AE1 and GPA are known to be synthesized late in differentiation when these key cellular components are lost (3). The efficient biosynthesis of these red cell membrane glycoproteins, however, is expected to require robust ER assembly machinery involving protein translocation, N-glycosylation, and protein folding chaperones.The proper folding of membrane glycoproteins engages the quality control function of cytosolic and ER chaperone proteins (4, 5). Newly synthesized proteins undergo cycles of binding and release with chaperones, minimizing aggregation and facilitating folding. Chaperones also play a role in the retention and degradation of misfolded proteins and in apoptosis (6-8). The membrane-bound ER chaperone calnexin (CNX) and its luminal paralog calreticulin (CRT) interact with folding intermediates via their lectin and protein binding domains, thereby preventing aggregation (9). A wide variety of glycoprotein substrates have been identified, with some binding to one or both chaperones, and both have been shown to be vital in the prevention of aggregation and proper maturation of membrane glycoproteins (9, 10). Disruption of interactions with CNX and CRT can allow misfolded membrane glycoproteins to escape the ER and traffic to the plasma membrane (9).In the present study, we examined the integrity of the ER protein translocation, N-glycosylation, and quality control machinery during the differentiation of human CD34+ erythroid cells in culture. We found that specific components of the protein quality control system were completely lost (CNX and ERp57) or diminished (Hsc70 and Hsp70) before the production of the major glycoproteins, AE1 and GPA, was completed. Components of the protein translocation (Sec61α) and N-glycosylation machinery (OST48) were, however, maintained. Chaperones that play other roles in erythrocyte maturation and survival (CRT, BiP, and Hsp90) were also retained (11). AE1 was found to traffic efficiently to the plasma membrane in mouse embryonic fibroblasts completely lacking the ER chaperone CNX or CRT. Furthermore, disruption of CNX/CRT-glycoprotein interactions in human K562 cells did not affect the cell-surface expression of GPA or AE1. These results demonstrate that CNX and ERp57 are not required for the efficient synthesis and folding of red cell membrane glycoproteins during terminal erythropoiesis. The lack of engagement with the quality control and disulfide folding machinery may allow the more rapid production of red cell glycoproteins late in differentiation, sacrificing quality for quantity.  相似文献   

3.
D N Hebert  B Foellmer    A Helenius 《The EMBO journal》1996,15(12):2961-2968
Calnexin (CNX) and calreticulin (CRT) are molecular chaperones that bind preferentially to monoglucosylated trimming intermediates of glycoproteins in the endoplasmic reticulum. To determine their role in the maturation of newly synthesized glycoproteins, we analyzed the folding and trimerization of in vitro translated influenza hemagglutinin (HA) in canine pancreas microsomes under conditions in which HA's interactions with CNX and CRT could be manipulated. While CNX bound to all folding intermediates (IT1, IT2 and NT), CRT was found to associate preferentially with the earliest oxidative form (IT1). If HA's binding to CNX and CRT was inhibited using a glucosidase inhibitor, castanospermine (CST), the rate of disulfide formation and oligomerization was doubled but the overall efficiency of maturation of HA decreased due to aggregation and degradation. If, on the other hand, HA was arrested in CNX-CRT complexes, folding and trimerization were inhibited. This suggested that the action of CNX and CRT, like that of other chaperones, depended on an 'on-and-off' cycle. Taken together, these results indicated that CNX and CRT promote correct folding by inhibiting aggregation, preventing premature oxidation and oligomerization, and by suppressing degradation of incompletely folded glycopolypeptides.  相似文献   

4.
Calreticulin (CRT) is an abundant, soluble molecular chaperone of the endoplasmic reticulum. Similar to its membrane-bound homolog calnexin (CNX), it is a lectin that promotes the folding of proteins carrying N-linked glycans. Both proteins cooperate with an associated co-chaperone, the thiol-disulfide oxidoreductase ERp57. This enzyme catalyzes the formation of disulfide bonds in CNX and CRT-bound glycoprotein substrates. Previously, we solved the NMR structure of the central proline-rich P-domain of CRT comprising residues 189-288. This structure shows an extended hairpin topology, with three short anti-parallel beta-sheets, three small hydrophobic clusters, and one helical turn at the tip of the hairpin. We further demonstrated that the residues 225-251 at the tip of the CRT P-domain are involved in direct contacts with ERp57. Here, we show that the CRT P-domain fragment CRT(221-256) constitutes an autonomous folding unit, and has a structure highly similar to that of the corresponding region in CRT(189-288). Of the 36 residues present in CRT(221-256), 32 form a well-structured core, making this fragment one of the smallest known natural sequences to form a stable non-helical fold in the absence of disulfide bonds or tightly bound metal ions. CRT(221-256) comprises all the residues of the intact P-domain that were shown to interact with ERp57. Isothermal titration microcalorimetry (ITC) now showed affinity of this fragment for ERp57 similar to that of the intact P-domain, demonstrating that CRT(221-256) may be used as a low molecular mass mimic of CRT for further investigations of the interaction with ERp57. We also solved the NMR structure of the 73-residue fragment CRT(189-261), in which the tip of the hairpin and the first beta-sheet are well structured, but the residues 189-213 are disordered, presumably due to lack of stabilizing interactions across the hairpin.  相似文献   

5.
Sendai virus envelope glycoproteins, F and HN, mature during their transport through the endoplasmic reticulum (ER) and Golgi complex. To better understand their maturation processes in the ER, we investigated the time course of their interactions with three ER- resident molecular chaperones, BiP, calnexin (CNX), and calreticulin (CRT), in Sendai virus-infected HeLa cells. Pulse-chase and immunoprecipitation analyses using antibodies against each virus glycoprotein or ER chaperone revealed that F precursor interacted with CNX transiently (t(1/2)=8 min), while HN protein displayed longer and sequential interactions with BiP (t(1/2)=8 min), CNX (t(1/2)=15 min), and CRT (t(1/2)=20 min). HN interacted with the three ER chaperones not only as a monomer but also as a tetramer for several hours, suggesting mechanism(s) to undergo chaperone-mediated quality control of an assembled HN oligomer in the ER. The kinetics of dissociation of the HN-chaperone complexes exhibited a marked delay in the presence of proteasome inhibitors, suggesting that a part of HN associated with BiP, CNX, and CRT is destined to be degraded in the proteasome-dependent pathway. Further, the associations between virus glycoproteins and CNX or CRT were impaired by castanospermine, an inhibitor of ER glucosidase I and II, confirming that these interactions require monoglucosylated oligosaccharide on F(0) and HN peptides. These findings together suggest that newly synthesized F protein undergoes rapid maturation in the ER through a transient interaction with CNX, whereas HN protein requires more complex processes involving prolonged association with BiP, CNX, and CRT for its quality control in the ER.  相似文献   

6.
Tandem affinity purification (TAP) has been used to isolate proteins that interact with human hepatic lipase (HL) during its maturation in Chinese hamster ovary cells. Using mass spectrometry and Western blotting, we identified 28 proteins in HL-TAP isolated complexes, 16 of which localized to the endoplasmic reticulum (ER), the site of HL folding and assembly. Of the 12 remaining proteins located outside the ER, five function in protein translation or ER-associated degradation (ERAD). Components of the two major ER chaperone systems were identified, the BiP/Grp94 and the calnexin (CNX)/calreticulin (CRT) systems. All factors involved in CNX/CRT chaperone cycling were identified, including UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT), glucosidase II, and the 57 kDa oxidoreductase (ERp57). We also show that CNX, and not CRT, is the lectin chaperone of choice during HL maturation. Along with the 78 kDa glucose-regulated protein (Grp78; BiP) and the 94 kDa glucose-regulated protein (Grp94), an associated peptidyl-prolyl cis-trans isomerase and protein disulfide isomerase were also detected. Finally, several factors in ERAD were identified, and we provide evidence that terminally misfolded HL is degraded by the ubiquitin-mediated proteasomal pathway. We propose that newly synthesized HL emerging from the translocon first associates with CNX, ERp57, and glucosidase II, followed by repeated posttranslational cycles of CNX binding that is mediated by UGGT. BiP/Grp94 may stabilize misfolded HL during its transition between cycles of CNX binding and may help direct its eventual degradation.  相似文献   

7.
Ca2+-dependent redox modulation of SERCA 2b by ERp57   总被引:2,自引:0,他引:2  
We demonstrated previously that calreticulin (CRT) interacts with the lumenal COOH-terminal sequence of sarco endoplasmic reticulum (ER) calcium ATPase (SERCA) 2b to inhibit Ca2+ oscillations. Work from other laboratories demonstrated that CRT also interacts with the ER oxidoreductase, ER protein 57 (also known as ER-60, GRP58; ERp57) during folding of nascent glycoproteins. In this paper, we demonstrate that ERp57 overexpression reduces the frequency of Ca2+ oscillations enhanced by SERCA 2b. In contrast, overexpression of SERCA 2b mutants defective in cysteines located in intralumenal loop 4 (L4) increase Ca2+ oscillation frequency. In vitro, we demonstrate a Ca2+-dependent and -specific interaction between ERp57 and L4. Interestingly, ERp57 does not affect the activity of SERCA 2a or SERCA 2b mutants lacking the CRT binding site. Overexpression of CRT domains that disrupt the interaction of CRT with ERp57 behave as dominant negatives in the Ca2+ oscillation assay. Our results suggest that ERp57 modulates the redox state of ER facing thiols in SERCA 2b in a Ca2+-dependent manner, providing dynamic control of ER Ca2+ homeostasis.  相似文献   

8.
ERp57 is a lumenal protein of the endoplasmic reticulum (ER) and a member of the protein disulfide isomerase (PDI) family. In contrast to archetypal PDI, ERp57 interacts specifically with newly synthesized glycoproteins. In this study we demonstrate that ERp57 forms discrete complexes with the ER lectins, calnexin and calreticulin. Specific ERp57/calreticulin complexes exist in canine pancreatic microsomes, as demonstrated by SDS-PAGE after cross-linking, and by native electrophoresis in the absence of cross-linking. After in vitro translation and import into microsomes, radiolabeled ERp57 can be cross-linked to endogenous calreticulin and calnexin while radiolabeled PDI cannot. Likewise, radiolabeled calreticulin is cross-linked to endogenous ERp57 but not PDI. Similar results were obtained in Lec23 cells, which lack the glucosidase I necessary to produce glycoprotein substrates capable of binding to calnexin and calreticulin. This observation indicates that ERp57 interacts with both of the ER lectins in the absence of their glycoprotein substrate. This result was confirmed by a specific interaction between in vitro synthesized calreticulin and ERp57 prepared in solution in the absence of other ER components. We conclude that ERp57 forms complexes with both calnexin and calreticulin and propose that it is these complexes that can specifically modulate glycoprotein folding within the ER lumen.  相似文献   

9.
The thyrotropin receptor (TSHR) is a member of the G protein-coupled receptor superfamily. It has by now been clearly established that the maturation of the glycoproteins synthesized in the endoplasmic reticulum involves interactions with molecular chaperones, which promote the folding and assembly of the glycoproteins. In this study, we investigated whether calnexin (CNX), calreticulin (CRT) and BiP, three of the main molecular chaperones present in the endoplasmic reticulum, interact with the TSHR and what effects these interactions might have on the folding of the receptor. In the first set of experiments, we observed that in a K562 cell line expressing TSHR, about 50% of the receptor synthesized was degraded by the proteasome after ubiquitination. In order to determine whether TSHR interact with CNX, CRT and BiP, coimmunoprecipitation experiments were performed. TSHR was found to be associated with all three molecular chaperones. To study the role of the interactions between CNX and CRT and the TSHR, we used castanospermine, a glucosidase I and II inhibitor that blocks the interactions between these chaperones and glycoproteins. In K562 cells expressing the TSHR, these drugs led to a faster degradation of the receptor, which indicates that these interactions contribute to stabilizing the receptor after its synthesis. The overexpression of calnexin and calreticulin in these cells stabilizes the receptor during the first hour after its synthesis, whereas the degradation of TSHR increased in a cell line overexpressing BiP and the quantity of TSHR able to acquire complex type oligosaccharides decreased. These results show that calnexin, calreticulin and BiP all interact with TSHR and that the choice made between these two chaperone systems is crucial because each of them has distinct effects on the folding and stability of this receptor at the endoplasmic reticulum level.  相似文献   

10.
Calreticulin (CRT) is a soluble molecular chaperone of the endoplasmic reticulum that functions to promote protein folding as well as to retain misfolded proteins. Similar to its membrane-bound paralog calnexin (CNX), CRT is a lectin that preferentially interacts with glycoproteins bearing Glc1Man5-9GlcNAc2 oligosaccharides. Although the lectin site of CNX has been delineated through X-ray crystallographic and mutagenic studies, the corresponding site for CRT has not been as well characterized. To address this issue, we attempted to construct lectin-deficient CRT mutants, using the structure of CNX as a guide to identify potential oligosaccharide-binding residues. Mutation of 4 such CRT residues (Y109, K111, Y128, D317) completely abrogated oligosaccharide binding. In contrast, mutation of CRT residues M131 and D160, which correspond to important residues in the lectin site of CNX, had no effect on oligosaccharide binding. These findings suggest that the organization of the lectin site in CRT largely resembles that of CNX but is not identical. The deficiency in oligosaccharide binding by the mutants was not due to misfolding because they exhibited wild-type protease digestion patterns, were capable of binding the thiol oxidoreductase ERp57, and functioned just as efficiently as wild-type CRT in suppressing the aggregation of the nonglycosylated substrate citrate synthase. However, they were impaired in their ability to suppress the aggregation of the glycosylated substrate jack bean alpha-mannosidase. This provides the first direct demonstration of the importance of CRT's lectin site in suppressing the aggregation of nonnative glycoproteins.  相似文献   

11.
The limitations of high-level expression of virus surface proteins in yeast are not well understood. The inefficiency of yeast to produce active human virus surface glycoproteins, as well as other mammalian glycoproteins, is usually explained by the inefficient folding of the glycoprotein into its characteristic and functional three-dimensional structure from a random coil. The endoplasmic reticulum (ER) is a highly versatile protein factory that is equipped with chaperones and folding enzymes essential for protein folding. To improve folding and solubility of viral surface glycoprotein, the genes encoding human ER resident chaperones calnexin, calreticulin, immunoglobin binding protein (BiP), protein disulfide isomerase (PDI) and foldase (ERp57) were coexpressed together with hemagglutinin gene from measles virus in the yeast Saccharomyces cerevisiae. The effect of coexpressing chaperones on the total yield of measles virus hemagglutinin (MeH) as well as the intracellular fate of the glycoprotein was determined. Our results demonstrated that coexpression of human calnexin noticeably enhanced the quantity of the soluble glycosylated form of MeH in yeast. The coexpression of human calreticulin-, PDI-, ERp57- and BiP-encoding genes did not improve the quality of recombinant MeH.  相似文献   

12.
The mechanism, in molecular terms of protein quality control, specifically of how the cell recognizes and discriminates misfolded proteins, remains a challenge. In the secretory pathway the folding status of glycoproteins passing through the endoplasmic reticulum is marked by the composition of the N-glycan. The different glycoforms are recognized by specialized lectins. The folding sensor UGGT acts as an unusual molecular chaperone and covalently modifies the Man9 N-glycan of a misfolded protein by adding a glucose moiety and converts it to Glc1Man9 that rebinds the lectin calnexin. However, further links between the folding status of a glycoprotein and the composition of the N-glycan are unclear. There is little unequivocal evidence for other proteins in the ER recognizing the N-glycan and also acting as molecular chaperones. Nevertheless, based upon a few examples, we suggest that this function is carried out by individual proteins in several different complexes. Thus, calnexin binds the protein disulfide isomerase ERp57, that acts upon Glc1Man9 glycoproteins. In another example the protein disulfide isomerase ERdj5 binds specifically to EDEM (which is probably a mannosidase) and a lectin OS9, and reduces the disulfide bonds of bound glycoproteins destined for ERAD. Thus the glycan recognition is performed by a lectin and the chaperone function performed by a specific partner protein that can recognize misfolded proteins. We predict that this will be a common arrangement of proteins in the ER and that members of protein foldase families such as PDI and PPI will bind specifically to lectins in the ER. Molecular chaperones BiP and GRp94 will assist in the folding of proteins bound in these complexes as well as in the folding of non-glycoproteins.  相似文献   

13.
ERp57 is a multifunctional thiol-disulfide oxidoreductase   总被引:4,自引:0,他引:4  
The thiol-disulfide oxidoreductase ERp57 is a soluble protein of the endoplasmic reticulum and the closest known homologue of protein disulfide isomerase. The protein interacts with the two lectin chaperones calnexin and calreticulin and thereby promotes the oxidative folding of newly synthesized glycoproteins. Here we have characterized several fundamental structural and functional properties of ERp57 in vitro, such as the domain organization, shape, redox potential, and the ability to catalyze different thiol-disulfide exchange reactions. Like protein disulfide isomerase, we find ERp57 to be comprised of four structural domains. The protein has an elongated shape of 3.4 +/- 0.1 nm in diameter and 16.8 +/- 0.5 nm in length. The two redox-active a and a' domains were determined to have redox potentials of -0.167 and -0.156 V, respectively. Furthermore, ERp57 was shown to efficiently catalyze disulfide reduction, disulfide isomerization, and dithiol oxidation in substrate proteins. The implications of these findings for the function of the protein in vivo are discussed.  相似文献   

14.
Calnexin (CNX) and calreticulin (CRT) are endoplasmic reticulum (ER) chaperones. CNX is a type I transmembrane protein and CRT is a soluble CNX homologue. In the ER, CNX and CRT are important for Ca(2+) homeostasis and protein maturation. Here, we describe the full-length cDNA of the first mollusk CNX (cgCNX) and a second mollusk CRT (cgCRT) from the oyster Crassostrea gigas. CgCNX, containing 3255bp, was composed of a 1764bp open reading frame (ORF) that encodes a 588-amino acid protein. CgCRT, containing 1727bp, was composed of a 1242bp ORF that encodes a 414-amino acid protein. CgCNX and cgCRT contains an N-terminal 21- and 16-amino acid sequence, respectively, which is characteristic of a signal sequence. At the C-terminus, cgCRT also contains the KDEL (-Lys-Asp-Glu-Leu) peptide motif suggesting that cgCRT localizes in the ER. Northern blot analysis showed that both cgCNX and cgCRT mRNAs are induced by air exposure. The expression patterns of cgCNX mRNA differed from those of cgCRT during air exposure. This suggests that these two molecular chaperones have different roles in the response to air exposure.  相似文献   

15.
ERp57 is a thiol oxidoreductase of the endoplasmic reticulum that appears to be recruited to substrates indirectly through its association with the molecular chaperones calnexin and calreticulin. However, its functions in living cells have been difficult to demonstrate. During the biogenesis of class I histocompatibility molecules, ERp57 has been detected in association with free class I heavy chains and, at a later stage, with a large complex termed the peptide loading complex. This implicates ERp57 in heavy chain disulfide formation, isomerization, or reduction as well as in the loading of peptides onto class I molecules. In this study, we show that ERp57 does indeed participate in oxidative folding of the heavy chain. Depletion of ERp57 by RNA interference delayed heavy chain disulfide bond formation, slowed folding of the heavy chain alpha(3) domain, and caused slight delays in the transport of class I molecules from the endoplasmic reticulum to the Golgi apparatus. In contrast, heavy chain-beta(2)-microglobulin association kinetics were normal, suggesting that the interaction between heavy chain and beta(2) -microglobulin does not depend on an oxidized alpha(3) domain. Likewise, the peptide loading complex assembled properly, and peptide loading appeared normal upon depletion of ERp57. These studies demonstrate that ERp57 is involved in disulfide formation in vivo but do not support a role for ERp57 in peptide loading of class I molecules. Interestingly, depletion of another thiol oxidoreductase, ERp72, had no detectable effect on class I biogenesis, consistent with a specialized role for ERp57 in this process.  相似文献   

16.
Complexes of specific assembly factors and generic endoplasmic reticulum (ER) chaperones, collectively called the MHC class I peptide-loading complex (PLC), function in the folding and assembly of MHC class I molecules. The glycan-binding chaperone calreticulin (CRT) and partner oxidoreductase ERp57 are important in MHC class I assembly, but the sequence of assembly events and specific interactions involved remain incompletely understood. We show that the recruitments of CRT and ERp57 to the PLC are codependent and also dependent upon the ERp57 binding site and the glycan of the assembly factor tapasin. Furthermore, the ERp57 binding site and the glycan of tapasin enhance β(2)m and MHC class I heavy (H) chain recruitment to the PLC, with the ERp57 binding site having the dominant effect. In contrast, the conserved MHC class I H chain glycan played a minor role in CRT recruitment into the PLC, but impacted the recruitment of H chains into the PLC, and glycan-deficient H chains were impaired for tapasin-independent and tapasin-assisted assembly. The conserved MHC class I glycan and tapasin facilitated an early step in the assembly of H chain-β(2)m heterodimers, for which tapasin-ERp57 or tapasin-CRT complexes were not required. Together, these studies provide insights into how PLCs are constructed, demonstrate two distinct mechanisms by which PLCs can be stabilized, and suggest the presence of intermediate H chain-deficient PLCs.  相似文献   

17.
Calnexin (CNX) is an integral membrane protein of endoplasmic reticulum (ER) and is a critical component of ER quality control machinery. It acts as a chaperone and ensures proper folding of newly synthesised glycoproteins. CNX shares a considerable homology with its luminal counterpart calreticulin (CRT). Together, they constitute CNX/CRT cycle which is imperative for proper folding of nascent proteins. CNX deficient organisms develop severe complications because of improper folding of proteins and consequently ER stress. CNX maintains calcium homeostasis by binding to the Ca2+ which is a central node in various signaling pathways. Phosphorylation of cytoplasmic tail of CNX controls the sarco endoplasmic reticulum calcium ATPase and thus the movement of Ca2+ in and out of its store-house, i.e. ER. Our studies on Oryza sativa CNX (OsCNX) reveal constitutive expression at various developmental stages and various tissues, thereby proving its requirement throughout the plant development. Further, its expression under various stress conditions gives an insight of the crosstalk existing between ER stress and abiotic stress signaling. This was confirmed by heterologous expression of OsCNX (OsCNX-HE) in tobacco and the OsCNX-HE lines were observed to exhibit better germination under mannitol stress and survival under dehydration stress conditions. The dehydration tolerance conferred by OsCNX appears to be ABA-dependent pathway.  相似文献   

18.
Oxidation and folding of secretory proteins in the endoplasmic reticulum (ER) depends on the presence of chaperones and oxidoreductases. Two of the oxidoreductases present in the ER of mammalian cells are protein disulfide isomerase (PDI) and ERp57. In this study, we investigated the influence of ERp57 on the in vitro reoxidation and refolding of an antibody Fab fragment. Our results show that ERp57 shares functional properties with PDI and that both are clearly different from other oxidoreductases. The reactivation of the denatured and reduced Fab fragment was enhanced significantly in the presence of ERp57 with kinetics and redox dependence of the reactivation reaction comparable to those obtained for PDI. These properties were not influenced by the presence of calnexin. Furthermore, whereas PDI cooperates with the immunoglobulin heavy chain binding protein (BiP), no synergistic effect could be observed for BiP and ERp57. These results indicate that the cooperation of the two oxidoreductases with different partner proteins may explain their different roles in the folding of proteins in the ER.  相似文献   

19.
Calnexin and calreticulin are membrane-bound and soluble chaperones, respectively, of the endoplasmic reticulum (ER) which interact transiently with a broad spectrum of newly synthesized glycoproteins. In addition to sharing substantial sequence identity, both calnexin and calreticulin bind to monoglucosylated oligosaccharides of the form Glc(1)Man(5-9)GlcNAc(2), interact with the thiol oxidoreductase, ERp57, and are capable of acting as chaperones in vitro to suppress the aggregation of non-native proteins. To understand how these diverse functions are coordinated, we have localized the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. Recent structural studies suggest that both proteins consist of a globular domain and an extended arm domain comprised of two sequence motifs repeated in tandem. Our results indicate that the primary lectin site of calnexin and calreticulin resides within the globular domain, but the results also point to a much weaker secondary site within the arm domain which lacks specificity for monoglucosylated oligosaccharides. For both proteins, a site of interaction with ERp57 is centered on the arm domain, which retains approximately 50% of binding compared with full-length controls. This site is in addition to a Zn(2+)-dependent site located within the globular domain of both proteins. Finally, calnexin and calreticulin suppress the aggregation of unfolded proteins via a polypeptide binding site located within their globular domains but require the arm domain for full chaperone function. These findings are integrated into a model that describes the interaction of glycoprotein folding intermediates with calnexin and calreticulin.  相似文献   

20.
It was previously reported that the up-regulation of ERp29 mRNA depends on the levels of thyroid stimulating hormone (TSH) in the thyrocytes of FRTL-5 cells. In order to investigate the putative new function of ERp29 as an endoplasmic molecular (ER) chaperone, an ERp29-overexpressing FRTL-5 cell line was established. This cell line had approximately three times the levels of ERp29 protein and an enhanced level of thyroglobulin (Tg) secretion. The results showed both enhanced ERp29 expression and an interaction with the other ER chaperones such as GRP94, BiP, ERp72 and calnexin. In addition, ERp29 enhanced the expression of PKR-like ER kinase (PERK), which is a transmembrane protein located in the ER membrane. These findings suggest that ERp29 assists in protein folding as well as in the secretion of the secretory/plasma membrane proteins under close co-operation with other ER chaperones and the ER stress signaler, PERK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号