首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Summary Two metathoracic flight motoneurons of the locustChortoicetes terminifera have been stained by injection of cobalt. The motoneurons innervate the tergosternal (hindwing elevator) muscle 113 and the first basalar (hindwing depressor) muscle 127. The somata of both are on the ventral surface of the ganglion (Fig. 1), and their axons in the ipsilateral nerve 3A. The main neuropilar segment and large medial dendrites of each follow parallel courses through the ganglion even though the two motoneurons subserve antagonistic functions (Fig. 3). Differences in the smaller dendrites add characteristic detail to each. The dendritic trees are complex and cover virtually all of the ipsilateral dorsal neuropile. No branches cross the mid-line so that electrotonic coupling is eliminated as a possible means of co-ordination of motoneurons of the two sides (Fig. 4). The general shape of the motoneurons is similar in different animals but there is variation in the number and extent of the small dendrites (Fig. 6).Beit Memorial Research Fellow.  相似文献   

2.
Flight behaviors in various insect species are closely correlated with their mechanical and neuronal properties. Compared to locusts and flies which have been intensively studied, moths have “intermediate” properties in terms of the neurogenic muscle activations, power generation by indirect muscles, and two-winged-insect-like flapping behavior. Despite these unique characteristics, little is known about the neuronal mechanisms of flight control in moths. We investigated projections of the wing mechanosensory afferents in the central nervous system (CNS) of the hawkmoth, Agrius convolvuli, because the mechanosensory proprioceptive feedback has an essential role for flight control and would be presumably optimized for insect species. We conducted anterograde staining of nine afferent nerves from the fore- and hindwings. All of these afferents projected into the prothoracic, mesothoracic and metathoracic ganglia (TG1, 2 and 3) and had ascending fibers to the head ganglia. Prominent projection areas in the TG1–3 and suboesophageal ganglion (SOG) were common between the forewing, hindwing and contralateral forewing afferents, suggesting that information from different wings are converged at multiple levels presumably for coordinating wing flapping. On the other hand, differences of projections between the fore- and hindwing afferents were observed especially in projection areas of the tegulae in the TG1 and contralateral projections of the anterior forewing nerve in the TGs and SOG, which would reflect functional differences between corresponding mechanoreceptors on each wing. Afferents comprising groups of the campaniform sensilla at the wing bases had prominent ascending pathways to the SOG, resembling the head–neck motor system for gaze control in flies. Double staining of the wing afferents and flight or neck motoneurons also indicated potential connectivity between them. Our results suggest multiple roles of the wing proprioceptive feedback for flight and provide the anatomical basis for further understanding of neuronal mechanisms of the flight system in moths.  相似文献   

3.
1. The interneurones which make widespread connexions with flight motoneurones also synapse upon ventilatory motoneurones so that in all 50 motoneurones receive synapses. They influence three aspects of ventilation; (a) the closing and opening movements of the thoracic spiracles, (b) some aspects of abdominal pumping movements and (c) the recruitment of some motoneurones controlling head pumping. 2. The two closer motoneurones of a particular thoracic spiracle receive the same excitatory synaptic inputs (EPSPs) during expiration. The EPSPs match those in appropriate flight motoneurones. 3. The closer motoneurones of each thoracic spiracle whose somata are in the pro-, meso- or metathoracic ganglia all receive the same excitatory synaptic inputs. These inputs are an adequate explanation of the pattern of spikes in the closer motoneurones. Both the slow ventilatory and fast rhythms of synaptic potentials are expressed as spikes; the slow as the overall expiratory burst of spikes and the fast as the groups of spikes within that burst. This establishes a ventilatory function for the interneurones. All thoracic closer motoneurones therefore receive the same excitatory commands which will tend to synchronize the movements of each spiracle. 4. Spiracular opener motoneurones are inhibited during expiration, their IPSPs matching the EPSPs in flight or closer motoneurones. Therefore the interneurones have reciprocal effects on the antagonistic motoneurones of the spiracles. 5. The interneurones synapse upon some motoneurones which control the pumping movements of the abdomen and which have their somata in the metathoracic or first unfused abdominal ganglion. Motoneurones in four separate ganglia therefore receive inputs from these interneurones. 6. The interneurones also synapse upon motoneurones which control an auxiliary form of ventilation, head pumping.  相似文献   

4.
The flight motor pattern of the adult locust (Locusta migratoria L.) is able to recover from the loss of the hindwing tegulae. This recovery is due to a functional substitution of the hindwing tegulae by the forewing tegulae (Büschges, Ramirez, and Pearson, 1992). To assess changes in the pathways from the forewing tegulae in the flight system, we investigated the pathways of the forewing tegula in intact locusts and in animals 2 weeks after hindwing tegula removal. The following physiological alterations in these pathways were found to be associated with the recovery: (1) In the intact locusts, the connections of forewing tegula afferents to flight interneurons are variable but this variability did not occur in recovered animals, and (2) larger numbers of forewing tegula afferents connect to interneurons that excite elevator motoneurons (interneurons 566 and 567) and to an interneuron that inhibits depressor motoneurons (interneuron 511). The size of unitary excitatory postsynaptic potentials (EPSPs) evoked by signal forewing tegula afferents was found not to be altered in recovered animals. The changes in connectivity of forewing tegula afferents are correlated with morphological alterations in the structure of the terminal processes of the afferents and with sprouting of some branches of interneurons receiving input from these afferents.  相似文献   

5.
Correctional and intentional steering manoeuvres in locusts differ in several important respects. The most profound difference between the two is the production of large forewing asymmetries in angle of elevation during the downstroke in intentional steering that are not obvious in correctional steering. We investigated the flight motor patterns during intentional steering responses to a radiant heat source. We found asymmetries in the timing of forewing first basalar (m97) activity on the left and right sides that were strongly and positively correlated with forewing asymmetries. Timing asymmetry in the second basalar (m98) and pleuroalar (m85) muscles was not significantly different from the changes observed in m97. The hindwing first basalar (m127) shifted its asymmetry in the opposite direction. The forewing subalar muscle (m99) did not shift its asymmetry with the same magnitude as m97, but instead was phase-shifted relative to m97 on the left and right sides, suggesting its role as a supinator. We conclude that large asymmetries in the elevation angle of the forewings during the downstroke, as are evident in intentional steering, are generated by bulk shifts in the activation times of forewing depressor muscles to cause a relative shift in the time of stroke reversals of the two forewings. Accepted: 19 June 1998  相似文献   

6.
1. The trochanteral hair-plate afferents in the metathoracic leg of the cockroach, Periplaneta americana, were stimulated electrically and at the same time intracellular recordings were made from either motoneurones, interneurones or afferent terminals within the methathoracic ganglion. 2. Activity in the hair-plate afferents evoked short latency excitatory postsynaptic potentials (EPSPs) in femur flexor motoneurones. The latency of the IPSPs was on average 1-8 ms longer than the latency ofthe EPSPs. 3. Intracellular recordings from terminal branches of the hair-plate afferents showed that the delay between the peak of the afferent terminal spike and the beginning of the EPSPs is about 0.4 ms. This finding, together with the observations that the amplitude of the EPSPs is increased by the passage of hyperpolarizing current and decreased following high-frequency stimulation, indicates that the EPpSPs are evoked via-monosynaptic chemical synaptic junctions. 4. The observations of the long latency of the IPSPs, the need for a number of afferents to be simultaneously acive for them to be evoked and the occasional variability in latency, all indicate that the IPSPs are evoked via a disynaptic pathway...  相似文献   

7.
 This report investigates the reflex activation of locust flight motoneurones following their spiking activity. As shown elsewhere, an electrical stimulus applied to a flight muscle produces multiple waves of delayed excitation in wing elevator and depressor motoneurones. Nerve ablation experiments show that this response is initiated by the mechanical movement of the stimulated muscle, and not the antidromic spike evoked in the motoneurone. The delayed excitation still occurs in the absence of inputs from the wing receptor systems, and also when all other sources of afferent feedback are abolished, excepting thoracic nerve 2. Following complete deafferentation, spikes in flight motoneurones had no influence on other flight motoneurones. Numerous afferents in the purely sensory nerve 2 are excited by flight muscle contractions. The responses are consistent for repeated contractions of the same muscle, but differ when other muscles are stimulated. During tethered flight, changes in the activation of single flight muscles are reflected in changes of the nerve 2 discharge pattern. Electrical stimulation of this nerve causes delayed excitation of flight motoneurones, and can initiate flight activity. It is suggested that internal proprioceptors, such as those associated with nerve 2, will contribute to shaping the final motor output for flight behaviour. Accepted: 24 April 1996  相似文献   

8.
Previous investigations have shown that the flight motor pattern of the mature locust (Locusta migratoria L.) relies heavily on the input of the hindwing tegulae. Removal of the hindwing tegulae results in an immediate change in the motor pattern: the wingbeat frequency (WBF) decreases and the interval between the activity of depressor and elevator muscles (D-E interval) increases. In contrast, removal of the forewing tegulae has little effect on the motor pattern. Here we report adaptive modifications in the flight system that occur after the removal of the hindwing tegulae. Over a period of about 2 weeks following hindwing tegula removal, the flight motor pattern progressively returned towards normal, and in about 80% of the animals recovery of the flight motor pattern was complete. We describe the changes in the activity pattern of flight muscles and in the patterns of depolarizations in flight motoneurons and flight interneurons associated with this recovery. In contrast to the situation in the intact animal, the activity of the forewing tegulae is necessary in recovered animals for the generation of the motor pattern. Removal of the forewing tegulae in recovered animals resulted in similar changes in the flight motor pattern as were observed in intact animals after the removal of the hindwing tegulae. Furthermore, electrical stimulation of forewing tegula afferents in recovered animals produced similar resetting effects on the motor pattern as electrical stimulation of the hindwing tegulae afferents in intact animals. From these observations we conclude that recovery is due to the functional replacement of the removed hindwing tegulae by input from the forewing tegulae.  相似文献   

9.
Twenty-one prothoracic and 17 mesothoracic motor neurons innervating leg muscles have been identified physiologically and subsequently injected with dye from a microelectrode. A tract containing the primary neurites of motor neurons innervating the retractor unquis, levator and depressor tarsus, flexor tibiae, and reductor femora is described. All motor neurons studied have regions in which their dendritic branches overlap with those of other leg motor neurons. Identified, serially homologous motor neurons in the three thoracic ganglia were found to have: (1) cell bodies at similar locations and morphologically similar primary neurites (e.g., flexor tibiae motor neurons), (2) cell bodies at different locations in each ganglion and morphologically different primary neurites in each ganglion (e.g., fast retractor unguis motor neurons), or (3) cell bodies at similar locations and morphologically similar primary neurites but with a functional switch in one ganglion relative to the function of the neurons in the other two ganglia. As an example of the latter, the morphology of the metathoracic slow extensor tibiae (SETi) motor neurons was similar to that of pro- and mesothoracic fast extensor tibiae (FETi) motor neurons. Similarly the metathoracic FETi bears a striking resemblance to the pro- and the mesothoracic SETi. It is proposed that in the metathoracic ganglion the two extensor tibiae motor neurons have switched functions while retaining similar morphologies relative to the structure and function of their pro- and mesothoracic serial homologues.  相似文献   

10.
Intracellular recordings were carried out on locust flight motoneurons after hemisection of individual thoracic ganglia. With the exception of minimal surgical manipulations, the animals were intact and able to perform tethered flight. Analysis of the synaptic drive recorded in the motoneurons during flight motor activity revealed the extent to which ganglion hemisection influenced the premotor rhythm generating network.
1.  Hemisection of the mesothoracic ganglion (Fig. 2) as well as hemisection of both the mesothoracic and the prothoracic ganglia (Fig. 3) had no significant effects on the pattern of synaptic input to the flight motoneurons. Thus the rhythm generating premotor network does not depend on commissural information transfer in the mesothoracic and the prothoracic ganglia. This conclusion was supported by experiments in which more extensive surgical isolations of thoracic ganglia were carried out (Fig. 5).
2.  Removal of input from wing receptors (deafferentation) in addition to hemisection of the mesothoracic ganglion (Fig. 4) resulted in rhythmic and coordinated oscillations of the motoneuron membrane potential which were indistinguishable from those observed in deafferented animals with all ganglia intact.
3.  Hemisection of the metathoracic ganglion had more pronounced effects on the patterns of synaptic drive to the flight motoneurons and their spike discharge. Rhythmic activity which was often subthreshold could, however, still be recorded following a metathoracic split (Fig. 6).
4.  No rhythmic synaptic input was observed after hemisection of both mesothoracic and metathoracic ganglia (Fig. 7).
  相似文献   

11.
Summary The output connections of a bilaterally symmetrical pair of wind-sensitive interneurones (called A4I1) were determined in a non-flying locust (Schistocerca gregaria). Direct inputs from sensory neurones of specific prosternai and head hairs initiate spikes in these interneurones in the prothoracic ganglion.The interneurone with its axon in the right connective makes direct, excitatory connections with the two mesothoracic motor neurones innervating the pleuroaxillary (pleuroalar, M85) muscle of the right forewing, but not with the comparable motor neurones of the left forewing. The connections can evoke motor spikes.The interneurones also exert a powerful, but indirect effect on the homologous metathoracic pleuroaxillary motor neurones (muscle 114), and a weaker, indirect effect on subalar motor neurones of the hindwings. No connections or effects were found with other flight motor neurones, or motor neurones innervating hindleg muscles, including common inhibitor 1 which also innervates the pleuroaxillary muscle.One thoracic interneurone with its cell body in the right half of the mesothoracic ganglion and with its axon projecting ipsilaterally to the metathoracic ganglion receives a direct input from the right A4I1 interneurone.These restricted output connections suggest a role for the A4I1 interneurones in flight steering.Abbreviations DCMD descending contralateral movement detector - EPSP excitatory postsynaptic potential - TCG tritocerebral commissure giant (interneurone)  相似文献   

12.
1. Some flight motoneurones receive two superimposed rhythms of depolarizing synaptic potentials when the locust is not flying; a slow rhythm which is invariably linked to the expiratory phase of ventilation, and a fast rhythm with a period of about 50 ms which is similar to the wingbeat period in flight. 2. By recording simultaneously from groups of motoneurones, the synaptic potentials which underly these rhythms have been revealed in 30 flight motoneurones in the three thoracic ganglia. The inputs occur in elevator motoneurones and some depressors but are of lower amplitude in the latter. The inputs have not been found in leg motoneurones. 3. The rhythmic depolarizations are usually subthreshold but sum with sensory inputs to evoke spikes in flight motoneurones at intervals equal to or multiples of the wingbeat period in flight. 4. Both rhythms originate in the metathoracic ganglion and are mediated by the same interneurones. They can be adequately explained by supposing that there are two symmetrical interneurones which each make widespread connexions with left and right flight motoneurones in the three ganglia. 5. The slow rhythm is coded in the overall burst of interneurone spikes during expiration and the fast rhythm in the interval between the spikes of a burst.  相似文献   

13.
Previous investigations have shown that the flight motor pattern of the mature locust (Locusta migratoria L.) relies heavily on the input of the hindwing tegulae. Removal of the hindwing tegulae results in an immediate change in the motor pattern: the wingbeat frequency (WBF) decreases and the interval between the activity of depressor and elevator muscles (D–E interval) increases. In contrast, removal of the forewing tegulae has little effect on the motor pattern. Here we report adaptive modifications in the flight system that occur after the removal of the hindwing tegulae. Over a period of about 2 weeks following hendwing tegula removal, the flight motor pattern progressively returned towards normal, and in about 80% of the animals recovery of the flight motor pattern was complete. We describe the changes in the activity pattern of flight muscles and in the patterns of depolarizations in flight motoneurons and flight interneurons associated with this recovery. In contrast to the situation in the intact animal, the activity of the forewing tegulae is necessary in recovered animals for the generation of the motor pattern. Removal of the forewing tegulae in recovered animals resulted resulted in similar changes in the flight motor pattern as were observed in intact animals after the removal of the hindwing tegulae. Furthermore, electrical stimulation of forewing tegula afferents in recovered animals produced similar resetting effects on the motor pattern as electrical stimulation of the hindwing tegulae afferents in intact animals. From these observations we conclude that recovery is due to the functional replacement of the removed hindwing tegulae by input from the forewing tegulae.  相似文献   

14.
We simultaneously recorded flight muscle activity and wing kinematics in tethered, flying locusts to determine the relationship between asymmetric depressor muscle activation and the kinematics of the stroke reversal at the onset of wing depression during attempted intentional steering manoeuvres. High-frequency, pulsed sounds produced bilateral asymmetries in forewing direct depressor muscles (M97, 98, 99) that were positively correlated with asymmetric forewing depression and asymmetries in stroke reversal timing. Bilateral asymmetries in hindwing depressor muscles (M127 and M128 but not M129) were positively correlated with asymmetric hindwing depression and asymmetries in the timing of the hindwing stroke reversal; M129 was negatively correlated with these shifts. Hindwing depressor asymmetries and wing kinematic changes were smaller and shifted in opposite direction than corresponding measurements of the forewings. These findings suggest that intentional steering manoeuvres employ bulk shifts in depressor muscle timing that affect the timing of the stroke reversals thereby establishing asymmetric wing depression. Finally, we found indications that locusts may actively control the timing of forewing rotation and speculate this may be a mechanism for generating steering torques. These effects would act in concert with forces generated by asymmetric wing depression and angle of attack to establish rapid changes in direction.Abbreviations ASR acoustic startle response - dB SPL decibel sound pressure level (re: 20 Pa RMS) - EMG electromyogram - FWA forewing asymmetry - HWA hindwing asymmetry  相似文献   

15.
1.  Experiments were designed to examine phase-dependent influences of the wing stretch receptor (SR) afferents on the central oscillator in the flight system of the locust. Reasons were also sought for the failure of earlier workers to find phase-dependent influences of SR activity on the flight oscillator.
2.  In preparations with the hindwing sensory nerves left intact, electrical stimulation of the two forewing SRs caused an immediate increase in oscillator frequency reaching a maximum of 16–20 Hz as described by Pearson et al. (1983). After cutting the hindwing sensory nerves, the same stimulation increased the frequency from 6–8 Hz to 12–14 Hz. The absolute reduction in cycle period caused by the stimulation was reduced from 15–25 ms to 10–15 ms as a result of cutting the hindwing sensory nerves.
3.  Stimulation of two forewing SRs in completely deafferented preparations in bursts occurring at a constant rate could entrain the flight oscillator. During entrainment, depressor spikes occurred close to the time of the stimulus. The flight oscillator could follow changes in the entrainment frequency, usually only up to 1 Hz (10% cycle period) compared to 4–6 Hz (40–50% cycle period) seen by Pearson et al. (1983). Entrainment could still be elicited when the chordotonal organ afferents were co-stimulated.
4.  Bilateral stimulation of the hindwing SRs could also entrain the central flight oscillator over a similar range of frequencies as was observed for forewing SR stimulation.
5.  Stimulation of a lateral pair of SRs (one forewing and the ipsilateral hindwing SR) was observed to produce 11 entrainment in only one out of fifteen animals. However, a phase-dependent influence on the oscillator rhythm could be demonstrated by stimulation time-locked to the oscillator output (depressor EMG). SR stimulation close to the time of the depressor spike increased the oscillator frequency and prolonged the duration of rhythmic activity. Stimulation occurring approximately midway between depressor bursts had no obvious effect on the frequency or duration of the oscillator rhythm.
6.  The only conditions under which a slow increase in oscillator frequency could be produced by stimulation of a lateral pair of SRs was when the SR stimulus frequency was set much higher than the central oscillator frequency. It is concluded that the failure of earlier workers to observe phase-dependent effects of SR stimulation on the oscillator frequency was due to stimulation of a lateral rather than segmental pair of SRs and the method they used in their attempt to demonstrate phase-dependence. Their observation of a slow phase-independent increase in flight frequency possibly resulted from the high SR stimulus frequencies employed.
  相似文献   

16.
1. Membrane currents have been recorded from the soma of a bifunctional basalar/coxal depressor motoneurone in the metathoracic ganglion of the cockroach (Periplaneta americana) using a two-electrode voltage-clamp technique. 2. This motoneurone cell body is normally inexcitable when studied under current-clamp. Appropriate depolarizing command steps evoke rapid transient outward currents and late outward currents. 3. Late outward currents are dominated by a Ca-dependent component that confers an N-shaped I-V relationship on the neurone. 4. The Ca-dependent outward current is suppressed by Cd2+ (1 mM), Mn2+ (5 mM) or verapamil (50 microM). 5. Externally applied tetraethylammonium ions (TEA+) (25 mM) block the Ca-dependent current, but also appear to suppress a component of the late outward current that is independent of Ca2+. 6. Aminopyridines cause only minor suppression of late outward currents, but shift the peak in the N-shaped I-V relationship to more negative potentials. 7. The reversal potential of tail currents recorded following pre-pulses to +50 mV were dependent upon the pre-pulse duration; increasing the duration from 10 to 50 msec caused a +17 mV shift in tail current reversal potential. 8. A five-fold increase in the K+ concentration of the solution bathing the preparation only produced small and inconsistent changes in the reversal potential of tail currents. 9. Five-fold reduction in external Cl- caused no change. 10. The dependence of tail current reversal potential upon pre-pulse duration and the limited effect of alterations in the composition of the bathing solution are discussed in the context of restricted ion movements near the external surface of the cell membrane.  相似文献   

17.
The micromorphology of the locust coxo–trochanteral joint was examined in cobalt-stained material. Peripheral nervous system, musculature, and internal proprioceptors—two strand receptors and a muscle receptor organ—of the metathoracic coxa are compared with those of the pro- and mesothoracic legs. The number and position of trochanter levator and depressor motoneurons as well as the central projections of coxal sense organs are described. Evidence for a femoro–tibial strand receptor was obtained by tracing the path of a particular nerve branch.  相似文献   

18.
Summary Intracellular recordings have been made from the somata of two metathoracic flight motoneurons, one innervating an elevator muscle of the hindwing, the tergosternal muscle 113 and the other a depressor, the first basalar muscle 127. The locust,Ghortoicetes terminifera was mounted ventral side uppermost with the thorax restrained and opened for access to the thoracic ganglia. Patterns of electrical activity recorded from the thoracic muscles were similar to those shown by a locust during flight when tethered in a more normal posture. In flight the left and right 113 motoneurons each receive a single impulse together at every stroke of the wing, with the 127 muscles active in approximate antiphase. A spike in a 113 motoneuron causes a delayed wave of excitation simultaneously upon itself and its contralateral partner (Fig. 2). The epsp's which form these waves summate and may cause a spike which follows the original one with a delay equal to the wingbeat period. The delayed excitation of the contralateral motoneuron is of larger amplitude than the ipsilateral one so that spikes in either motoneuron must activate separate but symmetrical pathways. A single spike may cause multiple waves in either motoneuron, each separated by intervals equal to the wingbeat period (Fig. 3). In the pathway must be neurons capable of reverberation.A spike in a 113 motoneuron causes a delayed excitation of the ipsilateral 127 motoneuron so that its membrane potential is lowered antiphasically to that of 113 (Fig. 17). A spike in a 127 motoneuron has no effect on the 113 motoneurons. In flight these pathways causing delayed excitation may co-ordinate the motoneurons.The left and right 113 motoneurons receive common synaptic inputs from at least two sources (Fig. 8). These occur as bursts of epsp's at intervals approximately equal to or multiples of the wingbeat period and in the absence of flight. Epsp's of sufficient amplitude cause a spike in the motoneuron which is in the correct phase in the flight pattern relative to any other active motoneurons (Fig. 9). During sustained flight epsp's contribute to the wave of depolarization that the motoneuron undergoes at each wingbeat (Fig. 11). In the absence of the epsp's the motoneuron does not oscillate on its own. At the end of flight bursts of epsp's may continue at the flight frequency long after all activity in the muscles has ceased.Beit Memorial Research Fellow.  相似文献   

19.
Summary The flight behavior of locusts with hemisected mesothoracic or metathoracic ganglia was observed in unrestrained animals and monitored electromyographically in tethered animals. Animals with hemisected mesothoracic ganglia were able to initiate and carry out free flight. Hemisection of the mesothoracic ganglion caused no significant changes in the pattern of flight muscle firing; both intra- and intersegmental coordination of flight muscle activity were retained (Figs. 3, 4). Additional transection of one meso-metathoracic connective altered the pattern of flight muscle firing but did not abolish rhythmic activity (Fig. 8). Deafferentation of the thoracic ganglia in animals with hemisected mesothoracic ganglia resulted in rhythmically coordinated motor activity (Fig. 5) which was indistinguishable from that shown by deafferented animals with all ganglia intact. Hemisection of the metathoracic ganglion resulted in an abnormal pattern of flight muscle firing. However, a basic rhythmicity of motor activity was still present (Fig. 6). The implications of these results for rhythm generation and motor coordination in the flight control system of the locust are discussed.  相似文献   

20.
Desert locusts, tethered on a roll torque meter and flying in a wind tunnel are surrounded by an artificial horizon (Fig. 1). Flight motor activity and movement of forewings are monitored continuously. Movements of the artificial horizon elicit roll manoeuvers of the animal with latencies of several seconds; concomitant changes in flight motor pattern and wing movement can be correlated with the animal's roll angle and roll torque. Flight sequences with constant torque and roll angle (steady state) have been analysed with the following results. Wing Kinematics. A phase difference between the movements of the forewings on either side is correlated with roll angle (Fig. 3). Pronation of a forewing is always greater on the side to which the animal rolls, i.e. on the side that produces less lift (Fig. 5). In some experiments the slope of the wing tip path is also decreased (Fig. 5). In both cases, the aerodynamic angle of attack is decreased and the forewing on this side produces less lift. In most experiments, changes in pronation are less pronounced in the contralateral wing (Fig. 11). All factors contribute to a net roll torque that sustains the animal's roll angle. Other kinematic parameters of forewing movement, e.g. wing stroke amplitude, were not found to be correlated with roll angle and torque (Fig. 4). Motor Pattern. Activity of several flight muscles (depressors M97, M98, M99, and M129; elevators M83, M84, and M90) was investigated for changes in burst length and temporal coordination in response to roll stimuli. Most flight muscles fired only once per wing beat cycle in our preparations. Thus, burst length was not found to be correlated with roll angle. Time intervals of firing between all muscle pairs investigated change in correlation with the torque and roll angle (Fig. 9).All mesothoracic muscles are active earlier-relative to the ipsilateral metathoracic subalar muscle M129-during roll to the ipsilateral side than during roll to the contralateral side. Correlations Between Motor and Movement Pattern. The phase of muscle firing within the wing beat cycle varies with roll angle (roll torque). The first basalar M97 and second tergosternal M84 muscles, when referenced e.g. to the upper (M97) or lower (M84) reversal point of the wing tip trajectory, are active earlier on the side the animal turns to (Fig. 10). The onset of the first basalar M97 relative to the beginning of downstroke is correlated with maximum pronation and roll angle (Fig. 11). Mechanisms of Lift Control. Wing pronation, which is very important for lift production is controlled by the central nervous system by altering the phase of muscle activity within the wing beat cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号