首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The monoclonal antibody 4F2 recognizes a disulfide-linked ricin-binding glycoprotein complex (Mr congruent to 125,000) composed of a sialylated heavy subunit (Mr congruent to 85,000 on T cell lines) and an unsialylated light subunit (Mr congruent to 41,000). The antigen (T85,41) recognized by 4F2 on T cell lines is structurally distinct from the antigen (B93, 41) on B cell lines. The heavy subunits, but not the light subunits, from all T cell lines examined were uniformly smaller in size than the heavy subunits from several B cell lines. This reflects differences in carbohydrate rather than protein represent in B93,41 compared with T85,41, because both heavy subunits have a common unglycosylated form (p65) and a common partially glycosylated precursor form (p68). Among non-T, non-B hematopoietic cell lines, the monocytoid line U-937 expressed an antigen that resembles B93,41, whereas the erythroleukemic line K-562 expressed an antigen more similar to T85,41. 4F2 recognizes a protein determinant on the heavy subunit (with or without N-linked glycosylation) and also the unglycosylated heavy subunit retains the ability to associate with light subunit. The light subunit itself contains no detectable N-linked carbohydrate. Unlike the transferrin receptor, synthesis of the antigen recognized by 4F2 on the promyelocytic cell line HL-60 did not diminish upon dimethylsulfoxide-induced differentiation, and thus is not tightly correlated with cell proliferation.  相似文献   

2.
The biosynthesis and maturation of human sucrase-isomaltase (SI, EC 3.2.1.48-10), was studied in cultured small intestinal biopsy specimens and mucosa explants. Pulse-chase experiments with [35S]methionine revealed one high mannose intermediate of Mr = 210,000 (pro-SIh) which was processed at a slow rate to an endo H-resistant, mature form of Mr = 245,000 (pro-SIc). The fully core-glycosylated form (Mr = 212,000) was detected only when 1-deoxynojirimycin was added to the culture medium, thus indicating that the core sugars undergo rapid processing by rough endoplasmic reticulum membrane-bound glycosidases. The data presented showed that trypsin specifically and instantaneously (within 1 min) cleaves pro-SIc to two subunits Ic (Mr = 145,000) and Sc (Mr = 130,000). Elastase and chymotrypsin are not effective. Enzymic and chemical deglycosylations of SI with endo-beta-N-acetylglucosaminidase F/glycopeptidase F and trifluoromethanesulfonic acid (TFMS) as well as probing for the binding capacity of SI to Helix pomatia lectin demonstrated that pro-SIc, Ic, and Sc are N- and O-glycosylated. Furthermore, the results were indicative of a posttranslational O-glycosylation of pro-SI, since (i) the earliest detectable precursor form, pro-SIh, did not bind to H. pomatia lectin and (ii) its deglycosylation products with both endo-beta-N-acetylglucosamidase H and TFMS were identical. Both the Sc and Ic subunits contain eight N-linked glycan units, at least one of which is of the high mannose type and found on Sc. Finally, Sc, but not Ic, was shown to display at least four populations varying in their content of O-linked glycans. The heterogeneous O-glycosylation pattern of Sc could be correlated with the distal position of this subunit (and its O-glycosylation sites) within the pro-SI molecule, thus affecting the extent of O-linked oligosaccharide processing and their subsequent presentation on the mature molecule.  相似文献   

3.
Biosynthesis of mouse Thy-1 antigen   总被引:7,自引:0,他引:7  
The biosynthesis and the maturation of Thy-1 antigen of mouse thymocytes have been studied by using a xenogeneic rabbit anti-mouse Thy-1 antibody. The earliest form of Thy-1 detected after a 5-min pulse with [35S]methionine and [35S]cysteine had an apparent m.w. of 26,500. During chase, this band converted to a molecular ratio (Mr) = 25,000 polypeptide, probably derived from the latter by trimming of glucose or mannose residues from the three high-mannose glycan units of Thy-1. Mature Thy-1 molecules were detected at the cell surface after a 15-min chase. At least one of the three N-linked oligosaccharide units was shown to be in the high mannose form at the cell surface, as indicated by its susceptibility to endo-beta-N-acetylglucosaminidase H digestion. Treatment of the early and late forms of Thy-1 antigen with endo-beta-N-acetylglucosaminidase F generated a single polypeptide of Mr = 13,500. The same precursor was obtained when cells were labeled in the presence of tunicamycin. This indicates the absence of O-linked glycan in the mature cell surface antigen. Finally, the resistance of Thy-1 antigen to trypsin digestion when associated with membranes confirmed that this molecule has no cytoplasmically oriented portion.  相似文献   

4.
Three rat monoclonal antibodies (MAb) capable of stimulating interleukin 2 (IL 2) production by a variant subline of EL4 thymoma cells (EL4-6.1) have been produced. The stimulatory capacity of these MAb (designated RL73, RL119, and RL388) was originally found to be dependent on the presence of irradiated peritoneal exudate cells; however, this requirement could be replaced by the cellfree supernatant of the "macrophage-like" cell line P388D1 or by biochemically purified human interleukin 1 (IL 1). A number of other rat MAb directed against cell surface structures did not stimulate IL 1-dependent IL 2 production by EL4-6.1 cells; however, certain MAb directed against Thy-1 as well as the lectin phytohemagglutin did have this capacity. Furthermore, the stimulatory activity of MAb RL73, RL119, and RL388 appeared to be restricted to the EL4-6.1 variant line, because neither the parental EL4 line from which it was derived nor a series of ovalbumin-specific T-T hybrids responded to these MAb. The cell surface antigens recognized by MAb RL73, RL119, and RL388 were present on a wide variety of T cell lines and T-T hybrids, as well as on lines of B cell, macrophage, and fibroblast origin. Interestingly, the MAb reacted with the majority (approximately 85%) of thymocytes but not (or only to a very small extent) with resting T lymphocytes. After stimulation by concanavalin A, however, the three MAb reacted strongly with activated T lymphoblasts. The latter data suggest that MAb RL73, RL119, and RL388 may react with cell surface structures that are normally expressed as a consequence of lymphocyte activation.  相似文献   

5.
A-431 cells were treated with inhibitors of either N-linked glycosylation (tunicamycin or glucosamine) or of N-linked oligosaccharide processing (swainsonine or monensin) to examine the glycosylation of epidermal growth factor (EGF) receptors and to determine the effect of glycosylation modification on receptor function. The receptor was found to be an Mr = 130,000 polypeptide to which a relatively large amount of carbohydrate is added co-translationally in the form of N-linked oligosaccharides. Processing of these oligosaccharides accounts for the 10,000-dalton difference in electrophoretic migration between the Mr = 160,000 precursor and Mr = 170,000 mature forms of the receptor. No evidence was found for O-linked oligosaccharides on the receptor. Mr = 160,000 receptors resulting from swainsonine or monensin treatment were present on the cell surface and retained full function, as judged by 125I-EGF binding to intact cells and detergent-solubilized extracts and by in vitro phosphorylation in the absence or presence of EGF. On the other hand, when cells were treated with tunicamycin or glucosamine, ligand binding was reduced by more than 50% in either intact cells or solubilized cell extracts. The Mr = 130,000 receptors synthesized in the presence of these inhibitors were not found on the cell surface. In addition, no Mr = 130,000 phosphoprotein was detected in the in vitro phosphorylation of tunicamycin or glucosamine-treated cells. It appears, therefore, that although terminal processing of N-linked oligosaccharides is not necessary for proper translocation or function of the EGF receptor, the addition of N-linked oligosaccharides is required.  相似文献   

6.
The sex pheromone alpha-factor of Saccharomyces cerevisiae, a tridecapeptide of approx. 1,700 molecular weight, was found to be synthesized in vivo as a high molecular weight precursor of Mr = 28,000. Inhibition of N-linked glycosylation by tunicamycin leads to three precursor species of lower molecular weight indicating three carbohydrate residues linked to the alpha-factor precursor molecule. A molecular weight of 18,000 was determined for the unglycosylated molecule.  相似文献   

7.
Maltase-glucoamylase (MGA) was immunoprecipitated from detergent extracts of brush border membranes of the human small intestinal mucosa. Electrophoretic analysis of the precipitates under denaturing conditions revealed a single polypeptide of Mr = 335,000 in the presence or absence of reducing agents. Cross-linking of brush border membranes with the homobifunctional reagent dithiobis(succinimidylpropionate) did not result in considerable changes in the electrophoretic pattern of MGA. In contrast, aminopeptidase N, used in these studies as a control glycoprotein of the brush border membrane revealed dimeric structures of its single subunit in the presence of dithiobis(succinimidylpropionate). These data suggest that MGA is expressed in the human small intestinal brush border as a monomeric polypeptide. The biosynthesis of MGA was studied by pulse-labeling of human intestinal biopsy specimens or mucosal explants in organ culture. Continuous labeling with [35S]methionine for 30 min revealed a single polypeptide high mannose precursor of Mr = 285,000 (MGAh) which matures after 4 h of labeling to the Mr = 335,000 as judged by the susceptibility of these two forms to endo-beta-N-acetylglucosaminidase H. Owing to the absence of pancreatic secretions in the culture medium and the isolation of an identical species from nonlabeled mucosa, this result indicates that the Mr = 335,000 does not undergo an in situ extracellular cleavage by intraluminal proteases. Further, biosynthetically labeled, intracellularly cleaved polypeptides corresponding to the high mannose precursor or mature forms of MGA were not detected. The mature form of MGA (MGAm) bears in addition to N-linked glycans also O-glycosidically linked oligosaccharides. In fact, endo-beta-N-acetylglucosaminidase F/glycopeptidase F treatment of MGAm followed by chemical deglycosylation with trifluoromethanesulfonic acid revealed approximately 35,000 daltons of O-linked sugars. Furthermore, MGAm as well as its N-linked sugars-depleted form bound to Helix pomatia lectin which has specificity toward Gal-GalNAc structures. In addition, the data were suggestive of a post-translational O-glycosylation of the molecule since (i) the high mannose precursor of MGA did not bind to H. pomatia lectin and (ii) its endo-beta-N-acetylglucosaminidase H or endo-beta-N-acetylglucosaminidase F/glycopeptidase F form displayed an apparent molecular weight similar to that obtained upon endo-beta-N-acetylglucosaminidase F/glycopeptidase F/trifluoromethanesulfonic acid deglycosylation. Finally, pulse-chase experiments revealed a relatively slow rate of post-translational processing of MGA in comparison to aminopeptidase N.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Uteroferrin, a progesterone-induced secretory protein of the pig uterus, can noncovalently associate with additional progesterone-induced glycoproteins (uteroferrin-associated glycoproteins or UfAP) to form a heterodimer. The UfAP were dissociated from uteroferrin by passage through an immunoaffinity column. The flow through material consisted of two immunologically related variants of different size (Mr = 47,000-50,000 and Mr = 39,000-40,000) forms. By using an antiserum to all molecular weight components of the UfAP, it was shown that these glycoproteins were localized in the glandular epithelium of the uterus. Amino acid sequence analysis of the higher molecular weight (Mr = 47,000-50,000) form indicated it had a common amino-terminal sequence which was distinct from that of the lower molecular weight (Mr = 39,000-40,000) form. Endoglycosidase F treatment converted the Mr = 47,000-50,000 form to a common product with Mr = 43,000. Tryptic peptide analysis showed that the Mr = 39,000-40,000 form was closely related in primary sequence to the larger species. When endometrial RNA was translated in vitro, a single major product (Mr = 45,000) was immunoprecipitated by using the UfAP antiserum. These results suggest that the different forms of the UfAP originate from a single precursor by differential glycosylation and peptide cleavage. Endometrial explant cultures released all forms of the glycoproteins. When [32P]orthophosphate was provided, label was incorporated into the 6-position of D-mannosyl residues on the oligosaccharide chains of the UfAP. Therefore the associated glycoproteins have a structural feature normally associated with lysosomal enzymes.  相似文献   

9.
The trypanosome LDL receptor has been isolated from bloodstream form and cultured insect-stage trypanosomes as a protein of Mr 145,000, using a rapid purification procedure in the presence of a cocktail of protease inhibitors, whereas previously a polypeptide of Mr 86,000 was purified as the LDL receptor. Both the 145,000 and the 86,000 polypeptides are glycosylated and recognized by a monospecific antibody raised against the 86,000 species. This antibody inhibits LDL binding to the intact trypanosomes, to the isolated 145,000 receptor and to the 86,000 species. Hence, the previously isolated 86,000 polypeptide is a degradation product probably representing the cleaved-off ectodomain of the trypanosome LDL receptor.  相似文献   

10.
The biosynthetic and structural characteristics of the human thymocyte/T cell antigen defined by the monoclonal antibody WT1 have been studied. WT1 identified a monomeric cell surface glycoprotein of Mr = 40,000 ( gp40 ). Cross-absorption experiments and two-dimensional gel analyses indicate that WT1 and another monoclonal antibody, 3A1, react with the same structure. This glycoprotein was asymmetrically inserted into the rough endoplasmic reticulum as a transmembrane structure. At this stage, the polypeptide chain possessed two N-linked, "high-mannose" type glycans; these were subsequently processed into endo-H-insensitive, complex oligosaccharides during intracellular transport to the cell surface. Inhibition of N-linked glycosylation with tunicamycin failed to block the processing of the nonglycosylated Mr = 29,000 polypeptide to a glycoprotein of Mr = 33,000. Cleavage of the mature Mr = 40,000 form with endo-F yielded a similar Mr = 33,000 product. The kinetics of synthesis of the Mr = 33,000 intermediate in conjunction with gal-NAc oligosaccharidase digestion indicated the presence of O-linked glycans in the mature cell surface WT1 antigen. The fully processed cell surface form of the polypeptide also contains covalently associated fatty acid, and was labeled by 32P phosphate, the predominantly labeled phosphoamino acid being phosphoserine. We also demonstrate biochemically that the reactivity of WT1 with cells from a few patients with acute myeloid leukemia reflects genuine expression of the gp40 structure on myeloid cells.  相似文献   

11.
Cathepsin B-related proteases in the insulin secretory granule   总被引:16,自引:0,他引:16  
The distribution of proteases potentially reactive with peptide sequences containing pairs of basic amino acids or single basic amino acids was studied in subcellular fractions of a transplantable rat insulinoma using the affinity probes 125I-Tyr-Ala-Lys- ArgCH2Cl and 125I-Tyr-Ala-norleucine- ArgCH2Cl . Both probes labeled predominantly proteins of Mr = 39,000, 31,500, and 25,000. The Mr = 25,000 component appeared to be of lysosomal origin, while the Mr = 39,000 and 31,500 proteins were present in both the lysosomes and insulin granules. The Mr = 39,000 and 31,500 proteins were identified as precursor/product forms of the cysteine protease cathepsin B, while assays performed with fluorigenic peptide substrates suggested that the Mr = 25,000 protein was probably cathepsin L and/or H. The greater reactivity of the Mr = 39,000 form with the dibasic probe suggests that the relative proportions of the Mr = 39,000 and 31,500 forms of cathepsin B in different organelles may determine the extent to which the enzyme expresses activity as a specific (prohormone processing) endopeptidase or a more general (degradative) peptidase.  相似文献   

12.
Biosynthesis of cathepsin B in cultured normal and I-cell fibroblasts   总被引:2,自引:0,他引:2  
Biosynthesis and processing of cathepsin B in cultured human skin fibroblasts were investigated using immunological procedures. Upon metabolic labeling with [35S]methionine for 10 min, a precursor form with Mr 44,500 was identified. During an 80-min chase, about 50% of it was converted to an Mr 46,000 form. Further processing yielded mature forms with Mr 33,000 and 27,000, in a final quantitative ratio of about 3:1. Processing of cathepsin B was inhibited by leupeptin, which led to an accumulation of the Mr 33,000 polypeptide. The Mr 33,000 form appeared to be the most active form and showed a half-time of about 12 h. About 5% of newly synthesized enzyme was secreted as precursor, being detectable extracellularly already after 40 min. NH4Cl enhanced the secretion of the precursor about 20-fold. The precursor and the 33-kDa form contained phosphorylated N-linked oligosaccharides. Cleavage by peptide N-glycosidase F or biosynthesis in the presence of tunicamycin yielded a precursor with Mr 39,000. Evidence of a mannose 6-phosphate-dependent transport of cathepsin B in fibroblasts was obtained on the basis of the following results: (i) cathepsin B precursor from NH4Cl-stimulated secretions was internalized in a mannose 6-phosphate inhibitable manner, and (ii) I-cell fibroblasts secreted more than 95% of newly synthesized cathepsin B precursor. In conclusion, cathepsin B from human skin fibroblasts shows an analogous biosynthetic behavior as other lysosomal enzymes.  相似文献   

13.
Rat kidney gamma-glutamyl transpeptidase is composed of two nonidentical glycosylated subunits. The enzyme is localized on the lumenal surface of the brush-border membranes of proximal tubule epithelial cells; it is attached to the membranes via an NH2-terminal segment of the larger of the two subunits. Tissue-labeling experiments followed by immunoprecipitation with antibodies directed against the enzyme and its two subunits demonstrate that a glycosylated single chain precursor (Mr = 78,000), containing the elements of both the subunits, is initially synthesized. Pulse-chase studies in the presence of pactamycin, and inhibitor of protein synthesis initiation, indicate that the larger of the two subunits is located at the NH2 terminus of the Mr = 78,000 precursor. The initial events in the biosynthesis and processing of gamma-glutamyl transpeptidase were investigated by in vitro translation of rat kidney mRNA. Such translation results in the synthesis of a Mr = 63,000 unglycosylated polypeptide which has been shown immunologically to contain the domains for both subunits. The Mr = 63,000 species is processed to a Mr = 78,000 core-glycosylated polypeptide when translation of mRNA is carried out in the presence of dog pancreas microsomes. This processing does not appear to be associated with cleavage of an NH2-terminal leader sequence. The Mr = 78,000 polypeptide is integrated into the microsomal membranes with an orientation that is analogous to that found on the brush-border membranes. Glycosylation and membrane integration of transpeptidase are cotranslational events. Upon longer incubation, the Mr = 78,000 species sequestered within the microsomal vesicles is cleaved to species corresponding in size to the two subunits of the kidney enzyme.  相似文献   

14.
Surfactant proteolipid SP-B is a hydrophobic protein of Mr = 8000 identified in organic solvent extracts of pulmonary surfactant. Analysis of the human SP-B RNA predicts that the active surfactant peptide is derived by proteolysis of an Mr = 40,000 precursor. In the present work, characteristics of synthesis, secretion and processing of SP-B were demonstrated in a pulmonary adenocarcinoma cell line by immunoprecipitation of radiolabelled precursors. Treatment of cells with tunicamycin resulted in synthesis and secretion of unglycosylated proSP-B of Mr = 39,000. Immunoprecipitation of protein produced by in vitro translation of human lung poly(A)+ RNA detected an Mr = 40,000 protein; the size discrepancy is likely related to cleavage of a leader signal sequence. Endoglycosidase-H-sensitive precursors of Mr = 41,000-43,000, pI = 5.1-5.4 were the first isoforms detected within the cells and were processed to endoglycosidase-H-resistant isoforms and secreted. Neuraminidase and endoglycosidase-F-sensitive forms of proSP-B were first detected in the media at 60 min as Mr = 42-46,000 isoforms with pI = 4.6-5.1. Proteolytically processed isoforms of proSP-B were detected primarily in the media and were generated by cleavage of an amino-terminal Mr = 16,000 peptide resulting in Mr = 27,000-33,000 isoforms (pH = 5.6-6.8). The Mr = 27,000-33,000 isoforms were sensitive to neuraminidase, resulting in isoforms with pH = 6.0-6.8. Digestion of the Mr = 27,000-33,000 peptide with endoglycosidase-F resulted in isoforms of Mr = 23,000, pH = 6.0-6.8. The endoglycosidase-F-resistant peptide of Mr = 16,000, pI = 4.2-4.4 was identified with an antiserum generated against synthetic peptides derived from the amino-terminal domain, as deduced from the SP-B DNA sequence. Further proteolytic processing of the Mr = 27,000-33,000 isoforms to the Mr = 8000 peptide detected in surfactant was not observed in this cell line. Thus, in the H441-4 cells (a cell line with morphologic features of Clara cells), SP-B is synthesized as a preproprotein which undergoes cleavage of a signal sequence and addition of asparagine-linked carbohydrate; proSP-B is secreted by processes which are independent of glycosylation. SP-B peptides of Mr = 27,000-33,000 and Mr = 16,000, representing carboxy and amino-terminal domains, accumulate in the media.  相似文献   

15.
Human hepatoma cell (Hep G2) gamma-glutamyl transpeptidase (gamma-GT), a 120 ka single-chain glycoprotein, is much larger than the expected precursor of the dimeric enzyme in other human tissues. However, the Hep G2 gamma-GT mRNA encodes a 63 kDa peptide, similar to that of rat gamma-GT mRNA product and to the predicted, unglycosylated precursor of the enzyme in human tissues. Translation in presence of dog pancreas microsomes results in processing of the 63 kDa to an 80 kDa core-glycosylated species which is subsequently cleaved to 58 and 22 kDa subunits resembling those in other human tissues. The unusually large Mr of gamma-GT in Hep G2 would thus seem to be due to further glycosylation and processing in the Golgi. A deficiency of the processing protease is the most likely reason for the persistence of the single-chain form of gamma-GT in Hep G2 cells.  相似文献   

16.
The 57,000- to 65,000-dalton (Da) Marek's disease herpesvirus A (MDHV-A) antigen glycoprotein (gp57-65) has a 47,000-Da unglycosylated precursor polypeptide (pr47), as determined by immunological detection after cell-free translation of infected-cell mRNA. Cleavage of its signal peptide yielded a 44,000-Da precursor polypeptide molecule (pr44), detected both in vivo after tunicamycin inhibition of glycosylation and in vitro after dog pancreas microsome processing of pr47. High-resolution pulse-chase studies showed that pr44 was quickly glycosylated (within 1 min) to nearly full size, a rapid processing time consistent with a cotranslational mode of glycosylation. This major glycosylation intermediate was further modified 6 to 30 min postsynthesis (including the addition of sialic acid), and mature MDHV-A was secreted 30 to 120 min postsynthesis. Limited apparent secretion of pr44 occurred only in the first minute postsynthesis, in contrast to the later secretion of most of the MDHV-A polypeptide as the fully glycosylated form described above. In addition, in the presence of tunicamycin a small fraction of the newly synthesized MDHV-A protein appeared as a secreted, partially glycosylated, heterogeneously sized precursor larger than pr44. pr44 constituted the major fraction of the new MDHV-A made in the presence of the inhibitor but the precursor was smaller than mature MDHV-A. These data indicate that there is a minor glycosylation pathway not sensitive to tunicamycin and that "normal" glycosylation is not necessary for secretion. Collectively, the data demonstrate that the rapid release of most of the fully glycosylated form of MHDV-A from the cell shortly after synthesis is true secretion in a well-regulated and precisely programmed way and not the result of cell death and disruption.  相似文献   

17.
Isolated rat hepatocytes secreted a major phosphorylated glycoprotein (PP63) with apparent Mr = 63,000 and isoelectric point ranging from 4.8 to 5.3. Specific antibodies were raised in a rabbit using material obtained from plasma as an antigen. The biosynthesis of PP63 was studied in vitro in a cell-free system and in intact hepatocytes incubated with or without tunicamycin. The mRNA translation product had a Mr = 43,000 and was of the same size as the major unglycosylated precursor found in intact cells. This precursor was rapidly processed into two major intracellular forms of Mr = 53,000 and 56,000. These species were insensitive to neuraminidase but susceptible to endoglycosidase H, indicating that they contained oligosaccharide side chains of the high mannose-type. Terminal glycosylation gave rise to the mature Mr = 63,000 protein that contained sialic acid and fucose. This species represented the exportable form of the protein and was the only one to be phosphorylated. The charge heterogeneity observed for the mature protein already existed in all the precursors, indicating that it could not be ascribed to sialylation or to phosphorylation. However, these covalent modifications were mainly responsible for the acidic character of PP63. PP63 secretion was altered by tunicamycin. Pulse-chase experiments showed that the phosphorylated glycoprotein was secreted according to kinetics similar to that described for other liver glycoprotein, with slower kinetics than albumin. Permanent phosphorylation did not appear mandatory for excretion since the dephosphorylated PP63 was excreted with an efficacy comparable to that of the phosphorylated protein. Phosphorylation of PP63 was shown to occur on a single tryptic peptide, at a serine residue.  相似文献   

18.
Human recombinant interleukin-2 (IL-2) and a soluble recombinant form of the human p55 (Tac antigen) component of the IL-2 receptor (IL-2R) have been cocrystallized in 1.7-1.8 M ammonium sulfate, in the pH range 7.0-8.2. Variously glycosylated forms of both receptor and ligand can be cocrystallized under those conditions. The best crystals of the putative receptor-ligand complex involve the enzymatically desialylated receptor and unglycosylated IL-2. These crystals belong to the trigonal space group P3(1)2(1) or its enantiomorph, with unit cell dimensions a = b = 91 A and c = 119 A, and diffract to 3.5 A resolution. There is one receptor-ligand complex asymmetric unit, with a Matthews coefficient of 2.7, assuming the presence of one IL-2 molecule-receptor molecule. Interestingly, in addition to IL-2 (Mr = 14,000), the p55 IL-2 receptor (Mr = 44,000) and two fragments of the receptor, of apparent Mr = 35,000 and 25,000, respectively, in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the crystals are enriched in a reducible dimeric form of the desialylated receptor (apparent Mr = 90,000), as compared with protein solution from which the crystals grow. The overall amino acid content in the crystals is consistent with a 1:1 ratio of receptor to ligand. A native data set has been collected on a multiwire area detector and the search for suitable heavy atom derivatives is in progress.  相似文献   

19.
Glycosylation of CD4. Tunicamycin inhibits surface expression   总被引:8,自引:0,他引:8  
The T-cell surface glycoprotein CD4 plays an important role in mediating cellular immunity and serves as the receptor for human immunodeficiency virus. We have examined the glycosylation of CD4 and asked whether carbohydrate addition is essential for proper expression of the glycoprotein on the cell membrane. Under conditions where treatment of CD4+ human acute lymphoblastic leukemia cells (CEM-CM3 cells) with the glycosylation inhibitor tunicamycin decreased surface expression of CD4 in a time- and concentration-dependent manner, the surface expression of several other glycoproteins was unaffected. Incubation with tunicamycin for 48 h inhibited mannose incorporation by 98%, caused a 76% decrease in CD4 surface expression as judged by flow cytometry, and had little effect on methionine incorporation. Scatchard analysis showed a decrease in the total number of CD4 molecules on the cell surface from 17,000 to 8,900 after 24 h of tunicamycin treatment. Immunoprecipitation of metabolically labeled CD4 revealed the presence of an unglycosylated precursor in tunicamycin-treated cells. The observed difference between the Mr of the glycoprotein and its precursor is consistent with glycosylation at two potential N-linked sites. However, this precursor could not be detected by measuring steady state levels by immunoblotting. Also, no intracellular accumulation of CD4 in tunicamycin-treated cells was detectable using immunofluorescence microscopy. We conclude that surface expression of CD4 depends on glycosylation of the protein and that the unglycosylated precursor is preferentially degraded.  相似文献   

20.
The role of the single carbohydrate moiety present on the HLA-A2 molecule was studied by introducing several amino acid substitutions (by site-directed mutagenesis of the HLA-A2 gene) in the consensus glycosylation sequence Asn-X-Ser. Two different amino acid substitutions of the asparagine residue at position 86 (glutamine and aspartic acid) resulted in the synthesis of ca. 39,000-molecular-weight nonglycosylated heavy chains that were detected in the cytoplasm but not on the surface of mouse L-cell transfectants. However, a low level of surface expression was detected following transfection of human (rhabdomyosarcoma) cells or mouse L cells containing human beta 2-microglobulin. The defect in surface expression was not due to the absence of the glycan moiety, since the substitution of a glycine for a serine at amino acid 88 did not have the same drastic effect in the presence of human beta 2-microglobulin. These and other data suggest that the asparagine residue may play a critical role in the conformation of the HLA heavy chain and its interaction with beta 2-microglobulin. Immunofluorescence microscopy following permeabilization of the transfectants demonstrated that the unglycosylated HLA heavy chains are sequestered in an unidentified cellular compartment that is different from the Golgi structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号