首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: To examine the possibility that NaF enhances phosphoinositide-specific phospholipase C (PIC) activity in neural tissues by a mechanism independent of a guanine nucleotide binding protein (Gp), we have evaluated the contribution of Gp activation to NaF-stimulated phosphoinositide hydrolysis in human SK-N-SH neuroblastoma cells. Addition of NaF to intact cells resulted in an increase in the release of inositol phosphates (450% of control values; EC50 of ~ 8 mM). Inclusion of U-73122, an aminosteroid inhibitor of guanine nucleotide-regulated PIC activity in these cells, resulted in a dose-dependent inhibition of NaF-stimulated inositol lipid hydrolysis (IC50 of ~ 3.5 μM). When added to digitonin-permeabilized cells, NaF or guanosine-5′-O-thiotriphosphate (GTPγS) resulted in a three- and sevenfold enhancement, respectively, of inositol phosphate release. In the combined presence of optimal concentrations of NaF and GTPγS, inositol phosphate release was less than additive, indicative of a common site of action. Inclusion of 2–5 mM concentrations of guanosine-5′-O-(2-thiodiphosphate) (GDPβS) fully blocked phosphoinositide hydrolysis elicited by GTPγS, whereas that induced by NaF was partially inhibited (65%). However, preincubation of the cells with GDPβS resulted in a greater reduction in the ability of NaF to stimulate inositol phosphate release (87% inhibition). Both GTPγS and NaF-stimulated inositol phosphate release were inhibited by inclusion of 10 μM U-73122 (54–71%). The presence of either NaF or GTPγS also resulted in a marked lowering of the Ca2+ requirement for activation of PIC in permeabilized cells. These results indicate that in SK-N-SH cells, little evidence exists for direct stimulation of PIC by NaF and that the majority of inositol phosphate release that occurs in the presence of NaF can be attributed to activation of Gp.  相似文献   

2.
The addition of inositol to starved cells of Saccharomyces cerevisiae NCYC 86 resulted in an initiation of growth. Inositol was incorporated into phosphatidylinositol and after a lag period RNA was the first macromolecule with a rate of synthesis departing from the rate observed in deprived cells. Pulse chase experiments showed that inositol was first incorporated into phosphatidylinositol and later into more polar lipids. Finally it appeared to be excreted into the surrounding medium. When S. cerevisiae NCYC 86 was grown in suboptimal concentrations of inositol (0,5 g/ml), alterations in the level of some membrane-bound enzymatic activities were detected; these might reflect structural modifications of the cellular membranes due to a different composition of phospholipids.High-resolution autoradiography showed that inositol was probably first incorporated into internal membranes and later transferred to the plasma membrane. Analytical experiments carried out with inositol-deprived cells showed that inositol was released into the surrounding medium in that case.The unbalanced growth detected in S. cerevisiae NCYC 86 under inositol deprivation might be due to an abnormal functioning of the cell membranes as a consequence of the deficiency in inositol-containing phospholipids.  相似文献   

3.
Inositol phospholipids are critical regulators of membrane biology throughout eukaryotes. The general principle by which they perform these roles is conserved across species and involves binding of differentially phosphorylated inositol head groups to specific protein domains. This interaction serves to both recruit and regulate the activity of several different classes of protein which act on membrane surfaces. In mammalian cells, these phosphorylated inositol head groups are predominantly borne by a C38:4 diacylglycerol backbone. We show here that the inositol phospholipids of Dictyostelium are different, being highly enriched in an unusual C34:1e lipid backbone, 1‐hexadecyl‐2‐(11Z‐octadecenoyl)‐sn‐glycero‐3‐phospho‐(1'‐myo‐inositol), in which the sn‐1 position contains an ether‐linked C16:0 chain; they are thus plasmanylinositols. These plasmanylinositols respond acutely to stimulation of cells with chemoattractants, and their levels are regulated by PIPKs, PI3Ks and PTEN. In mammals and now in Dictyostelium, the hydrocarbon chains of inositol phospholipids are a highly selected subset of those available to other phospholipids, suggesting that different molecular selectors are at play in these organisms but serve a common, evolutionarily conserved purpose.  相似文献   

4.
Abstract: The psychotherapeutic action of Li+ in brain has been proposed to result from the depletion of cellular inositol secondary to its block of inositol monophosphatase. This action is thought to slow phosphoinositide resynthesis, thereby attenuating stimulated phosphoinositidase-mediated signal transduction in affected cells. In the present study, the effect of Li+ on muscarinic receptor–stimulated formation of the immediate precursor of phosphatidylinositol, CDP-diacylglycerol (CDP-DAG), has been examined in human SK-N-SH neuroblastoma cells that have been cultured under conditions that alter the cellular content of myo-inositol. Resting neuroblastoma cells, like brain cells in vivo, were found to concentrate inositol from the culture medium, achieving an intracellular level of 60.0 ± 4 nmol/mg of protein. The addition of carbachol to [3H]cytidine-prelabeled cells elicited a four- to fivefold increase in the accumulation of labeled CDP-DAG. This stimulated formation of [3H]CDP-DAG was completely blocked by the addition of 10 μM atropine, was not dependent on the presence of Li+, nor was it affected by co-incubation with myo-inositol. This result was in sharp contrast to findings in rat brain slices, in which carbachol-stimulated formation of [3H]CDP-DAG was potentiated ~ 10-fold by Li+ and substantially reduced by coincubation with inositol. The formation of [3H]CDP-DAG in labeled SK-N-SH cells by carbachol was both concentration and time dependent. The order of efficacy of muscarinic ligands in stimulating [3H]-CDP-DAG accumulation paralleled that established in these cells for inositol phosphate accumulation, i.e., carbachol ≥ oxotremorine-M > bethanecol ≥ arecoline > oxotremorine > pilocarpine. Extended culture of the SK-N-SH cells in an inositol-free chemically defined growth medium progressively reduced the intracellular inositol content to <5 nmol/mg of protein, a level comparable with that seen in cortical slices. In these inositol-depleted cells, Li+ potentiated carbachol-stimulated [3H]CDP-DAG formation, and this effect was completely reversed by coincubation with inositol (EC50 0.2 mM). The present study thus demonstrates, in the same cultured cell line, the effects of normal and reduced intracellular inositol levels on the ability of Li+ to attenuate phosphoinositide resynthesis, as inferred from [3H]CDP-DAG accumulation. The results indicate that Li+ can lead to a slowing of stimulated phosphoinositide turnover in neuroblastoma cells, provided that the intracellular inositol content has been significantly reduced.  相似文献   

5.
Abstract: The coupling of muscarinic receptor-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis by phospholipase C to resynthesis of phosphatidylinositol (PtdIns) and the ability of Li+ to inhibit this after cellular inositol depletion were studied in 1321N1 astrocytoma cells cultured in medium ± inositol (40 µM). In inositol-replete cells, 1 mM carbachol/10 mM LiCl evoked an initial (0–30 min) ~≥20-fold activation of phospholipase C, whereas prolonged (>60 min) stimulation turned over Ptdlns equal to the cellular total mass, involving ~80% of the cellular Ptdlns pool without reducing PtdIns concentrations significantly. PtdIns resynthesis was achieved by a similar, initial agonist activation of PtdIns synthase. The dose dependency for carbachol stimulation of PtdIns synthase and phospholipase C was similar (EC50~ 20 µM) as was the relative intrinsic activity of muscarinic receptor partial agonists. This demonstrates the tight coupling of phosphoinositide hydrolysis to resynthesis and suggests this is achieved by a direct mechanism. In inositol-replete or depleted cells basal concentrations of inositol and CMP-phosphatidate were respectively ~20 mM or ≤100–500 µM and ~0.1 or ~≥1–10 pmol/mg of protein. Comparison of the effects of agonist ± Li+ on the concentrations of these cosubstrates for PtdIns synthase suggest that accelerated activity of this enzyme is differentially driven by stimulated increases in the amounts of CMP-phosphatidate or inositol in inositol-replete or depleted cells, respectively. Thus, the preferential capacity of Li+ to impair stimulated phosphoinositide turnover in systems expressing low cellular inositol can be attributed to its ability to attenuate the stimulated rise in inositol concentrations on which such systems selectively depend to trigger accelerated PtdIns resynthesis.  相似文献   

6.
Scyllo‐inositol (SI), a stereoisomer of inositol, is regarded as a promising therapeutic agent for Alzheimer's disease. Here, an in vitro cofactor‐balance biotransformation for the production of SI from myo‐inositol (MI) by thermophilic myo‐inositol 2‐dehydrogenase (IDH) and scyllo‐inositol 2‐dehydrogenase (SIDH) is presented. These two enzymes (i.e., IDH and SIDH from Geobacillus kaustophilus) are co‐expressed in Escherichia coli BL21(DE3), and E. coli cells containing the two enzymes are permeabilized by heat treatment as whole‐cell catalysts to convert MI to SI. After condition optimizations about permeabilized temperature, reaction temperature, and initial MI concentration, about 82 g L?1 of SI is produced from 250 g L?1 of MI within 24 h without any cofactor supplementation. This final titer of SI produced is the highest to the authors’ limited knowledge. This study provides a promising method for the large‐scale industrial production of SI.  相似文献   

7.
Inositol deficiency of Schizosaccharomyces pombe did not induce significant change of contents of various cellular components except for phospholipids and inositol. The most remarkable decrease in inositol content by the deficiency occurred in the mitochondrial fraction. Electronmicroscopic observation of the inositol-deficient cells of Sch. pombe showed no remarkable thickening of cell wall as occurred in the inositol-exacting mutant of Saccharomyces cerevisiae Strain A–21–20.

Marked loss of fermentative activity under the aerobic condition was caused from inositol deficiency without significant change of activities of respiration and anaerobic fermentation. This seemed to indicate elevated regulatory control of the fermentative activity by oxygen in the inositol-deficient Sch. pombe.

Phosphorylative activities of intact cells and the isolated mitochondria coupled with oxidation was also remarkably suppressed by inositol deficiency.  相似文献   

8.
The effects of dietary inositol with sucrose stimulation on chewing and swallowing motor patterns in the larvae of Bombyx mori L. are investigated. Feeding activities of the larvae are significantly enhanced by a test diet containing an inositol–sucrose mixture compared with a test diet of sucrose only. Motor patterns of the mandibular closer muscle are accelerated with shorter burst durations and shorter inter‐burst intervals with the test diet of inositol–sucrose compared with sucrose. In terms of swallowing behaviours, inositol–sucrose shortens the duration of drinking. Motor patterns of the cibarial compressor muscle are accelerated with shorter burst durations and shorter inter‐burst intervals with the inositol–sucrose mixture. Peripheral interactions between inositol‐ and sucrose‐sensitive cells in the maxilla are not detected. Thus, such interactions cannot explain the positive effects of inositol on chewing and swallowing. Responses of inositol‐sensitive cells in the epipharyngeal sensillum are not affected by sucrose. These results suggest that dietary inositol can modify chewing and swallowing motor patterns when coupled with sucrose stimuli. These modifications may occur in the central neural networks involved in chewing and swallowing motor patterns but not in peripheral sensory interactions.  相似文献   

9.
Intra‐erythrocytic stages of the malaria parasite, Plasmodium falciparum, are thought to be dependent on de novo synthesis of phosphatidylinositol, as red blood cells (RBC) lack the capacity to synthesize this phospholipid. The myo‐inositol headgroup of PI can either be synthesized de novo or scavenged from the RBC. An untargeted metabolite profiling of P. falciparum infected RBC showed that trophozoite and schizont stages accumulate high levels of myo‐inositol‐3‐phosphate, indicating increased de novo biosynthesis of myo‐inositol from glucose 6‐phosphate. Metabolic labelling studies with 13C‐U‐glucose in the presence and absence of exogenous inositol confirmed that de novo myo‐inositol synthesis occurs in parallel with myo‐inositol salvage pathways. Unexpectedly, while both endogenous and scavenged myo‐inositol was used to synthesize bulk PI, only de novo‐synthesized myo‐inositol was incorporated into GPI glycolipids. Moreover, gene disruption studies suggested that the INO1 gene, encoding myo‐inositol 3‐phosphate synthase, is essential in asexual parasite stages. Together these findings suggest that P. falciparum asexual stages are critically dependent on de novo myo‐inositol biosynthesis for assembly of a sub‐pool of PI species and GPI biosynthesis. These findings highlight unexpected complexity in phospholipid biosynthesis in P. falciparum and a lack of redundancy in some nutrient salvage versus endogenous biosynthesis pathways.  相似文献   

10.
myoinositol (MI) is a key sugar alcohol component of various metabolites, e.g. phosphatidylinositol‐based phospholipids that are abundant in animal and plant cells. The seven‐step pathway of MI degradation was previously characterized in various soil bacteria including Bacillus subtilis. Through a combination of bioinformatics and experimental techniques we identified a novel variant of the MI catabolic pathway in the marine hyperthermophilic bacterium Thermotoga maritima. By using in vitro biochemical assays with purified recombinant proteins we characterized four inositol catabolic enzymes encoded in the TM0412–TM0416 chromosomal gene cluster. The novel catabolic pathway in T. maritima starts as the conventional route using the myo‐inositol dehydrogenase IolG followed by three novel reactions. The first 2‐keto‐myo‐inositol intermediate is oxidized by another, previously unknown NAD‐dependent dehydrogenase TM0412 (named IolM), and a yet unidentified product of this reaction is further hydrolysed by TM0413 (IolN) to form 5‐keto‐l ‐gluconate. The fourth step involves epimerization of 5‐keto‐l ‐gluconate to d ‐tagaturonate by TM0416 (IolO). T. maritima is unable to grow on myo‐inositol as a single carbon source. The determined in vitro specificity of the InoEFGK (TM0418–TM0421) transporter to myo‐inositol‐phosphate suggests that the novel pathway in Thermotoga utilizes a phosphorylated derivative of inositol.  相似文献   

11.
In this study, the effects of inositol addition on expression of the MAL gene encoding maltase and phosphatidylinositol (PI) biosynthesis in Schizosaccharomyces pombe (a naturally inositol-requiring strain) were examined. We found that specific maltase activity was at its maximum when the concentration of added inositol reached 6 μg ml−1 in a synthetic medium containing 2.0% (w/v) glucose. When the concentration of added inositol was 1 μg ml−1 in the medium, repression of MAL gene expression occurred at glucose concentration higher than 0.2% (w/v). However, when S. pombe was cultured in the synthetic medium containing 6 μg ml−1, repression of maltase gene expression occurred only at initial glucose concentration above 1.0% (w/v). More mRNA encoding maltase was detected in the cells grown in the medium with 6 μg ml−1 inositol than in those grown in the same medium with 1 μg ml−1 inositol. These results demonstrate that higher inositol concentrations in the synthetic medium could derepress MAL gene expression in S. pombe. PI content of the yeast cells grown in the synthetic medium with 6 μg ml−1 of inositol was higher than that of the yeast cells grown in the same medium with 1 μg ml−1 of inositol. This means that PI may be involved in the derepression of MAL gene expression in S. pombe.  相似文献   

12.
The effect of inositol addition on phospholipids, cell growth, ethanol production and ethanol tolerance in a high ethanol producing Saccharomyces sp were studied. Addition of inositol greatly influenced major phospholipid synthesis. With inositol in the fermentation medium, phosphatidylinositol (PI) content was increased, while phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were decreased. However, without inositol in the fermentation medium, PI content dropped down within 24 h, then increased, but was lower than in the presence of inositol. When yeast cells had a higher content of PI, they produced ethanol much more rapidly and tolerated higher concentrations of ethanol. During ethanol shock treatment at 18% (v/v) ethanol, yeast cells with a higher concentration of PI lost their viability much more slowly than those with a lower concentration of PI, indicating that the PI content in these yeast cells can play an important role in ethanol production and ethanol tolerance. Fatty acids and ergosterol were not responsible for high ethanol tolerance and high ethanol production in this yeast strain. Received 22 September 1998/ Accepted in revised form 20 December 1998  相似文献   

13.
Some of inositol derivatives have been reported to help the action of insulin stimulating glucose uptake in skeletal muscle cells. Rat L6 myotubes were employed in an attempt to develop an in vitro model system for investigation of the possible insulin-like effect of eight inositol derivatives, namely allo-inositol, d-chiro-inositol l-chiro-inositol, epi-inositol, muco-inositol, myo-inositol, scyllo-inositol and d-pinitol. At a higher concentration of 1 mM seven inositol derivatives other than myo-inositol were able to stimulate glucose uptake, while at 0.1 mM only d-chiro-inositol, l-chiro-inositol, epi-inositol and muco-inositol could induce glucose uptake, indicating their significant insulin-mimetic activity. Immunoblot analyses revealed that at least d-chiro-inositol, l-chiro-inositol, epi-inositol, muco-inositol and d-pinitol were able to induce translocation of glucose transporter 4 (GLUT4) to plasma membrane not only in L6 myotubes but also in skeletal muscles of rats ex vivo. These results demonstrated that L6 myotubes appeared efficient as an in vitro system to identify inositol derivatives exerting an insulin-like effect on muscle cells depending on the induced translocation of GLUT4.  相似文献   

14.
Of the vitamins tested, inositol was the most effective for erythritol production. To increase erythritol production by Torula sp., inositol and a related compound, phytic acid (myoinositol hexaphosphate), were added to the culture media. Erythritol production in the presence of phytic acid was greater than that in the presence of inositol, due to the synergistic effects of phosphate and inositol. Supplementation with phosphate and inositol increased cell growth, erythritol production, and the activity of erythrose reductase in cells. Inositol was a more effective stimulator of cell growth and erythritol production than was phosphate.  相似文献   

15.
Summary Cells of Brevibacterium ammoniagenes grown under manganese deficient conditions contain less total lipids at the end of the logarithmic growth phase and the phospholipid content of these cells is lower over the whole fermentation period in comparison to those growing where the supply of manganese is sufficient.Phosphatidyl glycerol, cardiolipin, phosphatidyl inositol and phosphatidyl inositol mannoside were identified. There were quantitative, but no qualitative differences in the phospholipid composition. The phosphatidyl inositol mannoside content was greatly lowered under manganese deficiency, whereas the phosphatidyl glycerol and cardiolipin content were greatly increased.  相似文献   

16.
One pair of gustatory sensilla was found on the epipharynx ofBombyx mori larvae, and some morphological and electrophysiological characteristics of the epipharyngeal sensilla were investigated. They are sensilla coeloconica composed of a small papilla with a pore at the tip and a swelling of cuticle encircling the papilla. Three bipolar neurons innervate each sensillum. One neuron is an inositol receptor which responds to inositol only. Another cell responds with action potentials of relatively large amplitude to some feeding deterrent substances, such as strychnine nitrate. The thresholds of these cells for inositol and strychnine nitrate are approximately 10−4 M and 10−7 M, respectively. At least two kinds of spikes can be observed when these sensilla are stimulated with some salts and acids. Dose-response relationships and time courses of responses to inositol and strychnine nitrate were also examined in this study.  相似文献   

17.
Inositol plays a significant role in cellular function and signaling. Studies in yeast have demonstrated an “inositol-less death” phenotype, suggesting that inositol is an essential metabolite. In yeast, inositol synthesis is highly regulated, and inositol levels have been shown to be a major metabolic regulator, with its abundance affecting the expression of hundreds of genes. Abnormalities in inositol metabolism have been associated with several human disorders. Despite its importance, very little is known about the regulation of inositol synthesis and the pathways regulated by inositol in human cells. The current study aimed to address this knowledge gap. Knockout of ISYNA1 (encoding myo-inositol-3-P synthase 1) in HEK293T cells generated a human cell line that is deficient in de novo inositol synthesis. ISYNA1-KO cells exhibited inositol-less death when deprived of inositol. Lipidomic analysis identified inositol deprivation as a global regulator of phospholipid levels in human cells, including downregulation of phosphatidylinositol (PI) and upregulation of the phosphatidylglycerol (PG)/cardiolipin (CL) branch of phospholipid metabolism. RNA-Seq analysis revealed that inositol deprivation induced substantial changes in the expression of genes involved in cell signaling, including extracellular signal-regulated kinase (ERK), and genes controlling amino acid transport and protein processing in the endoplasmic reticulum (ER). This study provides the first in-depth characterization of the effects of inositol deprivation on phospholipid metabolism and gene expression in human cells, establishing an essential role for inositol in maintaining cell viability and regulating cell signaling and metabolism.  相似文献   

18.
Result of the performed electron microscopy cytochemical study was an indirect detection of intracellular localization of inositol 1,4,5-triphosphate according to sites of its binding with specific phosphatase in receptor and secretory cells of epithelium surrounding actinostome of the comb jelly Beroe cucumis. The highest level of the deposit of the enzymatic cytochemical reaction product was revealed in chemoreceptor cells of I type. In all cells of the epithelium as well as in nerve terminals and neuroplexus elements, the following compartments had the highest deposit content: cellular membrane and glycocalyx areas, microtubules, microfilaments, mitochondria, neurotubules, and structures of the synaptic apparatus. The obtained data expand the picture of cytochemical distribution and of the contents of the deposit compatible with localization of components of inositol pathway in receptor cells of the locomotor-sensory system of Beroe cucumis [1, 2] and indicate its essential role in the mechanism of chemosensory transduction.  相似文献   

19.
Inositols are indispensable components of cellular signaling molecules, and impaired cytoplasmic inositol concentrations affect cellular development. Although most cells can synthesize inositol de novo, plasma membrane‐localized inositol uptake systems are indispensable for normal development. Here, we present in‐depth functional analyses of plasma membrane‐localized H+‐inositol symporters from human and from the higher plant Arabidopsis thaliana. Sequence comparisons, structural and phylogenetic analyses revealed that these transporters possess conserved extracellular loop domains that represent homologs of plexins/semaphorin/integrin (PSI) domains from animal type I receptors. In these receptors, PSI domains modulate intracellular signaling via extracellular protein–protein interactions. Comparisons of H+‐inositol symporters with wild type, mutated and truncated PSI domains in different expression systems showed that removal of the entire loop domain increased the Vmax of inositol uptake. Finally, we show that the PSI domains are targets for Ni++ ions that cause a complete loss of transport activity. A possible role of Ni++‐binding to PSI domains in Ni++‐induced carcinogenicity is discussed.  相似文献   

20.
The inositol polyphosphate family of small, cytosolic molecules has a prominent place in the field of cell signalling, and inositol pyrophosphates are the most recent addition to this large family. First identified in 1993, they have since been found in all eukaryotic organisms studied. The defining feature of inositol pyrophosphates is the presence of the characteristic ‘high energy’ pyrophosphate group, which immediately attracted interest in them as possible signalling molecules. In addition to their unique ‘high energy’ pyrophosphate bond, their concentration in the cell is tightly regulated with an extremely rapid turnover. This, together with the history of other inositol polyphosphates, makes it likely that they have an important role in intracellular signalling involving some basic cellular processes. This hypothesis is supported by the surprisingly wide range of cellular functions where inositol pyrophosphates seem to be involved. A seminal finding was that inositol pyrophosphates are able to directly phosphorylate pre‐phosphorylated proteins, thereby identifying an entirely new post‐translational protein modification, namely serine‐pyrophosphorylation. Rapid progress has been made in characterising the metabolism of these molecules in the 15 years since their first identification. However, their detailed signalling role in specific cellular processes and in the context of relevant physiological cues has developed more slowly, particularly in mammalian system. We will discuss inositol pyrophosphates from the cell signalling perspective, analysing how their intracellular concentration is modulated, what their possible molecular mechanisms of action are, together with the physiological consequences of this novel form of signalling. J. Cell. Physiol. 220: 8–15, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号