首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conditions for high production of nisin Z and pediocin during pH-controlled, mixed-strain batch cultures in a supplemented whey permeate medium with Lactococcus lactis subsp. lactis biovar. diacetylactis UL719, a nisin Z producer strain, and variant T5 of Pediococcus acidilactici UL5, a pediocin-producing strain resistant to high concentrations of nisin, were studied. Mixed cultures were performed at 37 °C and pH 5·5 by first inoculating with variant T5 and then with L. diacetylactis UL719 after 8 h incubation, and were compared with single-strain batch cultures. High productions of both nisin Z and pediocin were obtained after 18 or 16 h incubation during mixed cultures, with titres of 3000 and 730 AU ml−1, or 1060 and 1360 AU ml−1, respectively, corresponding to approximately 75 and 55, or 25 and 100 mg l−1 of pure nisin Z and pediocin, respectively. In pure cultures, nisin Z and pediocin productions were higher than in mixed cultures, and maximum activities were obtained after 10 h incubation, with approximately 10 000 AU ml−1 (250 mg l−1 pure nisin Z) and 2500 AU ml−1 (190 mg l−1 pure pediocin). During mixed cultures, significant pediocin degradation was observed in the culture supernatant fluid after 16 h incubation, together with a sharp drop in Ped. acidilactici UL5 cell viability. In the test conditions, the feasibility of producing a nisin/pediocin mixture by mixed-strain fermentation was demonstrated. The bacteriocin mixture produced in a supplemented whey permeate medium could be used as a natural food-grade biopreservative with a broad activity spectrum.  相似文献   

2.
A highly specific antisera was produced in New Zealand white rabbits against nisin Z, a 3400 Da bacteriocin produced by Lactococcus lactis ssp. lactis biovar. diacetylactis UL 719. A dot immunoblot assay was then developed to detect nisin Z in milk and whey. As few as 1·5 10−1 international units per ml (IU ml−1), corresponding to 0·003 μg ml−1 of pure nisin Z, were detected in carbonate-bicarbonate buffer within 6 h using chemiluminescence. When milk and whey samples were tested, approximately 0·155 μg ml−1 (7·9 IU ml−1) of nisin Z was detected. The detection limit obtained was lower than that of traditional methods including microtitration and agar diffusion.  相似文献   

3.
Aim:  To investigate the nisin Z innocuity using normal human gingival fibroblast and epithelial cell cultures, and its synergistic effect with these gingival cells against Candida albicans adhesion and transition from blastospore to hyphal form.
Methods and Results:  Cells were cultured to 80% confluence and infected with C. albicans in the absence or presence of various concentrations of nisin Z. Our results indicate that only high concentrations of nisin Z promoted gingival cell detachment and differentiation. Determination of the LD50 showed that the fibroblasts were able to tolerate up to 80  μ g ml−1 for 24 h, dropping thereafter to 62  μ g ml−1 after 72 h of contact, compared to 160  μ g ml−1 after 24 h, and 80  μ g ml−1 after 72 h recorded by the gingival epithelial cells which displayed a greater resistance to nisin Z. The use of nisin Z even at low concentration (25  μ g ml−1) at appropriate concentrations with gingival cells significantly reduced C. albicans adhesion to gingival monolayer cultures and inhibited the yeast's transition.
Conclusion:  These findings show that when used at non-toxic levels for human cells, nisin Z can be effective against C. albicans adhesion and transition and may synergistically interact with gingival cells for an efficient resistance against C. albicans .
Significance and Impact of the Study:  This study suggests the potential usefulness of nisin Z as an antifungal agent, when used in an appropriate range.  相似文献   

4.
Aims:  The aim of this work was to investigate the germination and inactivation of spores of Bacillus species in buffer and milk subjected to high pressure (HP) and nisin.
Methods and Results:  Spores of Bacillus subtilis and Bacillus cereus suspended in milk or buffer were treated at 100 or 500 MPa at 40°C with or without 500 IU ml−1 of nisin. Treatment at 500 MPa resulted in high levels of germination (4 log units) of B. subtilis spores in both milk and buffer; this increased to >6 logs by applying a second cycle of pressure. Viability of B. subtilis spores in milk and buffer was reduced by 2·5 logs by cycled HP, while the addition of nisin (500 IU ml−1) prior to HP treatment resulted in log reductions of 5·7 and 5·9 in phosphate buffered saline and milk, respectively. Physical damage of spores of B. subtilis following HP was apparent using scanning electron microscopy. Treating four strains of B. cereus at 500 MPa for 5 min twice at 40°C in the presence of 500 IU ml−1 nisin proved less effective at inactivating the spores of these isolates compared with B. subtilis and some strain-to-strain variability was observed.
Conclusions:  Although high levels of germination of Bacillus spores could be achieved by combining HP and nisin, complete inactivation was not achieved using the aforementioned treatments.
Significance and Impact of the Study:  Combinations of HP treatment and nisin may be an appealing alternative to heat pasteurization of milk.  相似文献   

5.
Aims:  The ability to transform Vibrio spp. is limited by the extracellular nuclease that their cells secrete. The reported transformation efficiency of this organism is 102–105 transformants per microgram DNA. We tried different buffers and conditions, aiming to elevate its transformation efficiency.
Methods and Results:  MgCl2 and sucrose are often included in the washing and/or electroporation buffers to stabilize the cell membrane. However, Mg2+ is required for production and activity of the extracellular nuclease. A simple electroporation buffer lacking Mg2+ was found to increase transformation efficiency dramatically, to levels 50-fold more than the buffers containing Mg2+. To maintain the stability of the cell membranes, Mg2+ was replaced with high concentrations of sucrose, from 272 to 408 mmol l−1. With the new buffers, the transformation efficiency of Vibrio parahaemolyticus was increased to 2·2 × 106 transformants per microgram DNA.
Conclusions:  Mg2+ in the buffer adversely affected transformation of V. parahaemolyticus by electroporation. The cell membranes of vibrio can be stabilized by high concentration of sucrose when Mg2+ is absent.
Significance and Impact of the Study:  A greater transformation efficiency can facilitate the genetic analysis of an organism and its pathogenicity. Buffers lacking Mg2+ can be used for other nuclease-producing organisms.  相似文献   

6.
Aims:  To find out the cumulative effect of the nutritional parameters and to enhance the production of jasmonic acid (JA) in static fermentation by Lasiodiplodia theobromae using response surface methodology (RSM).
Method and Results:  Malt extract, sucrose, NaNO3 and MgSO4.7H2O were analysed by a 30-trial central composite design using RSM for optimizing their concentrations in the medium and the effect of their mutual interaction on JA production. Sucrose and NaNO3 were found highly significant in influencing the JA production. Malt extract and MgSO4.7H2O showed an effect on the JA production in interaction with other variables. When the optimum values of the parameters obtained through RSM (19·95 g l−1 malt extract, 50 g l−1 sucrose, 7·5 g l−1 NaNO3 and 3·51 g l−1 MgSO4.7H2O) were applied, 32% increase in JA production (299 mg l−1) was observed in comparison with 225 mg l−1 of JA produced with same media components not analysed by RSM and subsequently validated the statistical model.
Conclusions:  Increase in JA production was achieved by optimizing the nutritional parameters.
Significance and Impact of the Study:  This is the first report of using RSM for optimizing a medium for JA production. It resulted in an increase in JA production without augmentation of costly additives.  相似文献   

7.
Aim:  To investigate the effects of feeding and induction strategies on the production of Bm R1 recombinant antigen.
Methods and Results:  Fed-batch fermentation was studied with respect to the specific growth rate and mode of induction to assess the growth potential of the bacteria in a bioreactor and to produce high yield of Bm R1 recombinant antigen. Cells were grown at a controlled specific growth rate (μset) during pre-induction, followed by constant feeding postinduction. The highest biomass (24·3 g l−1) was obtained during fed-batch process operated at μset of 0·15 h−1, whereby lower μset (0·075 h−1) gave the highest protein production (9·82 mg l−1). The yield of Bm R1 was increased by 1·2-fold upon induction with 1 mmol l−1 IPTG (isopropyl-β- d -thiogalactoside) compared to using 5 mmol l−1 and showed a further 3·5-fold increase when the culture was induced twice at the late log phase.
Conclusions:  Combination of feeding at a lower μset and twice induction with 1 mmol l−1 IPTG yielded the best result of all variables tested, promising an improved method for Bm R1 production .
Significance and Impact of the Study:  This method can be used to increase the production scale of the Bm R1 recombinant antigen to meet the increasing demand for Brugia Rapid, a commercial diagnostic test for detection of brugian filariasis.  相似文献   

8.
Pectinatus frisingensis , a Gram-negative and strictly anaerobic beer spoilage bacterium is sensitive to nisin. An increase in nisin concentration (0 to 1100 IU ml−1) added to the culture medium prolonged the lag phase, and decreased the growth rate of the bacterium. In addition, late exponential cells of P. frisingensis exposed to low concentrations of nisin lost immediately a part of their intracellular K+. Presence of Mg2+ up to 15 mmol l−1 did not protect P. frisingensis from nisin-induced loss of viability and K+ efflux. Potassium leaks were also measured in P. frisingensis late exponential phase cells exposed to combined effects of nisin addition (100–500 IU ml−1), 10 min mild heat-treatment (50 °C) or rapid cooling (2 °C), and pH (4·0 and 6·2). Net K+ efflux from both starving and glucose-metabolizing cells, was more important at pH 6·2, whatever the temperature treatment and nisin addition. Reincubation at 30 °C of P. frisingensis glucose-metabolizing cells exposed to a preliminary combination of nisin addition and mild heat or cooling down treatment, showed that cells exposed to rapid cooling reaccumulated more K+ than heat-treated cells, whatever the pH conditions. A combination of nisin and mild heat-treatment could thus be of interest to prevent P. frisingensis growth in beers.  相似文献   

9.
Aims:  Statistical optimization of medium components for improved chitinase production by Paenibacillus sp. D1.
Methods and Results:  Urea, K2HPO4, chitin and yeast extract were identified as significant components influencing chitinase production by Paenibacillus sp. D1 using Plackett–Burman method. Response surface methodology (central composite design) was applied for further optimization. The concentrations of medium components for improved chitinase production were as follows (g l−1): urea, 0·33; K2HPO4, 1·17; MgSO4, 0·3; yeast extract, 0·65 and chitin, 3·75. This statistical optimization approach led to the production of 93·2 ± 0·58 U ml−1 of chitinase.
Conclusions:  The important factors controlling the production of chitinase by Paenibacillus sp. D1 were identified as urea, K2HPO4, chitin and yeast extract. Statistical approach was found to be very effective in optimizing the medium components in manageable number of experimental runs with overall 2·56-fold increase in chitinase production.
Significance and Impact of the Study:  The present investigation provides a report on statistical optimization of medium components for improved chitinase production by Paenibacillus sp. D1. Paenibacillus species are gram-positive, spore-forming bacteria with several PGPR and biocontrol potentials. However, only few reports concerning mycolytic enzyme production especially chitinases are available. Chitinase produced by Paenibacillus sp. D1 represents new source for biotechnological and agricultural use.  相似文献   

10.
Aim:  Bioaugumentation of low temperature biogas production was attempted by addition of cold-adapted Clostridium and a methanogen.
Methods and Results:  A psychrotrophic xylanolytic acetogenic strain Clostridium sp. PXYL1 growing optimally at 20°C and pH 5·3 and a Methanosarcina strain, PMET1, growing optimally on acetate and producing methane at 15°C were isolated from a cattle manure digester. Anaerobic conversion of xylose at 15°C with the coculture of the two strains was performed, and batch culture methane production characteristics indicated that methanogenesis occurred via acetate through 'acetoclastic' pathway. Stimulation studies were also undertaken to evaluate the effect of exogenous addition of the coculture on biogas yields at 15°C. Addition of 3 ml of PXYL1 at the rate of 12 × 102 CFU ml−1 increased the biogas 1·7-fold (33 l per kg cowdung) when compared to control (19·3 l per kg cowdung) as well as increased the volatile fatty acid (VFA) levels to 3210 mg l−1 when compared to 1140 mg l−1 in controls. Exogenous of addition of 10 ml PMET1 inoculum at the rate of 6·8 ± 102 CFU ml−1 in addition to PXYL1 served to further improve the biogas yields to 46 l kg−1 as well as significantly brought down the VFA levels to 1350 mg l−1.
Conclusions:  Our results suggest that the rate-limiting methanogenic step at low temperatures could be overcome and that biogas yields improved by manipulating the population of the acetoclastic methanogens.
Significance and Impact of the Study:  Stimulation of biomethanation at low temperature by coculture.  相似文献   

11.
Aims:  Optimization of medium components for extracellular protease production by Halobacterium sp. SP1(1) using statistical approach.
Methods and Results:  The significant factors influencing the protease production as screened by Plackett–Burman method were identified as soybean flour and FeCl3. Response surface methodology such as central composite design was applied for further optimization studies. The concentrations of medium components for higher protease production as optimized using this approach were (g l−1): NaCl, 250; KCl, 2; MgSO4, 10; tri-Na-citrate, 1·5; soybean flour, 10 and FeCl3, 0·16. This statistical optimization approach led to production of 69·44 ± 0·811 U ml−1 of protease.
Conclusions:  Soybean flour and FeCl3 were identified as important factors controlling the production of extracellular protease by Halobacterium sp. SP1(1). The statistical approach was found to be very effective in optimizing the medium components in manageable number of experimental runs with overall 3·9-fold increase in extracellular protease production.
Significance and Impact of the Study:  The present study is the first report on statistical optimization of medium components for production of haloarchaeal protease. The study also explored the possibility of using extracellular protease produced by Halobacterium sp. SP1(1) for various applications like antifouling coatings and fish sauce preparation using cheaper raw material.  相似文献   

12.
Mucor circinelloides LU M40 produced 12·2 mU ml−1 of linamarase activity when grown in a 3 l fermenter in the following optimized medium (g l−1 deionized water): pectin, 10·0; (NH4)2SO4,
1·0; KH2PO4, 2·0; Na2HPO4, 0·7; MgSO4.7H2O, 0·5; yeast extract, 1·0; Tween-80,
1·0, added after 48 h of fermentation. The purified linamarase was a dimeric protein with a molecular mass of 210 kDa; the enzyme showed optimum catalytic activity at pH 5·5 and 40 °C and had a wide range (3·0–7·0) of pH stability. The enzyme substrate specificity on plant cyanogenic glycosides was wide; the Km value for linamarin was 2·93 mmol l−1. The addition, before processing, of the fungal crude enzyme to cassava roots facilitated and shortened detoxification; after 24 h of fermentation, all cyanogenic glycosides were hydrolysed.  相似文献   

13.
Aims:  To develop solid-state fermentation system (SSF) for hyper production of tylosin from a mutant γ-1 of Streptomyces fradiae NRRL-2702 and its parent strain.
Methods and Results:  Various agro-industrial wastes were screened to study their effect on tylosin production in SSF. Wheat bran as solid substrate gave the highest production of 2500 μg of tylosin g−1 substrate by mutant γ-1 against parent strain (300 μg tylosin g−1 substrate). The tylosin yield was further improved to 4500 μg g−1 substrate [70% moisture, 10% inoculum (v/w), pH 9·2, 30°C, supplemental lactose and sodium glutamate on day 9]. Wild-type strain displayed less production of tylosin (655 μg of tylosin g−1 substrate) in SSF even after optimization of process parameters.
Conclusion:  The study has shown that solid-state fermentation system significantly enhanced the tylosin yield by mutant γ-1.
Significance and Impact of the Study:  This study proved to be very useful and resulted in 6·87 ± 0·30-fold increase in tylosin yield by this mutant when compared to that of wild-type strain.  相似文献   

14.
Aims:  In the present communication, attempts have been made to regulate the tacrolimus production by supplementing commercial source of carbons and amino acids timely.
Methods and Results:  Tacrolimus production was regulated by supplying vegetable oils and amino acids, individually and in combination. Tacrolimus quantification was done by HPLC. Streptomyces spp. MA6858 B3178 was found to produce 115·3 mg l−1 of tacrolimus. The rotation speed of shake flask, pH of the broth and supply of air were maintained at 7·1, 230 rev min−1 and 2·0 vvm air respectively.
Conclusions:  The effect of carbons on tacrolimus production was noticed to be of diphasic manner. During the first 24 h of culture, monosaccharide is used for the growth of microbe. However, after the lapse of 36 h, addition of soya oil and l -lysine in combination enhanced the tacrolimus production to 115·3 mg l−1. Besides this, pH of broth was also noticed as a critical factor in monitoring tacrolimus biosynthesis.
Significance and Impact of the Study:  The newly isolated mutant Streptomyces spp. MA6858 B3178 having high potential for tacrolimus production as compared to existing data can be well used for the commercialization of tacrolimus.  相似文献   

15.
Aims:  To identify a toxin and its producer isolated from woody material in a building where the occupants experienced serious ill health symptoms.
Methods and Results:  Hyphal extracts of an indoor fungus, identified as the cycloheximide-tolerant species Acremonium exuviarum , inhibited motility of boar spermatozoa (EC50 5 ± 2 μg of crude solids ml−1) and caused cytolysis of murine neuroblastoma cells (MNA) and feline fetal lung cells (FL). The responsible substances were purified and identified as two structurally similar, heat-stable, novel, toxic peptaibols, 1726 Da and 1740 Da, respectively, with amino acid sequences of Acetyl-Phe-Iva/Val-Gln-Aib-Ile-Thr-Leu-Aib-Pro-Aib-Gln-Pro-Aib-(X-X-X)-SerOH and Acetyl-Phe-Iva/Val-Gln-Aib-Ile-Thr-Leu-Val-Pro-Aib-Gln-Pro-Aib-(X-X-X)-SerOH. Purified acrebol inhibited motility of boar sperm, depleted ATP half-content in 1 day (EC50 of 0·1 μg ml−1, 60 nmol l−1) depolarised the mitochondria after 2 days, but did not affect the cellular content in NADH. This indicates mitochondrial toxicity. Plate-grown biomass of A. exuviarum BMB4 contained 0·1–1% (w/w) of acrebol, depending on the culture medium.
Conclusions:  Acrebol paralysed the energy generation of mammalian cells suggesting that mitochondria were its target of action.
Significance and Impact of the Study:  Acremonium exuviarum, as an indoor fungus, is potentially hazardous to health because of the toxic peptaibols that it produces.  相似文献   

16.
Aim:  To study the effect of biosurfactant on aqueous phase solubility and biodegradation of chlorpyrifos.
Methods and Results:  A Pseudomonas sp. (ChlD), isolated from agricultural soil by enrichment culture technique in the presence of chlorpyrifos, was capable of producing biosurfactant (rhamnolipids) and degrading chlorpyrifos (0·01 g l−1). The partially purified rhamnolipid biosurfactant preparation, having a CMC of 0·2 g l−1, was evaluated for its ability to enhance aqueous phase partitioning and degradation of chlorpyrifos (0·01 g l−1) by ChlD strain. The best degradation efficiency was observed at 0·1 g l−1 supplement of biosurfactant, as validated by GC and HPLC studies.
Conclusion:  The addition of biosurfactant at 0·1 g l−1 resulted in more than 98% degradation of chlorpyrifos when compared to 84% in the absence of biosurfactant after 120-h incubation.
Significance and Impact of the Study:  This first report, to the best of our knowledge, on enhanced degradation of chlorpyrifos in the presence of biosurfactant(s), would help in developing bioremediation protocols to counter accumulation of organophosphates to toxic/carcinogenic levels in environment.  相似文献   

17.
Aims:  This work aimed to improve the production of anti-tubercular hirsutellones by the insect pathogenic fungus Hirsutella nivea BCC 2594.
Methods and Results:  The fungus was cultivated under different carbon/nitrogen sources and aerations (shake vs static flasks) to improve the production of the anti-tubercular alkaloids, hirsutellones A–D. Under the basal conditions, static cultivation at 25°C in minimum salt medium, only hirsutellone B and C were detected with maximum concentrations of 139·00 and 18·27 mg l−1. Substitution of fructose for glucose and peptone for yeast extract increased the titres of hirsutellones A, B and C about two- to threefold. However, hirsutellone D was not detected in this medium. Culture agitation induced the production of hirsutellone D. As a result, the significant amounts of hirsutellones A–D were obtained with the concentration of 29·93, 169·63, 22·65 and 15·71 mg l−1 within 15 days.
Conclusions:  Improved titres of hirsutellones in H. nivea BCC 2549 were achieved with an agitated (200 rev min−1) fructose–peptone medium at 25°C.
Significance and Impact of the Study:  Improved yields of hirsutellones B–D will enable medicinal chemistry modifications leading to a development of a potential candidate for tuberculosis therapy.  相似文献   

18.
Aims:  This paper investigates a selection-based acclimation strategy for improving the performance and stability of aerobic granules at a high chloroanilines loading.
Methods and Results:  The experiments were conducted in a sequencing airlift bioreactor (SABR) to develop aerobic granules fed with chloroanilines (ClA). The evolution of aerobic granulation was monitored using image analysis and scanning electron microscopy, and PCR–DGGE analysis of microbial community was performed. The sludge granulation was apparently developed by decreased settling time and gradual increased ClA loading to 0·8 kg m−3 day−1. A steady-state performance of the granular SABR was reached at last, as evidenced by biomass concentration of 6·3 g l−1 and constant ClA removal efficiency of 99·9%. The mature granules had a mean size of 1·55 mm, minimal settling velocity of 68·4 m h−1, specific ClA degradation rate of 0·181 g gVSS−1 day−1. Phylogenetic analysis of aerobic ClA-degrading granules confirmed the dominance of β - , γ -Proteobacteria and Flavobacteria.
Conclusions:  The chosen operating strategy involving step increase in ClA loading and enhancement of major selection pressures was successful in cultivating the aerobic ClA-degrading granules.
Significance and Impact of the Study:  This research could be helpful for improving the stability of aerobic granules via optimizing operating conditions and developing economic feasible full-scale granular bioreactor.  相似文献   

19.
Aims:  The source and routes of diarrhoeagenic Escherichia coli (DEC) have not been clarified because it is difficult to detect these organisms in samples with numerous coliform bacteria. We have developed multiplex real-time PCR assays for exhaustive detection of DEC.
Methods and Results:  Primers and TaqMan probes were designed to amplify and quantify one gene ( eae , stx1 , stx2 , elt , est , virB , aggR , astA, and afaB ) from each of seven pathotypes of DEC, in duplex or triplex reactions under the same PCR cycling conditions. Specificity was confirmed using 860 strains including 88 DEC strains. The fluorescence threshold cycle and DNA concentrations correlated with decision coefficients of more than 0·99. Subsequently, meat samples and enrichment broths were spiked with DEC and the assays used to detect the genes. The detection limits varied from 7·1 × 102 to 1·1 × 104 CFU ml−1, depending on the target genes. All meat samples spiked with a variety of DEC (more than 10 CFU 10 g−1) were found to be positive by the method.
Conclusions:  The present system allows for the efficient and simultaneous determination of various DEC pathotypes.
Significance and Impact of the Study:  This system makes epidemiological investigations for DEC sensitive and quick, and is a useful tool to clarify the source and routes of DEC.  相似文献   

20.
Aims:  To evaluate the effectiveness of organic acids and supercritical carbon dioxide (SC-CO2) treatments as well as their combined effect for the reduction of nonpathogenic Escherichia coli and three pathogenic bacteria in fresh pork.
Methods and Results:  The different treatment conditions were as follows: (i) treatment with acetic (1%, 2% or 3%) or lactic acid (1%, 2% or 3%) only, (ii) treatment with SC-CO2 at 12 MPa and 35°C for 30 min only and (iii) treatment with 3% acetic or lactic acid followed by treatment with SC-CO2. Within the same organic acid concentration, the lactic and acetic acid treatments had similar reductions. For the combined treatment of lactic acid and SC-CO2, micro-organism levels were maximally reduced, ranging from 2·10 to 2·60 log CFU cm−2 ( E. coli , 2·58 log CFU cm−2; Listeria monocytogenes , 2·60 log CFU cm−2; Salmonella typhimurium , 2·33 log CFU cm−2; E. coli O157:H7, 2·10 log CFU cm−2).
Conclusions:  The results of this study indicate that the combined treatments of SC-CO2 and organic acids were more effective at destroying foodborne pathogens than the treatments of SC-CO2 or organic acids alone.
Significance and Impact of the Study:  The combination treatment of SC-CO2 and organic acids may be useful in the meat industry to help increase microbial safety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号