首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Flow cytometric measurements of total DNA content, cell cycle distribution, and bromodeoxyuridine (BrdUrd) uptake were made in rat Walker-256 carcinoma cells. After both in vivo and in vitro pulse labelling with BrdUrd, Walker-256 tumor cells were stained with propidium iodide (PI) to estimate the total DNA content and a monoclonal antibody against BrdUrd to estimate the relative amount of cells in S phase. BrdUrd-labelled single cell suspensions were harvested at different time intervals to determine the movement of these cells within the cell cycle. To increase BrdUrd uptake, fluorodeoxyuridine (FDU), a thymidine antagonist, was also applied in vivo and in vitro. The results indicated exponential growth characteristics for this tumor between days 5 and 8 after implantation. Tumor doubling times, derived from changes in tumor volume in vivo and from the increase in cell number in vitro were similar. The mean time for DNA synthesis was estimated from the relative movement of BrdUrd-labelled cells towards G2. The percent of cells labelled with BrdUrd and the DNA synthesis time were similar regardless of the mode of BrdUrd administration. This study demonstrates that BrdUrd labelling of rat Walker-256 carcinoma cells in vitro yields kinetic estimates of tumor proliferation during exponential growth similar to those with the administration of BrdUrd in the intact tumor-bearing rat.  相似文献   

2.
Summary BrdU-Hoechst flow cytometry was used to investigate the effects of DNA hypomethylation, induced by treatment with 5-azacytidine (5AC), on cell proliferation. When human fibroblast-like cells derived from skin and amniotic fluid were exposed to 5AC during three successive cell cycles, their clone-forming ability was diminished after removal of the drug. Treated cells were rendered quiescent by culture with low serum in the absence of the drug. Upon serum stimulation, they showed a diminished fraction of proliferating cells, which exhibited a prolonged transit through the S and G2 phase of the cell cycle, and a permanent arrest within the G2 compartment. This pattern of disturbed cell proliferation may in part explain the changes in replication banding pattern reported in the literature. Cytogenetic analysis of 5AC-treated cells revealed numerous endomitoses and tetraploid metaphases indicating a disturbed chromosome cycle in association with these cell kinetic perturbations.  相似文献   

3.
This report describes a mathematical model of cell proliferation for simulation of bivariate DNA/bromodeoxyuridine (BrdUrd) distributions. The model formulates the change with time in the frequency of cells with any DNA content and in the amount of incorporated BrdUrd, according to given cytokinetic parameters, i.e., durations and dispersions of cell cycle phases and DNA synthesis rate during S-phase. We have applied this model to sequential DNA/BrdUrd distributions measured for Chinese hamster ovary cells asynchronously grown in vitro, 1) for 30 min in 10 microM BrdUrd followed by growth in BrdUrd-free medium for 0 to 24 h, or 2) during continuous incubation in 3 microM BrdUrd plus 30 microM thymidine for 2 to 24 h. The matches between the experimental and simulated distributions give the G1, S, G2M, and total cell cycle durations (and coefficients of variation) of 5.6 h (0.08), 7.0 h (0.07), 1.4 h (0.16), and 14.0 h (0.05), respectively. The model is shown to be useful for quantitative interpretation of the bivariate distributions.  相似文献   

4.
The effects of ultraviolet light on cellular DNA replication were evaluated in an asynchronous Chinese hamster ovary cell population. BrdUrd incorporation was measured asa function of cell-cycle position, using an antibody against bromodeoxyuridine (BrdUrd) and dual parameter flow cytometric analysis. After exposure to UV light, there was an immediate reduction ( 50%) of BrdUrd incorporation in S phase cells, with most of the cells of the population being affected to a similar degree. At 5 h after UV, a population of cells with increased BrdUrd appeared as cells that were in G1 phase at the time of irradiation entered S phase with apparently increased rates of DNA synthesis. For 8 h after UV exposure, incorporation of BrdUrd by the original S phase cells remained constant, whereas a significant portion of original G1 cells possessed rates of BrdUrd incorporation surpassing even those of control cells. Maturation rates of DNA synthesized immediately before or after exposure by alkaline elution, were similar. Therefore, DNA synthesis measured in the short pulse by anti-BrdUrd fluorescence after exposure to UV light was representative of genomic replication. Anti-BrdUrd measurements after DNA damage provide quantitative and qualitative information of cellular rates of DNA synthesis especially in instances where perturbation of cell-cycle progression is a dominant feature of the damage. In this study, striking differences of subsequent DNA synthesis rates between cells in G1 or S phase at the time of exposure were revealed.  相似文献   

5.
B Kirkhus  O P Clausen 《Cytometry》1990,11(2):253-260
Hairless mice were injected intraperitoneally with bromodeoxyuridine (Brd-Urd). Basal cells were isolated from epidermis, fixed in 70% ethanol, and prepared for bivariate BrdUrd/DNA flow cytometric (FCM) analysis. Optimum detection of incorporated BrdUrd in DNA was obtained by combining pepsin digestion and acid denaturation. The cell loss was reduced to a minimum by using phosphate-buffered saline containing Ca2+ and Mg2+ to neutralize the acid. The percentage of cells in S phase and the average uptake of BrdUrd per labelled cell in eight consecutive windows throughout the S phase were measured after pulse labelling at intervals during a 24 h period. Furthermore, the cell cycle progression of a pulse-labelled cohort of cells was followed up to 96 h after BrdUrd injection. In general the results from both experiments were in good agreement with previous data from 3H-thymidine labelling studies. The percentage of cells in S phase was highest at night and lowest in the afternoon, whereas the average uptake of BrdUrd per labelled cell showed only minor circadian variations. There were no indications that BrdUrd significantly perturbed normal epidermal growth kinetics. A cell cycle time of about 36 h was observed for the labelled cohort. Indications of heterogeneity in traverse through G1 phase were found, and the existence of slowly cycling or temporarily resting cells in G2 phase was confirmed. There was, however, no evidence of a significant population of temporarily resting cells in the S phase. Bivariate DNA/keratin FCM analysis revealed a high purity of basal cells in the suspensions and indicated that the synthesis of the differentiation-keratin K10 was turned on only in G1 phase and after the last division.  相似文献   

6.
Mitotic cells could be well discriminated from the cells in the G1-, S- and G2-phases of the cell cycle using pulse labeling of S-phase cells with bromodeoxy-uridine (BrdUrd) and staining of the cells for incorporated BrdUrd and total DNA content. Unlabeled G2- and M-phase cells could be measured as two separate peaks according to propidium iodide fluorescence. M-phase cells showed lower propidium iodide fluorescence emission compared to G2-phase cells. The fluorescence difference of M- and G2-phase cells was caused by the different thermal denaturation of their DNA. Best separation of M- and G2-phase cells was obtained after 30-50 min heat treatment at 95 degrees C. Mitotic index could be measured if no unlabeled S-phase cells were present in the cell culture. With additional measurements of 90 degree scatter and/or forward scatter signals, mitotic cells could be clearly discriminated from both unlabeled G2- and S-phase cells. The correct discrimination (about 99%) of mitotic cells from interphase cells was verified by visual analysis of the nuclear morphology after selective sorting. Unlabeled and labeled mitotic cells could be observed as pulse-labeled cells progressed through the cell cycle. We conclude that this modified BrdUrd/DNA technique using prolonged thermal denaturation and the simultaneous measurement of scatter signals may offer additional information especially in the presence of BrdUrd-unlabeled S-phase cells.  相似文献   

7.
The effect of glutamine on A549 cells exposed to moderate hyperoxia   总被引:4,自引:0,他引:4  
The use of high oxygen concentrations is frequently necessary in the treatment of acute respiratory distress syndrome (ARDS) and bronchopulmonary dysplasia (BPD). High oxygen concentrations, however, are detrimental to cell growth and cell survival. Glutamine (Gln) may be protective to cells during periods of stress and recently has been shown to increase survival in A549 cells exposed to lethal concentrations of oxygen (95% O2). We found that supplemental Gln enhances cell growth in A549 cells exposed to moderate concentrations of oxygen (60% O2). We therefore evaluated the effect of moderate hyperoxia on the cell cycle distribution of A549 cells. At 48 h there was no significant difference in the cell cycle distribution between 2 mM Gln cells in 60% O2 and 2 mM cells in room air. Furthermore, 2 mM Gln cells in 60% O2 had stable protein levels of cyclin B1 consistent with ongoing cell proliferation. In contrast, at 48 h, cells not supplemented with glutamine (Gln-) in 60% O2 had evidence of growth arrest by both flow cytometry (increased percentage of G1 cells) and by decreased protein levels of cyclin B1. G1 growth arrest in the Gln- cells exposed to 60% O2 was not, however, associated with induction of p21 protein. At 72 and 96 h, Gln- cells in 60% O2, began to demonstrate a partial loss of G1 checkpoint regulation and an increase in apoptosis, indicating an increased sensitivity to oxygen toxicity. Glutathione (GSH) concentrations were then measured. 2 mM Gln cells in 60% O2 were found to have higher concentrations of GSH compared to Gln- cells in 60% O2, suggesting that Gln confers protection to the cell during exposure to hyperoxia through up-regulation of GSH. When cells in 60% O2 were given higher concentrations of Gln (5 and 10 mM), cell growth at 96 h was increased compared to cells grown in 2 mM Gln (P<0.04). Clonal survival was also increased in cells exposed 60% O2 and supplemented with higher concentrations of Gln compared to Gln- cells in 60% O2. These studies suggest that supplemental glutamine may improve cell growth and cell viability and therefore may be beneficial to the lung during exposure to moderate concentrations of supplemental oxygen.  相似文献   

8.
Summary Chinese hamster ovary cells were synchronized into purified populations of viable G1-, S-, G2-, and M-phase cells by a combination of methods, including growth arrest, aphidicolin block, cell cycle progression, mitotic shake-off, and centrifugal elutriation. The DNA content and bromodeoxyuridine (BrdUrd) labeling index were measured in each purified fraction by dual-parameter flow cytometry. The cell cycle distributions determined from the DNA measurements alone (single parameter) were compared with those calculated from both DNA and BrdUrd data (dual parameter). The results show that highly purified cells can be obtained using these methods, but the assessed purity depends on the method of cell cycle analysis. Using the single versus dual parameter measurement to determine cell cycle distributions gave similar results for most phases of the cell cycle, except for cells near the transition from G1- to S-phase and S- to G2-phase. There the BrdUrd labeling index determined by flow cytometry was more sensitive for detecting small amounts of DNA synthesis. As an alternative to flow cytometry, a simple method of measuring BrdUrd labeling index on cell smears was used and gave the same result as flow cytometry. Measuring both DNA content and DNA synthesis improves characterization of synchronized cell populations, especially at the transitions in and out of S-phase, when cells are undergoing dramatic shifts in biochemical activity.  相似文献   

9.
This report describes a method by which mitotic cells were isolated from nonsynchronized Cloudman melanoma cells that had been pulse labeled with 5-bromo-2'-deoxyuridine (BrdUrd) and double-stained with a fluoresceinated monoclonal antibody to BrdUrd and with propidium iodide (PI). In initial experiments, melanoma cells were first pulse labeled with BrdUrd, treated with prostaglandin E1 (PGE1 10 micrograms/m1) or vehicle (0.1% ethanol) for up to 24 hours, then stained with anti-BrdUrd and PI. PGE1-treated cells monitored at 3-hour intervals were observed to migrate from S phase to G2 phase, then, enigmatically, back into the late S phase region of the distribution. In other experiments, cells treated with PGE1 were pulse labeled with BrdUrd at the end of the treatment period and harvested. In these experiments, there was a small, discrete subpopulation of cells within the late S phase region of the DNA distribution that was negative for anti-BrdUrd. This subpopulation of cells was sorted and examined by light microscopy. We observed that 95% of these BrdUrd-negative "S phase" cells were mitotic cells. Since mitotic cells and G2 cells have equivalent amounts of DNA, the reduced red fluorescence exhibited by these cells may be due to a greater sensitivity to denaturation, which has been described for DNA of mitotic cells, and would account for the phenomenon of cells appearing to move "backwards" in the cell cycle. This report indicates that although the BrdUrd/PI method can further define the cell cycle into four compartments, it can also lead to over-estimation of S phase cells in kinetic studies because of contaminating mitotic cells.  相似文献   

10.
Abstract. To analyse the putative role of methylation of cytosine residues in the nuclear DNA as a regulatory step during cellular ageing, we incubated ageing human amniotic fluid derived fibroblast-like cells and non-ageing NIH-3T3 cells with 5-azacytidine. BrdUrd/Hoechst and acridine orange (AO) flow cytometry was used to compare the effects of the base analogue on cell proliferation and cell differentiation. In NIH-3T3 cultures, 96 h exposures to 4 μM 5-azacytidine caused diminished cell proliferation due to cell arrest in the G1 compartments of the second and third cell cycles of serum stimulated cells. The exit from the G0/G1 compartment was not affected. The 5-azacytidine induced cell kinetic disturbances were unstable in NIH-3T3 cultures, such that pre-treated cells reverted to normal cell cycle transit within 2–3 days after termination of treatment. In contrast, 5-azacytidine pre-treated amniotic fluid derived fibroblast-like cell cultures showed persistently elevated G2 phase arrests and delayed G0/G1 phase exit kinetics, which explain the premature cessation of proliferation observed in these primary cultures. In both cell systems, 5-azacytidine exposed cultures showed elevated numbers of G1 phase cells with increased RNA content as revealed by AO flow cytometry. Again, this effect was reversible in NIH-3T3 cells but not in amniotic fluid derived fibroblast-like cells. These contrasting responses to 5-azacytidine are likely to reflect intrinsic differences in methylation patterns or de novo methylase activity between ageing cell strains and non-ageing cell lines.  相似文献   

11.
We have utilized monoclonal antibody against BrdUrd to detect sister-chromatid exchanges in CHO cells. This technique allows detection of SCEs at very low levels of BrdUrd incorporation. At incorporation level of 0.5%, a frequency of about 2 SCEs/cell/cycle was found. In a UV-sensitive mutant (43-3B) which has an increased spontaneous frequency of SCEs, it is found that this increase is due to incorporated BrdUrd. In MMS- and MMC-treated cells, an influence of BrdUrd on the frequencies of induced SCEs was found only when high concentrations of mutagens were employed.  相似文献   

12.
Retroviruses establish productive infection only in proliferating cells. Macrophages are often considered to be non-proliferating in vitro yet are susceptible to HIV-1 infection. This has led to the conclusion that HIV-1 can establish infection independent of host cell proliferation. We here report that a small proportion of macrophages does have proliferative capacity. A comparable small fraction of monocyte derived macrophages (MDM) supported productive HIV-1 infection as demonstrated in limiting dilution culture. Fluorescence activated cell sorting on the basis of incorporation of BrdUrd, a thymidine analog, and subsequent PCR analysis revealed the presence of proviral DNA only in the BrdUrd positive cell fraction with DNA synthesizing activity. To identify which phase of cell cycle is required for establishment of productive infection, growth arrest in G1 or G1/S phase prior to inoculation was performed. gamma-Irradiation, which arrests primary cells in G1, prevented both cell proliferation and establishment of productive infection in MDM. Treatment of MDM with aphidicolin, a specific inhibitor of DNA polymerase alpha and delta which arrests cells in G1/S phase of the cell cycle, also inhibited DNA synthesis but did not prevent establishment of productive infection which is completely analogous to observations in T cells. Our data thus indicate that not cell division itself but cellular conditions that coincide with cell proliferation are apparently indispensable for establishment of productive infection.  相似文献   

13.
Prostaglandins (PGs) E1 and E2 stimulate tyrosinase activity and suppress the proliferation of Cloudman S91 melanoma cells by altering their progression through the cell cycle. Prostaglandin E1 and PGE2 have prolonged or residual effects on melanoma cells. Cells treated for 5 or 24 hours with 10 micrograms/ml PGE1 or cells treated for 8 or 24 hours with 10 micrograms/ml PGE2 demonstrated decreased proliferation and increased tyrosinase activity for 48 hours after removal of the PGs. The effects of PGs on the cell cycle were investigated by determining total DNA content in cells stained with propidium iodide (PI) and analyzed by a fluorescence activated cell sorter (FACS). Prostaglandin E1 blocked cells in G2 phase after 5 hours of treatment, corresponding to when inhibition of proliferation was first evident. Similarly, after 9 hours of treatment with PGE2, more cells were in late S, early G2 phase and less in G1 than their control counterparts. Also, melanoma cells were pulse-labeled with 5-bromo-2'-deoxyuridine (BrdUrd) prior to or at the end of PG treatment and then stained with a fluoresceinated monoclonal antibody to BrdUrd, and with PI. This allows one to observe how BrdUrd-labeled S-phase cells cycle with time. Both PGE1 and PGE2 inhibit proliferation by blocking cells in G2 phase of the cell cycle. The PG-induced block in G2 may be required by melanoma cells to synthesize mRNA and proteins that are essential for stimulation of tyrosinase activity. Ultrastructurally, only a subpopulation of the cells treated with PGE1 or PGE2 contained more mature melanosomes than control cells.  相似文献   

14.
The microenvironmental changes in the bone marrow, spleen and liver during progression of the transplantable promyelocytic leukaemia in the Brown Norwegian rat (BNML) have been studied. We used flow cytometry to estimate cellular hypoxia and proliferation based on in vivo pulse-labelling with a mixture of 2-nitroimidazole linked to theophylline (NITP) and bromodeoxyuridine (BrdUrd). The leukaemic cells were identified with the RM124 antibody. In rats inoculated with leukaemic cells the fraction of RM124+ cells was significantly increased from day 20 onwards in the spleen and from day 27 in the bone marrow and liver, reaching a level of 65-87% in these organs at day 32. At day 32, the NITP+ fraction of RM124+ cells had increased significantly in the bone marrow and spleen to 88% and 90%, respectively. The corresponding fractions of NITP+ normal cells reached 63% and 65%, respectively. From day 13 to day 32, the DNA-synthesizing (BrdUrd+) fraction of RM124+ cells in the bone marrow decreased significantly from 52% to 25%, and of normal cells from about 20% to 6%. In the bone marrow and spleen at day 27 and 32, the S-phase and G2/M-phase fractions according to DNA content were higher for the NITP+ than for the NITP- cells. This could partly be explained by an impaired cell cycle progression due to hypoxia. Nevertheless, we found indications of leukaemic cells that were simultaneously labelled with NITP and BrdUrd, in the bone marrow and spleen. These latter findings suggest that in contrast to normal cells some of the leukaemic cells can proliferate even during hypoxia, and this subpopulation may consequently renew and expand the leukaemic cell load.  相似文献   

15.
Proliferation and hypoxia affect the efficacy of radiotherapy, but radiation by itself also affects the tumor microenvironment. The purpose of this study was to analyze temporal and spatial changes in hypoxia, proliferation and apoptosis after irradiation (20 Gy) in cells of a murine adenocarcinoma tumor line (C38). The hypoxia marker pimonidazole was injected 1 h before irradiation to label cells that were hypoxic at the time of irradiation. The second hypoxia marker, CCI-103F, and the proliferation marker BrdUrd were given at 4, 8 and 28 h after irradiation. Apoptosis was detected by means of activated caspase 3 staining. After immunohistochemical staining, the tumor sections were scanned and analyzed with a semiautomatic image analysis system. The hypoxic fraction decreased from 22% in unirradiated tumors to 8% at both 8 h and 28 h after treatment (P < 0.01). Radiation did not significantly affect the fraction of perfused vessels, which was 95% in unirradiated tumors and 90% after treatment. At 8 h after irradiation, minimum values for the BrdUrd labeling index (LI) and maximum levels of apoptosis were detected. At 28 h after treatment, the BrdUrd labeling and density of apoptotic cells had returned to pretreatment levels. At this time, the cell density had decreased to 55% of the initial value and a proportion of the cells that were hypoxic at the time of irradiation (pimonidazole-stained) were proliferating (BrdUrd-labeled). These data indicate an increase in tumor oxygenation after irradiation. In addition, a decreased tumor cell density without a significant change in tumor blood perfusion (Hoechst labeling) was observed. Therefore, it is likely that in this tumor model the decrease in tumor cell hypoxia was caused by reduced oxygen consumption.  相似文献   

16.
A flow cytometric method has recently been developed using biotinylated dUTP (b-dUTP) in a reaction catalyzed by terminal deozynucleotidyl transferase (TdT) to identify the endonuclease-induced DNA strand breaks occurring during apoptosis. Counterstaining of DNA makes it possible to relate apoptosis to cell cycle position or DNA index. In the present study, we compared this method with one using digoxigenin-conjugated dUTP (d-dUTP) to label apoptotic cells. The discrimination of apoptotic from nonapoptotic cells was similar when incorporation of d-dUTP was compared with b-dUTP. Both techniques resulted in a 20-30 fold increase in staining of apoptotic over nonapoptotic cells although somewhat less background fluorescence was observed with the d-dUTP. Direct labeling with fluo-resceinated dUTP (f-dUTP) was less sensitive in detecting DNA strand breaks, but had the advantage of simplicity. The principle of labeling DNA strand breaks using TdT was also employed to identify DNA replicating cells. To this end, the cells were incubated in the presence of BrdUrd, then exposed to UV light to selectively photolyse DNA containing the incorporated BrdUrd. DNA strand breaks resulting from the photolysis were then labeled with b-dUTP or d-dUTP. This approach is an alternative to immunocytochemical detection of BrdUrd incorporation, but unlike the latter does not require prior DNA denaturation, thus can be applied when the denaturation step must be avoided. The method was sensitive enough to recognize DNA synthesizing cells that were incubated with BrdUrd for only 5 min, the equivalent of replication of less than 1% of the cell's genome. The discrimination between apoptotic vs. BrdUrd incorporating-cells is based on different extractability of DNA following cell fixation. This method can be applied to analyze both cell proliferation (DNA replication) and death (by apoptosis) in a single measurement.  相似文献   

17.
Cumene hydroperoxide (Chp), a lipophilic peroxide, and hydroxy-nonenal (HNE), a breakdown product of lipid peroxides, were used as model compounds to assess the effects of lipid peroxidation upon cell proliferation. Amniotic fluid fibroblastlike (AFFL) cells and human diploid skin-derived (HDFL) cells were cultured with the two model compounds and cell proliferation was assayed via bromodeoxyuridine-Hoechst flow cytometry. At low doses Chp elicited an accumulation of cells in the S and G2 phase, while at higher doses the fraction of nonproliferating cells increased as well. Low doses of HNE caused an accumulation of cells in the G1 and G2 phase, whereas an additional increase of cells in S phase and in the nonproliferating fraction was found at an elevated concentration. A delay of onset of proliferation was obtained with both Chp and HNE. Permanent arrests in the S, G2, and G1 compartment are provoked by Chp only when Chp was applied together with serum. HNE, to the contrary, elicited a permanent arrest in the G2 and the G1 compartment even if added to quiescent cell cultures. Additionally, HNE caused a combination of a prolongation of the G1 phase of the cell cycle and an arrest in this compartment, which is reminiscent of cell differentiation. HDFL cells were much more sensitive toward Chp than were AFFL cells, but both cell types showed similar sensitivities toward HNE. We conclude that lipophilic peroxides exert toxic effects upon cell proliferation distinct from the pattern elicited by aldehydic breakdown products of lipid peroxides. The pattern of cell cycle arrest induced by Chp and HNE makes it unlikely that Chp and HNE, or related products of lipid peroxidation, are responsible for the limitation of the proliferative life span of human fibroblasts in culture.  相似文献   

18.
A flow cytometric method has recently been developed using biotinylated dUTP (b-dUTP) in a reaction catalyzed by terminal deozynucleotidyl transferase (TdT) to identify the endonuclease-induced DNA strand breaks occurring during apoptosis. Counterstaining of DNA makes it possible to relate apoptosis to cell cycle position or DNA index. In the present study, we compared this method with one using digoxigenin-conjugated dUTP (d-dUTP) to label apoptotic cells. The discrimination of apoptotic from nonapoptotic cells was similar when incorporation of d-dUTP was compared with b-dUTP. Both techniques resulted in a 20–30 fold increase in staining of apoptotic over nonapoptotic cells although somewhat less background fluorescence was observed with the d-dUTP. Direct labeling with fluo-resceinated dUTP (f-dUTP) was less sensitive in detecting DNA strand breaks, but had the advantage of simplicity. The principle of labeling DNA strand breaks using TdT was also employed to identify DNA replicating cells. To this end, the cells were incubated in the presence of BrdUrd, then exposed to UV light to selectively photolyse DNA containing the incorporated BrdUrd. DNA strand breaks resulting from the photolysis were then labeled with b-dUTP or d-dUTP. This approach is an alternative to immunocytochemical detection of BrdUrd incorporation, but unlike the latter does not require prior DNA denaturation, thus can be applied when the denaturation step must be avoided. The method was sensitive enough to recognize DNA synthesizing cells that were incubated with BrdUrd for only 5 min, the equivalent of replication of less than 1% of the cell's genome. The discrimination between apoptotic vs. BrdUrd incorporating-cells is based on different extractability of DNA following cell fixation. This method can be applied to analyze both cell proliferation (DNA replication) and death (by apoptosis) in a single measurement.  相似文献   

19.
Fanconi anemia (FA) is an autosomal recessive disorder involving progressive pancytopenia, skeletal malformations, and a predisposition to leukemia. Thein vitrogrowth of FA fibroblasts is impaired, due to a defective G2 phase traverse of the cell cycle. Analyzing the cell cycle of lymphoid cell lines (LCLs) obtained from peripheral blood of FA patients by transformation with Epstein–Barr virus, we found a similar G2 phase defect, which was dependent upon the oxygen concentration. In addition, FA cells exhibited hypersensitivity towardcis-dichlorodiammineplatinum and mitomycin C, and moderate sensitivity towardtrans-dichlorodiammineplatinum. FA cells, however, showed no elevated sensitivity toward paraquat, an intracellular generator of superoxide radicals, or cumene hydroperoxide, a model organic peroxide. Chelating iron with low concentrations ofo-phenanthrolin improved cell proliferation and G2 phase transit of FA cells at 20% oxygen, but little at 5% oxygen. LCL cultures from healthy subjects were inhibited in their proliferation rate at all concentrations ofo-phenanthrolin. Exposure to excess iron, on the other hand, was very toxic to FA cells at 20%, but less toxic at 5% oxygen. In conclusion, the FA mutation leads to a cell cycle defect, which is expressed in cultures of lymphoid cells from FA patients, and involves hypersensitivity toward bifunctional alkylating agents, oxygen, and iron.  相似文献   

20.
Techniques for the measurement of bromodeoxyuridine (BrdUrd) positive cells generally include either microscopic evaluation of paraffin embedded sections or measurements on cell suspensions using a fluorescent activated cell sorter. The accuracy of these measurements and their correlations can be affected by a number of technical and intrinsic tumor factors. Extrinsic parameters including degree of necrosis and tumor growth fraction are less easily analyzed in BrdUrd stained material. Retinoblastoma tumor cell cycling was prospectively studied in 11 children using in vivo and one child using in vitro BrdUrd. BrdUrd measurements were made by staining cell suspensions or sections of paraffin embedded tumor and analyzing by microscopy. Approximately 14% of viable cells were in the synthesis-phase of the cell cycle. The correlation between BrdUrd in cell suspensions and BrdUrd in paraffin embedded sections did not reach significance (r = 0.48). DNA analysis of these tumors was also performed using flow cytometry. Nine tumors were found to have a normal diploid DNA content, one had a G1 peak below the diploid control, two had a G1 peak above the diploid control, and one had two G1 peaks (a diploid and a hyperdiploid peak). There was no correlation between abnormal DNA content and the percent of cells in synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号