首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alkaline pH induced conformational changes in different domains of bovine serum albumin were studied by using domain specific ligands: chloroform, bilirubin and diazepam for domains I, II and III respectively. The effect of alkaline pH on the secondary structure of BSA was monitored by far-UV CD in the range 250 nm to 200 nm. The pH profiles of BSA in the alkaline region showed a two-step change, one corresponding to N<-->B transition (pH 7.5 to 9.0) and the other to B --> U (pH 11.0 to 13.5). Binding of chloroform decreased continuously on increasing pH, whereas binding of diazepam, remained unchanged up to pH 9 and decreased thereafter. In contrast, binding of bilirubin gradually increased up to pH 11.0 and decreased thereafter reaching a value similar to one obtained with native BSA at pH 11.5. Above pH 11.5, bilirubin binding decreased and was abolished completely at pH 12.5. In the pH region 7.5 to 11.0, a continuous decrease in chloroform binding (pH 7.5 to 9.5) and a late decrease in diazepam binding (pH 9.5 to 11.0) suggested major loss of native conformation of domain I followed by domain III during alkaline induced unfolding of BSA. However, a significant increase in bilirubin binding showed a favorable conformational rearrangement in domain II in this pH region (pH7.5 to 11.0). Further, a nearly complete abolishment of bilirubin binding to BSA and significant loss of secondary structure around pH 12.5 indicated that domain II was more resistant to alkaline pH and unfolds only at extreme alkalinity. Taken together, these data suggest that unfolding of three domains of BSA follow the following order of susceptibility towards alkaline denaturation of BSA domain I>domain III>domain II.  相似文献   

2.
The multidomain structure of soybean LOX1 was examined over the pH range 1-12. Lipoxygenase-1 activity was reversible over broad pH range of 4-10 due to the reversibility of conformational states of the molecule. Below pH 4.0, due to collapse in hydrophobic interactions, the enzyme unfolded to an irreversible conformation with the properties of molten globule state with a mid point of transition at pH 2.4. This intermediate state lost iron irreversibly. In alkaline pH at 11.5, LOX1 underwent partial unfolding with the exposure of cysteine residues with subsequent oxidation of a pair of cysteine residues in the C-terminal domain and this intermediate showed some properties of molten globule state and retained 35% of activity. Beyond pH 12.0, the enzyme was completely inactivated irreversibly due to irreversible conformational changes. The pH-dependent urea-induced unfolding of LOX1 suggested that LOX1 was more stable at pH 7.0 and least stable at pH 9.0. Furthermore, the urea-induced unfolding of LOX1 indicated that the unfolding was biphasic due to pH-dependent domain interactions and involved sequential unfolding of domains. The loss of enzyme activity at pH 4. 0 and 7.0 occurred much earlier to unfolding of the C-domain at all pHs studied. The combination of urea-induced unfolding measurements and limited proteolysis experiments suggested that at pH 4.0, the domains in LOX1 were less interactive and existed as tightly folded units. Furthermore, these results confirmed the contribution of ionic interactions in the interdomain contacts.  相似文献   

3.
The betagamma-crystallin superfamily consists of a class of homologous two-domain proteins with Greek-key fold. Protein S, a Ca(2+)-binding spore-coat protein from the soil bacterium Myxococcus xanthus exhibits a high degree of sequential and structural homology with gammaB-crystallin from the vertebrate eye lens. In contrast to gammaB-crystallin, which undergoes irreversible aggregation upon thermal unfolding, protein S folds reversibly and may therefore serve as a model in the investigation of the thermodynamic stability of the eye-lens crystallins. The thermal denaturation of recombinant protein S (PS) and its isolated domains was studied by differential scanning calorimetry in the absence and in the presence of Ca(2+) at varying pH. Ca(2+)-binding leads to a stabilization of PS and its domains and increases the cooperativity of their equilibrium unfolding transitions. The isolated N-terminal and C-terminal domains (NPS and CPS) obey the two-state model, independent of the pH and Ca(2+)-binding; in the case of PS, under all conditions, an equilibrium intermediate is populated. The first transition of PS may be assigned to the denaturation of the C-terminal domain and the loss of domain interactions, whereas the second one coincides with the denaturation of the isolated N-terminal domain. At pH 7.0, in the presence of Ca(2+), where PS exhibits maximal stability, the domain interactions at 20 degrees C contribute 20 kJ/mol to the overall stability of the intact protein.  相似文献   

4.
The thermal unfolding of the wild-type Cro repressor, its disulfide-bridged mutant Cro-V55C (with the Val-55 --> Cys single amino acid substitution), and a CNBr-fragment (13-66)2 of Cro-V55C was studied by Fourier transform infrared spectroscopy and dynamic light scattering. The combined approach reveals that thermal denaturation of Cro-WT and Cro-V55C proceeds in two steps through equilibrium unfolding intermediates. The first thermal transition of the Cro-V55C dimer involves the melting of the alpha-helices and the short beta-strand localized in the N-terminal part of the molecule. This event is accompanied by the formation of tetramers, and also impacts on the hydrogen-bonding interactions of the C-terminal beta-strands. The beta-sheet formed by the C-terminal parts of each polypeptide chain is the major structural feature of the intermediate state of Cro-V55C and unfolds during a second thermal transition, which is accompanied by the dissociation of the tetramers. Cutting of 12 amino acids in the N-terminal region is sufficient to prevent the formation of alpha-helical structure in the CNBr-fragment of Cro-V55C, and to induce tetramerization already at room temperature. The tetramers may persist over a broad temperature range, and start to dissociate only upon thermal unfolding of the beta-sheet structure formed by the C-terminal regions. The wild-type protein is a dimer at room temperature and at protein concentrations of 1.8-5.8 mg/mL. At lower concentrations, the dimers are stable until the onset of thermal unfolding, which is accompanied by the dissociation of the dimers into monomers. At higher protein concentrations, the unfolding is more complex and involves the formation of tetramers at intermediate temperatures. At these intermediate temperatures, the Cro-WT has lost all of its alpha-helical structure and also most of its native beta-sheet structure. Upon further temperature increase, a tendency for an intermolecular association of the beta-strands is observed, which may result in irreversible beta-aggregation at high protein concentrations.  相似文献   

5.
Zaiss K  Jaenicke R 《Biochemistry》1999,38(14):4633-4639
The folding of phosphoglycerate kinase (PGK) from the hyperthermophilic bacterium Thermotoga maritima and its isolated N- and C-terminal domains (N1/2 and C1/2) was characterized by differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy. At pH 3.0-4.0, reversible thermal denaturation of TmPGK occurred below 90 degrees C. The corresponding peaks in the partial molar heat capacity function were fitted by a four-state model, describing three well-defined unfolding transitions. Using CD spectroscopy, these are ascribed to the disruption of the domain interactions and subsequent sequential unfolding of the two domains. The isolated N-terminal domain unfolds reversibly between pH 3.0 and pH 4.0 to >90% and at pH 7.0 to about 70%. In contrast, the isolated engineered C-terminal domain only shows reversible thermal denaturation between pH 3.0 and pH 3.5. Neither N1/2 nor C1/2 obeys the simple two-state mechanism of unfolding. Instead, both unfold via a partially structured intermediate. In the case of N1/2, the intermediate exhibits native secondary structure and perturbed tertiary structure, whereas for C1/2 the intermediate could not be defined with certainty.  相似文献   

6.
The unfolding thermodynamics of the circular enterocin protein AS-48, produced by Enterococcus faecalis, has been characterized by differential scanning calorimetry. The native structure of the 70-residue protein is extremely thermally stable. Thus, at pH 2.5 and low ionic strength thermal denaturation occurs under equilibrium at 102 degrees C, while the unfolded state irreversibly aggregates at neutral and alkaline pH. Calorimetric data analysis shows that the specific enthalpy change upon unfolding is unusually small and the heat capacity change is quite normal for a protein of this size, whereas the Gibbs energy change at 25 degrees C is relatively high. At least part of this high stability might be put down to entropic constraints induced by the circular organization of the polypeptide chain.  相似文献   

7.
The thermal denaturation of streptokinase from Streptococcus equisimilis (SK) together with that of a set of fragments encompassing each of its three domains has been investigated using differential scanning calorimetry (DSC). Analysis of the effects of pH, sample concentration and heating rates on the DSC thermograms has allowed us to find conditions where thermal unfolding occurs unequivocally under equilibrium. Under these conditions, pH 7.0 and a sample concentration of less than approximately 1.5 mg x mL(-1), or pH 8.0, the heat capacity curves of intact SK can be quantitatively described by three independent two-state transitions, each of which compares well with the two-state transition observed for the corresponding isolated SK domain. The results indicate that each structural domain of SK behaves as a single cooperative unfolding unit under equilibrium conditions. At pH 7.0 and high sample concentration, or at pH 6.0 at any concentration investigated, the thermal unfolding of domain A was accompanied by the time-dependent formation of aggregates of SK. This produces a severe deformation of the DSC curves, which become concentration dependent and kinetically controlled, and thus precludes their proper analysis by standard deconvolution methods. A simple model involving time-dependent, high-order aggregation may account for the observed effects. Limited-proteolysis experiments suggest that in the aggregates the N-terminal segment 1-63 and the whole of SK domain C are at least partially structured, while domain B is highly unstructured. Unfolding of domain A, under conditions where the N-terminal segment 1-63 has a high propensity for beta sheet structure and a partially formed hydrophobic core, gives rise to rapid aggregation. It is likely that this region is able to act as a nucleus for the aggregation of the full-length protein.  相似文献   

8.
In contrast to single-domain proteins unfolding of larger multi-domain proteins is often irreversible. In a comparative case study on three different multi-domain proteins (phosphoglycerate kinase: PGK and two homologous alpha-amylases: TAKA and BLA) we investigated properties of unfolded states and their ability to fold back into the native state. For this purpose guanidine hydrochloride, alkaline pH, and thermal unfolded states were characterized. Structural alterations upon unfolding and refolding transitions were monitored using fluorescence and CD spectroscopy. Static and dynamic light scattering was employed to follow aggregation processes. Furthermore, proper refolding was also investigated by enzyme activity measurements. While for PGK at least partial reversible unfolding transitions were observed in most cases, we found reversible unfolding for TAKA in the case of alkaline pH and GndHCl induced unfolding. BLA exhibits reversible unfolding only under conditions with high concentrations of protecting osmolytes (glycerol), indicating that aggregation of the unfolded state is the main obstacle to achieve proper refolding for this protein. Structural properties, such as number and size of domains, secondary structure contents and compositions within domains, and domain topology were analyzed and considered in the interpretation of differences in refolding behavior of the investigated proteins.  相似文献   

9.
Spider dragline silk proteins, spidroins, have a tripartite composition; a nonrepetitive N-terminal domain, a central repetitive region built up from many iterated poly-Ala and Gly rich blocks, and a C-terminal nonrepetitive domain. It is generally believed that the repetitive region forms intermolecular contacts in the silk fibers, while precise functions of the terminal domains have not been established. Herein, thermal, pH, and salt effects on the structure and aggregation and/or polymerization of recombinant N- and C-terminal domains, a repetitive segment containing four poly-Ala and Gly rich coblocks, and combinations thereof were studied. The N- and C-terminal domains have mainly alpha-helical structure, and interestingly, both form homodimers. Dimerization of the end domains allows spidroin multimerization independent of the repetitive part. Reduction of an intersubunit disulfide in the C-terminal domain lowers the thermal stability but does not affect dimerization. The repetitive region shows helical secondary structure but appears to lack stable folded structure. A protein composed of this repetitive region linked to the C-terminal domain has a mainly alpha-helical folded structure but shows an abrupt transition to beta-sheet structures upon heating. At room temperature, this protein self-assembles into macroscopic fibers within minutes. The secondary structures of none of the domains are altered by pH or salt. However, high concentrations of phosphate affect the tertiary structure and accelerate the aggregation propensity of the repetitive region. Implications of these results for dragline spidroin behavior in solution and silk fiber formation are discussed.  相似文献   

10.
The isolated N-terminal 1-69 domain of the 434-phage repressor, R69, and its covalently linked (head-to-tail and tail-to-tail) dimers have been studied by differential scanning microcalorimetry (DSC) and CD. At neutral solvent conditions the R69 domain maintains its native structure, both in isolated form and within the dimers. The stability of the domain depends highly upon pH within the acidic range, thus at pH 2 and low ionic strength R69 is already partially unfolded at room temperature. The thermodynamic parameters of unfolding calculated from the DSC data are typical for small globular proteins. At neutral pH and moderate ionic strength, the domains of the dimers behave as two independent units with unfolding parameters similar to those of the isolated domain, which means that linking two R69 domains, either by a long peptide linker or by a designed C-terminal disulfide bridge, does not induce any cooperation between them.  相似文献   

11.
Sato S  Kuhlman B  Wu WJ  Raleigh DP 《Biochemistry》1999,38(17):5643-5650
The folding and unfolding behavior of the multidomain ribosomal protein L9 from Bacillus stearothermophilus was studied by a novel combination of stopped-flow fluorescence and nuclear magnetic resonance (NMR) spectroscopy. One-dimensional 1H spectra acquired at various temperatures show that the C-terminal domain unfolds at a lower temperature than the N-terminal domain (Tm = 67 degrees C for the C-terminal domain, 80 degrees C for the N-terminal domain). NMR line-shape analysis was used to determine the folding and unfolding rates for the N-terminal domain. At 72 degrees C, the folding rate constant equals 2980 s-1 and the unfolding rate constant equals 640 s-1. For the C-terminal domain, saturation transfer experiments performed at 69 degrees C were used to determine the folding rate constant, 3.3 s-1, and the unfolding rate constant, 9.0 s-1. Stopped-flow fluorescence experiments detected two resolved phases: a fast phase for the N-terminal domain and a slow phase for the C-terminal domain. The folding and unfolding rate constants determined by stopped-flow fluorescence are 760 s-1 and 0.36 s-1, respectively, for the N-terminal domain at 25 degrees C and 3.0 s-1 and 0.0025 s-1 for the C-terminal domain. The Chevron plots for both domains show a V-shaped curve that is indicative of two-state folding. The measured folding rate constants for the N-terminal domain in the intact protein are very similar to the values determined for the isolated N-terminal domain, demonstrating that the folding kinetics of this domain is not affected by the rest of the protein. The remarkably different rate constants between the N- and C-terminal domains suggest that the two domains can fold and unfold independently. The folding behavior of L9 argues that extremely rapid folding is not necessarily functionally important.  相似文献   

12.
Hemocyanin (Hc) is a type-3 copper protein, containing dioxygen-binding active sites consisting of paired copper atoms. In the present study the thermal unfolding of the Hc from the marine mollusc Rapana thomasiana (RtH) has been investigated by combining differential scanning calorimetry, Fourier transform infrared (FTIR) and UV-vis absorption spectroscopy. Two important stages in the unfolding pathway of the Hc molecule were discerned. A first event, with nonmeasurable heat absorption, occurring around 60°C, lowers the binding of dioxygen to the type-3 copper groups. This pretransition is reversible and is ascribed to a slight change in the tertiary structure. In a second stage, with midpoint around 80°C, the protein irreversibly unfolds with a loss of secondary structure and formation of amorphous aggregates. Experiments with the monomeric structural subunits, RtH1 and RtH2, indicated that the heterogeneity in the process of thermal denaturation can be attributed to the presence of multiple 50kDa functional units with different stability. In accordance, the irreversible unfolding of a purified functional unit (RtH2-e) occurred at a single transition temperature. At slightly alkaline pH (Tris buffer) the C-terminal β-sheet rich domain of the functional unit starts to unfold before the α-helix-rich N-terminal (copper containing) domain, triggering the collapse of the global protein structure. Even around 90°C some secondary structure is preserved as shown by the FTIR spectra of all investigated samples, confirming the high thermostability of molluscan Hc.  相似文献   

13.
Human and bovine gammaS-crystallin (HgammaS and BgammaS) and their isolated N- and C-terminal domains were cloned and expressed as recombinant proteins in E. coli. HgammaS and BgammaS are found to be authentic according to their spectral and hydrodynamic properties. Both full-length proteins and isolated domains are monomeric and exhibit high thermal and pH stabilities. The thermodynamic characterization made use of chemically and thermally-induced equilibrium unfolding transitions at varying pH. In spite of its exemplary two-domain structure, gammaS-crystallin does not show bimodal unfolding characteristics. In the case of BgammaS, at pH 7.0, the C-terminal domain is less stable than the N-terminal one, whereas for HgammaS the opposite holds true. Differential scanning calorimetry confirms the results of chemically-induced equilibrium unfolding transitions. Over the whole pH range between 2.0 and 11.5, HgammaS-crystallin and its isolated domains (HgammaS-N and HgammaS-C) follow the two-state model. The two-state unfolding of the intact two-domain protein points to the close similarity of the stabilities of the constituent domains. Obviously, interactions between the domains do not contribute significantly to the overall stability of gammaS-crystallin. In contrast, the structurally closely related gammaB-crystallin owes much of its extreme stability to domain interactions.  相似文献   

14.
The thermal unfolding of myosin rod, light meromyosin (LMM), and myosin subfragment 2 (S-2) was studied by differential scanning calorimetry (DSC) over the pH range of 6.5–9.0 in 0.5M KCl and either 0.20M sodium phosphate or 0.15M sodium pyrophosphate. Two rod samples were examined: one was purified by Sephadex G-200 without prior denaturation (native rod), and the other was purified by a cycle of denaturation-renaturation followed by Sephacryl S-200 chromatography (renatured rod). There were clearly distinguishable differences in the calorimetric behavior of these two samples. At pH 7.0 in phosphate the DSC curves of native rod were deconvoluted into six endothermic two-state transitions with melting temperatures in the range of 46–67°C and a total enthalpy of 4346 kJ/mol. Under identical conditions the melting profile of LMM was resolved into five endothermic peaks with transition temperatures in the range of 45–66°C, and the thermal profile of long S-2 was resolved into two endotherms, 46 and 57°C. Transition 4 observed with native rod was present in the deconvoluted DSC curve for long S-2, but absent in the DSC curve for LMM. This transition was identified with the high-temperature transition detected with long S-2 and attributed to the melting of the coiled-coil α-helical segment of subfragment 2 (short S-2). The low-temperature transition of long S-2 was attributed to the unfolding of the hinge region. The smallest transition temperatures observed for all three fragments were 45–46°C. It is suggested that the most unstable domain in rod (domain 1) responsible for the 46°C transition includes both the hinge region, which is the C-terminal segment of long S-2, and a short N-terminal segment of LMM. This domain, accounting for 21% of the rod structure, contains the S-2/LMM junction, and upon proteolytic cleavage yields the C-terminal and N-terminal ends of long S-2 and LMM, respectively. Over the pH range of 6.5–7.5, the observed specific heat of denaturation of rod was approximately equal to the sum of the specific heats of LMM and S-2. This finding provides an additional argument for the existence of independent domains in myosin rod.  相似文献   

15.
The stability of three forms of glucoamylase from Aspergillus niger has been investigated by differential scanning and isothermal titration calorimetry: Glucoamylase 1 (GA1), which consists of a catalytic domain and a starch-binding domain (SBD) connected by a heavily O-glycosylated linker region; glucoamylase 2 (GA2), which lacks SBD; and a proteolytically cleaved glucoamylase (GACD), which contains the catalytic domain and part of the linker region. The structures of the catalytic domain with part of the linker region and of SBD are known from crystallography and NMR, respectively, but the precise spatial arrangement of the two domains in GA1 is unknown. To investigate the stability of the three glucoamylase forms, we unfolded the enzymes thermally by differential scanning calorimetry (DSC). Aggregation occurs upon heating GA1 and GA2 at pH values between 2.5 and 5.0, whereas no aggregation is observed at higher pH (5.5-7.5). At all pH values, the catalytic domain of GA1 and GA2 unfolds irreversibly, while SBD unfolds reversibly in the pH range 5. 5-7.5 where aggregation does not occur. The unfolding of the catalytic domain of all glucoamylase forms seems to follow an irreversible one-step mechanism with no observable reversible intermediates on the experimental time scale. SBD of GA1 unfolds reversibly, and the ratio between the van't Hoff and calorimetric enthalpies is 1.4 +/- 0.1. Assignment of peaks of the DSC profile to the domains at pH 7.5 is achieved by using two different ligands: Acarbose, a very strong inhibitor that binds exclusively to the catalytic domain, and beta-cyclodextrin, a small starch analogue of which 2 molecules bind solely to the two binding sites present in SBD. Differences are seen in the unfolding processes of GA1 and GA2 since the former unfolds with one peak at all pH values, while the calorimetric trace of the latter can be resolved into more peaks depending on pH and the chemical composition of the buffers. In general, peaks corresponding to unfolding of GA2 are more complex than the peaks of GA1 and GACD. Some part of GA2 unfolds before the rest of the molecule which may correspond to the linker region or a particular early unfolding part of the catalytic domain. This leads to the conclusion that the structure of the GA2 molecule has a larger cooperative unfolding unit and is less stable than the structures of GA1 and GACD and that the C-terminal part of the linker region has a destabilizing effect on the catalytic domain.  相似文献   

16.
Unfolding, inactivation and dissociation of the lectin from Artocarpus hirsuta seeds were studied by chemical (guanidine hydrochloride, GdnHCl) and thermal denaturation. Conformational transitions were monitored by intrinsic fluorescence and circular dichroism. The gradual red shift in the emission maxima of the native protein from 335 to 356 nm, change in the ellipticity at 218 nm and simultaneous decrease in the sugar binding activity were observed with increasing concentration of GdnHCl in the pH range between 4.0 and 9.0. The unfolding and inactivation by GdnHCl were partially reversible. Gel filtration of the lectin in presence of 1-6 m GdnHCl showed that the protein dissociates reversibly into partially unfolded dimer and then irreversibly into unfolded inactive monomer. Thermal denaturation was irreversible. The lectin loses activity rapidly above 45 degrees C. The exposure of hydrophobic patches, distorted secondary structure and formation of insoluble aggregates of the thermally inactivated protein probably leads to the irreversible denaturation.  相似文献   

17.
The role of calcium ions in the regulation of tissue transglutaminase is investigated by experimental approaches and computer modeling. A three-dimensional model of the transglutaminase is computed by homology building on crystallized human factor XIII and is used to interpret structural and functional results. The molecule is a prolate ellipsoid (6.2 x 4.2 x 11 nm) and comprises four domains, assembled pairwise into N-terminal and C-terminal regions. The active site is hidden in a cleft between these regions and is inaccessible to macromolecular substrates in the calcium-free form. Protein dynamics simulation indicates that these regions move apart upon addition of calcium ions, revealing the active site for catalysis. The protein dimensions are consistent with results obtained with small-angle neutron and X-ray scattering. The gyration radius of the protein (3 nm) increases in the presence of calcium ions (3.9 nm), but it is virtually unaffected in the presence of GTP, suggesting that only calcium ions can promote major structural changes in the native protein. Proteolysis of an exposed loop connecting the N-terminal and C-terminal regions is linearly correlated with enzyme inactivation and prevents the calcium-induced conformational changes.  相似文献   

18.
In our earlier communication on urea denaturation of bovine serum albumin (BSA), we showed significant unfolding of domain III along with domain I prior to intermediate formation around 4.6-5.2 M urea based on the binding results of domain specific ligands:chloroform, bilirubin and diazepam for domains I, II and III, respectively. Here, we present our results on the salt-induced refolding of the two partially folded states of BSA obtained at 4.5 M urea and at pH 3.5, respectively. Both these states were characterized by significant unfolding of both domains I and III as indicated by decreased binding of chloroform and diazepam, respectively. Salt-induced stabilization of partially folded states of BSA was accompanied by nearly complete refolding of both domains I and III as the binding isotherms of chloroform and diazepam obtained in presence of approximately 1.0 M KCl were nearly identical to that obtained with native BSA at pH 7.4. From these observations, it can be concluded that the anion binding sites on serum albumin are not only confined to domain III (C-terminal region) but few sites are also present on domain I (or N-terminal region) of the protein.  相似文献   

19.
The thermal denaturation of recombinant human growth hormone (rhGH) was studied by differential scanning calorimetry and circular dichroism spectroscopy (CD). The thermal unfolding is reversible only below pH 3.5, and under these conditions a single two-state transition was observed between 0 and 100 degrees C. The magnitudes of the deltaH and deltaCp of this transition indicate that it corresponds to a partial unfolding of rhGH. This is also supported by CD data, which show that significant secondary structure remains after the unfolding. Above pH 3.5 the thermal denaturation is irreversible due to the aggregation of rhGH upon unfolding. This aggregation is prevented in aqueous solutions of alcohols such as n-propanol, 2-propanol, or 1,2-propanediol (propylene glycol), which suggests that the self-association of rhGH is caused by hydrophobic interactions. In addition, it was found that the native state of rhGH is stable in relatively high concentrations of propylene glycol (up to 45% v/v at pH 7-8 or 30% at pH 3) and that under these conditions the thermal unfolding is cooperative and corresponds to a transition from the native state to a partially folded state, as observed at acidic pH in the absence of alcohols. In higher concentrations of propylene glycol, the tertiary structure of rhGH is disrupted and the cooperativity of the unfolding decreases. Moreover, the CD and DSC data indicate that a partially folded intermediate with essentially native secondary structure and disordered tertiary structure becomes significantly populated in 70-80% propylene glycol.  相似文献   

20.
Hemocyanin (Hc) is a type-3 copper protein, containing dioxygen-binding active sites consisting of paired copper atoms. In the present study the thermal unfolding of the Hc from the marine mollusc Rapana thomasiana (RtH) has been investigated by combining differential scanning calorimetry, Fourier transform infrared (FTIR) and UV–vis absorption spectroscopy. Two important stages in the unfolding pathway of the Hc molecule were discerned. A first event, with nonmeasurable heat absorption, occurring around 60 °C, lowers the binding of dioxygen to the type-3 copper groups. This pretransition is reversible and is ascribed to a slight change in the tertiary structure. In a second stage, with midpoint around 80 °C, the protein irreversibly unfolds with a loss of secondary structure and formation of amorphous aggregates. Experiments with the monomeric structural subunits, RtH1 and RtH2, indicated that the heterogeneity in the process of thermal denaturation can be attributed to the presence of multiple 50 kDa functional units with different stability. In accordance, the irreversible unfolding of a purified functional unit (RtH2-e) occurred at a single transition temperature. At slightly alkaline pH (Tris buffer) the C-terminal β-sheet rich domain of the functional unit starts to unfold before the α-helix-rich N-terminal (copper containing) domain, triggering the collapse of the global protein structure. Even around 90 °C some secondary structure is preserved as shown by the FTIR spectra of all investigated samples, confirming the high thermostability of molluscan Hc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号