首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
These experiments were designed to study skeletal muscle pathology resulting from eccentric-biased exercise in rats. The effects on the muscles of running on a treadmill on a 0 degrees incline (similar amounts of concentric and eccentric contractions), down a 16 degrees incline (primarily eccentric contractions), and up a 16 degrees incline (primarily concentric contractions) at 16 m . min-1 for 90 min were assessed by following postexercise changes in 1) plasma creatine kinase and lactate dehydrogenase activities, 2) glucose-6-phosphate dehydrogenase (G-6-PDase) activity (bio- and histochemically) in the physiological extensor muscles, and 3) histological appearance of the muscles. The data indicate the following. 1) Whereas all exercise protocols resulted in elevations of plasma enzymes immediately after running, only eccentric exercise caused late phase elevations 1.5-2 days postexercise. 2) Significant increases in muscle G-6-PDase activity, which were always associated with accumulations of mononuclear cells, always occurred within some muscles of each extensor group 1-3 days following downhill and uphill running and did not occur following level running; the increases in activity were usually of lower magnitude in the muscles of uphill runners than in those of downhill runners; the deeply located, predominantly slow-twitch muscles were most affected by both down- and uphill running. 3) Muscle histology demonstrated localized disruption of normal banding patterns of some fibers immediately after exercise and accumulations of macrophages in the interstitium and in some (less than 5%) muscle fibers by 24 h postexercise in the deep slow muscles of the antigravity groups. Although the data generally indicated that eccentric exercise causes greater injury to the muscles, questions remain.  相似文献   

2.
Eccentric exercise often produces severe muscle damage, whereas concentric exercise of a similar load elicits a minor degree of muscle damage. The cellular events initiating muscle damage are thought to include an increase in cytosolic Ca. It was hypothesized that eccentric muscle activity in humans would lead to a larger degree of cell damage and increased intracellular Ca accumulation in skeletal muscle than concentric activity would. Furthermore, possible differences between men and women in muscle damage were investigated following step exercise. Thirty-three healthy subjects (18 men and 15 women) participated in a 30-minute step exercise protocol involving concentric contractions with 1 leg and eccentric contractions with the other leg. Muscle Ca content, maximal voluntary contraction (MVC), and muscle enzymes in the plasma were measured. In a subgroup of the subjects, T2 relaxation time was measured by magnetic resonance imaging. No significant changes were found in muscle Ca content in vastus lateralis biopsy specimens in women or in men. Following step exercise, MVC decreased in both legs of both genders. The women had a significantly larger strength decrease in the eccentric leg than the men had on postexercise day 2 (p < 0.01). Plasma creatine kinase increased following step exercise, with a sevenfold higher response in women than in men on day 3 (p < 0.001). The women, but not the men, had an increase in T2 relaxation time in the eccentrically working adductor magnus muscle, peaking on day 3 (75%) (p < 0.001). In conclusion, step exercise does not lead to Ca accumulation in the vastus lateralis but does induce muscle damage preferentially in the eccentrically working muscles, considerably more in women than in men. This indicates that gender-specific step training programs may be warranted to avoid excessive muscle damage.  相似文献   

3.
The purpose of this study was to determine the effect of eccentric exercise on the ability to exert steady submaximal forces with muscles that cross the elbow joint. Eight subjects performed two tasks requiring isometric contraction of the right elbow flexors: a maximum voluntary contraction (MVC) and a constant-force task at four submaximal target forces (5, 20, 35, 50% MVC) while electromyography (EMG) was recorded from elbow flexor and extensor muscles. These tasks were performed before, after, and 24 h after a period of eccentric (fatigue and muscle damage) or concentric exercise (fatigue only). MVC force declined after eccentric exercise (45% decline) and remained depressed 24 h later (24%), whereas the reduced force after concentric exercise (22%) fully recovered the following day. EMG amplitude during the submaximal contractions increased in all elbow flexor muscles after eccentric exercise, with the greatest change in the biceps brachii at low forces (3-4 times larger at 5 and 20% MVC) and in the brachialis muscle at moderate forces (2 times larger at 35 and 50% MVC). Eccentric exercise resulted in a twofold increase in coactivation of the triceps brachii muscle during all submaximal contractions. Force fluctuations were larger after eccentric exercise, particularly at low forces (3-4 times larger at 5% MVC, 2 times larger at 50% MVC), with a twofold increase in physiological tremor at 8-12 Hz. These data indicate that eccentric exercise results in impaired motor control and altered neural drive to elbow flexor muscles, particularly at low forces, suggesting altered motor unit activation after eccentric exercise.  相似文献   

4.
The efficacy of a modified fibre optic transducer-tipped catheter system for measuring intramuscular pressures during exercise was determined. A microcapillary infusion technique using a catheter was employed as the standard of comparison due to its established dynamic properties. Pressures were measured in the tibialis anterior muscle of six healthy adults at rest before exercise, during isometric and concentric exercise, and at rest after exercise. The fibre optic system measured contraction pressures equal to the microcapillary infusion technique during all phases of the exercise protocols but recorded a lower relaxation pressure during isometric exercise and a lower rest pressure following 20 min of concentric exercise. Negative relaxation pressures were recorded by the fibre optic system for two subjects during continuous concentric exercise. It is hypothesized that a piston effect, due to the sliding of muscle fibres at the catheter tip following a contraction, rendered falsely low pressures during relaxation and that this artefact was reflected in the subsequent rest pressure following exercise. The larger volume (157 mm3) and area (3.49 mm2) of the fibre optic catheter in the muscle made it more prone to this effect than the conventional catheter (39 mm3 and 0.87 mm2, respectively). The fibre optic system may be preferred when recording the muscle contraction pressures during complex limb movements but should not be used when assessing the relaxation pressures or the pressure at rest following exercise.  相似文献   

5.
Five men performed submaximal isometric, concentric or eccentric contractions until exhaustion with the left arm elbow flexors at respectively 50%, 40% and 40% of the prefatigued maximal voluntary contraction force (MVC). Subsequently, and at regular intervals, the surface electromyogram (EMG) during 30-s isometric test contractions at 40% of the prefatigued MVC and the muscle performance parameters (MVC and the endurance time of an isometric endurance test at 40% prefatigued MVC) were recorded. Large differences in the surface EMG response were found after isometric or concentric exercise on the one hand and eccentric exercise on the other. Eccentric exercise evoked in two of the three EMG parameters [the EMG amplitude (root mean square) and the rate of shift of the EMG mean power frequency (MPF)] the greatest (P less than 0.001) and longest lasting (up to 7 days) response. The EMG response after isometric or concentric exercise was smaller and of shorter duration (1-2 days). The third EMG parameter, the initial MPF, had already returned to its prefatigued value at the time of the first measurement, 0.75 h after exercise. The responses of EMG amplitude and of rate of MPF shift were similar to the responses observed in the muscle performance parameters (MVC and the endurance time). Complaints of muscle soreness were most frequent and severe after the eccentric contractions. Thus, eccentric exercise evoked the greatest and longest lasting response both in the surface EMG signal and in the muscle performance parameters.  相似文献   

6.
Maximal and submaximal activation level of the right knee-extensor muscle group were studied during isometric and slow isokinetic muscular contractions in eight male subjects. The activation level was quantified by means of the twitch interpolation technique. A single electrical impulse was delivered, whatever the contraction mode, on the femoral nerve at a constant 50 degrees knee flexion (0 degrees = full extension). Concentric, eccentric (both at 20 degrees /s velocity), and isometric voluntary activation levels were then calculated. The mean activation levels during maximal eccentric and maximal concentric contractions were 88.3 and 89.7%, respectively, and were significantly lower (P < 0.05) with respect to maximal isometric contractions (95.2%). The relationship between voluntary activation levels and submaximal torques was linearly fitted (P < 0.01): comparison of slopes indicated lower activation levels during submaximal eccentric compared with isometric or concentric contractions. It is concluded that reduced neural drive is present during 20 degrees /s maximal concentric and both maximal and submaximal eccentric contractions. These results indicate a voluntary activation dependency on both tension levels and type of muscular actions in the human knee-extensor muscle group.  相似文献   

7.
It has been suggested that the effects of old age on the ability to resist fatigue may be task dependent. To test one aspect of this hypothesis, we compared the neuromuscular responses of nine young (26 +/- 4 yr, mean +/- SD) and nine older (72 +/- 4 yr) healthy, relatively sedentary men to intermittent isometric (3 min, 5 s contract/5 s rest) and dynamic (90 at 90 degrees /s) maximum voluntary contractions (MVC) of the ankle dorsiflexor muscles. To assess the mechanisms of fatigue (defined as the ratio of postexercise MVC to preexercise MVC), we also measured isometric central activation ratios (CAR), tetanic torque, contractile properties, and compound muscle action potentials before and immediately after exercise. Because dynamic contractions are more neurally complex and metabolically demanding than isometric contractions, we expected an age-related fatigue resistance observed during isometric exercise to be absent during dynamic exercise. In contrast, older men (O) fatigued less than young (Y) during both isometric (O = 0.77 +/- 0.07, Y = 0.66 +/- 0.02, mean +/- SE; P < 0.01) and dynamic (O = 0.45 +/- 0.07, Y = 0.27 +/- 0.02; P = 0.04) contractions (ratio of postexercise to preexercise MVC), with no evidence of peripheral activation failure in either group. We observed no obvious limitations in central activation in either group, as assessed using isometric CAR methods, after both isometric and dynamic contractions. Preexercise half-time of tetanic torque relaxation, which was longer in O compared with Y, was linearly associated with fatigue resistance during both protocols (r = 0.62 and 0.66, P < or = 0.004, n = 18). These results suggest that relative fatigue resistance is enhanced in older adults during both isometric and isokinetic contractions and that age-related changes in fatigue may be due largely to differences within the muscle itself.  相似文献   

8.
This study examined the time course of glycogen accumulation in skeletal muscle depleted by concentric work and subsequently subjected to eccentric exercise. Eight men exercised to exhaustion on a cycle ergometer [70% of maximal O2 consumption (VO2max)] and were placed on a carbohydrate-restricted diet. Approximately 12 h later they exercised one leg to subjective failure by repeated eccentric action of the knee extensors against a resistance equal to 120% of their one-repetition maximum concentric knee extension force (ECC leg). The contralateral leg was not exercised and served as a control (CON leg). During the 72-h recovery period, subjects consumed 7 g carbohydrate.kg body wt-1.day-1. Moderate soreness was experienced in the ECC leg 24-72 h after eccentric exercise. Muscle biopsies from the vastus lateralis of the ECC and CON legs revealed similar glycogen levels immediately after eccentric exercise (40.2 +/- 5.2 and 47.6 +/- 6.4 mmol/kg wet wt, respectively; P greater than 0.05). There was no difference in the glycogen content of ECC and CON legs after 6 h of recovery (77.7 +/- 7.9 and 85.1 +/- 4.9 mmol/kg wet wt, respectively; P greater than 0.05), but 18 h later, the ECC leg contained 15% less glycogen than the CON leg (90.2 +/- 8.2 vs. 105.8 +/- 8.9 mmol/kg wet wt; P less than 0.05). After 72 h of recovery, this difference had increased to 24% (115.8 +/- 8.0 vs. 153.0 +/- 12.2 mmol/kg wet wt; P less than 0.05). These data confirm that glycogen accumulation is impaired in eccentrically exercised muscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
This study aimed to investigate the motor unit firing property immediately after concentric or eccentric contraction exercise. Eighteen healthy men performed repetitive maximal isokinetic knee extension exercises with only concentric or eccentric contraction until they exerted less than 80% of the baseline strength. Before and after the fatiguing exercise, high-density surface electromyography of the vastus lateralis was recorded during submaximal ramp-up isometric contraction and individual motor units were identified. Only motor units that could be tracked before and after exercise were analyzed. Muscle cross-sectional area of the vastus lateralis was measured using ultrasound, and electrically evoked torque was recorded before and after the exercise. Sixty-five and fifty-three motor units were analyzed before and after the concentric and eccentric contractions, respectively. The results showed that motor units with moderate to high recruitment thresholds significantly decreased recruitment thresholds under both conditions, and the motor unit discharge rates significantly increased after concentric contraction compared to eccentric contraction. A greater muscle cross-sectional area was observed with concentric contraction. The evoked torque was significantly decreased under both conditions, but no difference between the conditions. These results suggest that fatiguing exercise with concentric contraction contributes to greater neural input to muscles and metabolic responses than eccentric contraction.  相似文献   

10.
Lengthening (eccentric) muscle contractions are characterized by several unusual properties that may result in unique skeletal muscle adaptations. In particular, high forces are produced with very little energy demand. Eccentrically trained muscles gain strength, but the specific nature of fiber size and composition is poorly known. This study assesses the structural and functional changes that occur to normal locomotor muscle after chronic eccentric ergometry at training intensities, measured as oxygen uptake, that do not influence the muscle when exercised concentrically. Male subjects trained on either eccentric or concentric cycle ergometers for 8 wk at a training intensity starting at 54% and ending at 65% of their peak heart rates. The isometric leg strength increased significantly in the eccentrically trained group by 36%, as did the cross-sectional area of the muscle fiber by 52%, but the muscle ultrastructure remained unchanged. There were no changes in either fiber size, composition, or isometric strength in the concentrically trained group. The responses of muscle to eccentric training appear to be similar to resistance training.  相似文献   

11.
Impaired muscle glycogen resynthesis after eccentric exercise   总被引:2,自引:0,他引:2  
Eight men performed 10 sets of 10 eccentric contractions of the knee extensor muscles with one leg [eccentrically exercised leg (EL)]. The weight used for this exercise was 120% of the maximal extension strength. After 30 min of rest the subjects performed two-legged cycling [concentrically exercised leg (CL)] at 74% of maximal O2 uptake for 1 h. In the 3 days after this exercise four subjects consumed diets containing 4.25 g CHO/kg body wt, and the remainder were fed 8.5 g CHO/kg. All subjects experienced severe muscle soreness and edema in the quadriceps muscles of the eccentrically exercised leg. Mean (+/- SE) resting serum creatine kinase increased from a preexercise level of 57 +/- 3 to 6,988 +/- 1,913 U/l on the 3rd day of recovery. The glycogen content (mmol/kg dry wt) in the vastus lateralis of CL muscles averaged 90, 395, and 592 mmol/kg dry wt at 0, 24, and 72 h of recovery. The EL muscle, on the other hand, averaged 168, 329, and 435 mmol/kg dry wt at these same intervals. Subjects receiving 8.5 g CHO/kg stored significantly more glycogen than those who were fed 4.3 g CHO/kg. In both groups, however, significantly less glycogen was stored in the EL than in the CL.  相似文献   

12.
The purpose of this study was to examine the effect of exercise-induced damage of the elbow flexor muscles on steady motor performance during isometric, shortening, and lengthening contractions. Ten healthy individuals (age 22+/-4 yr) performed four tasks with the elbow flexor muscles: a maximum voluntary contraction, a one repetition maximum (1 RM), an isometric task at three joint angles (short, intermediate, and long muscle lengths), and a constant-load task during slow (approximately 7 degrees/s) shortening and lengthening contractions. Task performance was quantified as the fluctuations in wrist acceleration (steadiness), and electromyography was obtained from the biceps and triceps brachii muscles at loads of 10, 20, and 40% of 1 RM. Tasks were performed before, immediately after, and 24 h after eccentric exercise that resulted in indicators of muscle damage. Maximum voluntary contraction force and 1-RM load declined by approximately 45% immediately after exercise and remained lower at 24 h ( approximately 30% decrease). Eccentric exercise resulted in reduced steadiness and increased biceps and triceps brachii electromyography for all tasks. For the isometric task, steadiness was impaired at the short compared with the long muscle length immediately after exercise (P<0.01). Furthermore, despite no differences before exercise, there was reduced steadiness for the shortening compared with the lengthening contractions after exercise (P=0.01), and steadiness remained impaired for shortening contractions 24 h later (P=0.01). These findings suggest that there are profound effects for the performance of these types of fine motor tasks when recovering from a bout of eccentric exercise.  相似文献   

13.
14.
The relationship between acoustic myography (AMG), electromyography (EMG) and force during submaximal dynamic contractions was examined in the biceps brachii muscles of eight healthy males (aged 17-26 years). Different weights were lifted and lowered at a constant speed, using a wall pulley system, to perform concentric and eccentric contractions, respectively. Integrated AMG (iAMG) and integrated EMG (iEMG) activity both increased linearly with force during concentric (iAMG r = 0.94; iEMG r = 0.99) and eccentric (iAMG r = 0.90; iEMG r = 0.94) contractions. The slopes of the concentric regression lines were significantly different from the eccentric slopes (P less than 0.01) for both iAMG and iEMG with concentric contractions showing greater levels of activity. The results indicated that AMG can be used to detect changes in force during dynamic contractions which has important implications for the use of AMG in rehabilitation. The differences in iAMG activity between concentric and eccentric contractions are discussed in relationship to the origin of the AMG signal.  相似文献   

15.
Muscle damage induced by eccentric contractions of 25% strain   总被引:8,自引:0,他引:8  
Contractile and morphological properties were measured in the rabbit tibialis anterior muscle 1 h after isometric contraction (IC), passive stretch (PS), or eccentric contraction (EC). Maximal tetanic tension (Po) was reduced after 30 min of PS (P less than 0.001), IC (P less than 0.001), or EC (P less than 0.0001). However, the magnitude of the force deficit was a function of the treatment method. After 30 min of cyclic PS, Po decreased by 13%, whereas after IC or EC, Po decreased by 31 and 69%, respectively. The time course of tension decline in the various groups suggested that the EC-induced injury occurred during the first few minutes of treatment. Although the morphology of samples from the PS and IC groups appeared normal, eccentrically exercised muscles exhibited portions of abnormally large fibers (diam greater than or equal to 110 microns) when viewed in cross section. Examination of 231 such fibers from 6 muscles revealed that all enlarged fibers were exclusively of the fast-twitch glycolytic fiber type. Although no ultrastructural abnormalities were observed in any of the muscles from the IC or PS groups, a significant portion of the fibers in the EC group displayed various degrees of disorganization of the sarcomeric band pattern. Taken together, these studies highlight the importance of fiber oxidative capacity in EC-induced injury, which may be related to the damage mechanism.  相似文献   

16.
This study compared the steadiness of submaximal contractions with the knee extensor muscles in young and old adults. Twenty young and twenty old subjects underwent assessment of isometric maximum voluntary contraction (MVC), one-repetition maximum (1-RM) strength, and steadiness during isometric, concentric, and eccentric contractions with the knee extensor muscles. The old adults displayed 33% lower MVC force and a 41% lower 1-RM load. The coefficient of variation for force was significantly greater for the old adults during isometric contractions at 2, 5, and 10% of MVC but not at 50% MVC. The decline in steadiness at low forces experienced by the men was marginally greater than that experienced by the women. The steadiness of concentric and eccentric contractions was similar in young and old adults at 5, 10, and 50% of 1-RM load. Old subjects exhibited greater coactivation of an antagonist muscle compared with young subjects during the submaximal isometric and anisometric contractions. These results indicate that, whereas the ability to exert steady submaximal forces with the knee extensor muscles was reduced in old adults, fluctuations in knee joint angle during slow movements were similar for young and old adults.  相似文献   

17.
The objective of this study was to determine which type of repetitive muscle contractions induces a greater acute impairment of elbow position sense. Eleven male subjects participating in the study underwent (i) an exercise task (ET) consisting of 9 sets of 10 voluntary isometric, concentric, or eccentric contractions randomly performed on three separate sessions, and (ii) a pre- and post-exercise maximal voluntary isometric contraction (iMVC). Prior to and between sets of ET, a proprioception task (PT) consisting of matching the right arm to the left reference arm was performed at three different target angular positions (70°, 110° and 150°). Each ET was immediately followed by 3 PT and 1 min rest. The statistical analysis revealed that post-exercise iMVCs were significantly decreased compared to pre-exercise iMVC in all conditions with a greater drop following the eccentric task. Despite this greater drop, position sense was significantly affected by the concentric exercise task. In addition, the spectral EMG signals significantly shifted towards lower frequencies from the initial values, regardless of exercise task. The results showed that concentric muscle contractions impaired position sense to a greater extent compared to isometric and eccentric contractions.  相似文献   

18.
The aim of this study was to compare mechanomyogram (MMG) recorded by a condenser microphone (MIC) and an accelerometer (ACC) during submaximal isometric, concentric and eccentric contractions in 14 males. The maximal voluntary force (MVC) of the biceps brachii was measured. The subjects were asked to do short duration isometric, concentric and eccentric contraction at 10%, 30%, 50%, 70% MVC twice. For the concentric and eccentric contraction, the subject bent his arm for 3s (concentric) then held it for 3s and extended (eccentric) during 3s. The normalized root mean square (RMS) and mean power frequency (MPF) increased linearly with increased force for both transducers. There was a correlation between MIC MPF and ACC MPF at 10%, 30%, 50% MVC, and between MIC RMS and ACC RMS at 30% MVC during isometric contractions. There was significantly higher MPF for the ACC than for the MIC in concentric and eccentric modes, while the RMS did not differ among transducers in the three contraction modes. The RMS and MPF values coefficient of variations were significantly larger during anisometric contractions compared with isometric contractions and were lower for the accelerometer than for the microphone. The present results obtained during isometric, concentric and eccentric contractions of increased intensity showed that the information contained in microphone- and accelerometer-based MMG signals is different despite similar trends. It can be concluded that at low-moderate movement velocity, concentric contractions can be investigated by means of accelerometer and microphone.  相似文献   

19.
This study's objective was to determine whether 14 days of dietary creatine supplementation preceding an injurious bout of eccentric contractions affect the in vivo strength loss of mouse anterior crural muscles. Three groups of nine mice each were fed a meal diet for 14 days, one group at each of three levels of creatine supplementation (i.e., 0, 0.5, and 1% creatine). Electrically stimulated concentric, isometric, and eccentric contraction torques produced about the ankle were measured both before and after a bout of 150 eccentric contractions. Tibialis anterior muscle creatine concentration was significantly increased by the supplementation, being 12% higher in the mice fed the 1% creatine diet compared with control mice. After the bout of eccentric contractions, the reductions in torque (i.e., 46-58%) were similar for the isometric contraction, all eccentric contractions, and the slow (i.e., /= 0.62). In conclusion, a moderate increase in muscle creatine concentration induced by dietary supplementation in mice does not affect the strength loss after eccentric contractions.  相似文献   

20.
Intramuscular pressure (IMP) is of major importance in blood flow and is often taken as a good estimate of muscular tension. However, its measurement remains invasive. The aims of the present work were: (1) to re-examine the possibility of evaluating IMP and muscular tension changes by means of surface electromyographic recordings, and (2) to clarify the influence of elastic compressive stockings (ECS). Surface EMG of muscles tibialis anterior (TA), soleus, gastrocnemius, and IMP from the anterior tibial compartment (ATC), deep posterior compartment (DPC), superficial posterior compartment (SPC) of the right leg, were simultaneously recorded in nine healthy subjects. Subjects performed series of voluntary concentric TA contractions (right ankle dorsal flexions) and TA isometric contractions, with or without elastic ECS, in a decubitus posture. Rest IMP mean values, measured over 60 s, ranged between 12.3 and 26.6 mmHg, i.e. in the range or slightly higher than those reported in the literature. When ECS were applied, mean IMP increase was 6.4 mmHg in ATC, 8.7 mmHg in DPC and 21.0 mmHg in SPC, while the corresponding EMG amplitude decreased. In ankle dorsal flexion movements, instantaneous values of TA-EMG amplitudes were linearly correlated to ATC-IMP instantaneous values, over the whole of the EMG rising part of every movement. When ECS were applied, the relationships between TA-EMG amplitude and ATC-IMP amplitude remained linear but where shifted towards higher IMP, in agreement with the increase in rest IMP. Because of antagonist co-contractions, IMP from DPC and SPC were also linearly correlated with ATC-IMP but with low coefficients of proportionality. As in TA concentric contractions, TA-EMG amplitudes were linearly correlated to ATC-IMP instantaneous values in isometric contractions, but the slopes of the latter were always greater. This result is explained by the relationship between muscle tension and shortening velocity. Al the results showed that: (1) instantaneous changes in surface EMG amplitude may provide a good estimate of IMP changes during the rising part of isometric, but also of concentric voluntary contractions; (2) elastic compressive stockings do not impair subjects relaxation capacity but actually increase the ratio IMP/muscle activation. As a consequence, ECS may actually increase the venous return during voluntary contractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号