共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
Hsiao YY Jeng MF Tsai WC Chuang YC Li CY Wu TS Kuoh CS Chen WH Chen HH 《The Plant journal : for cell and molecular biology》2008,55(5):719-733
Geranyl diphosphate (GDP) is the precursor of monoterpenes, which are the major floral scent compounds in Phalaenopsis bellina . The cDNA of P. bellina GDP synthase ( PbGDPS ) was cloned, and its sequence corresponds to the second Asp-rich motif (SARM), but not to any aspartate-rich (Asp-rich) motif. The recombinant PbGDPS enzyme exhibits dual prenyltransferase activity, producing both GDP and farnesyl diphosphate (FDP), and a yeast two-hybrid assay and gel filtration revealed that PbGDPS was able to form a homodimer. Spatial and temporal expression analyses showed that the expression of PbGDPS was flower specific, and that maximal PbGDPS expression was concomitant with maximal emission of monoterpenes on day 5 post-anthesis. Homology modelling of PbGDPS indicated that the Glu-rich motif might provide a binding site for Mg2+ and catalyze the formation of prenyl products in a similar way to SARM. Replacement of the key Glu residues with alanine totally abolished enzyme activity, whereas their mutation to Asp resulted in a mutant with two-thirds of the activity of the wild-type protein. Phylogenetic analysis indicated that plant GDPS proteins formed four clades: members of both GDPS-a and GDPS-b clades contain Asp-rich motifs, and function as homodimers. In contrast, proteins in the GDPS-c and GDPS-d clades do not contain Asp-rich motifs, but although members of the GDPS-c clade function as heterodimers, PbGDPS, which is more closely related to the GDPS-c clade proteins than to GDPS-a and GDPS-b proteins, and is currently the sole member of the GDPS-d clade, functions as a homodimer. 相似文献
3.
4.
Chalcone synthase A is a key enzyme in the anthocyanin biosynthesis pathway. Expression of chsA gene in transgenic Petunia hybrida resulted in flower color alterations and co-suppression of transgenes and endogenous genes. We fused the β-glucuronidase (uidA) gene to the C-terminal of chsA gene, and transferred the fusion gene into Petunia hybrida via Agrobac-terium tumefaciens. GUS histochemical staining analysis showed that co-suppression occurred specifically during the development of flowers and co-suppression required the mutual interaction of endogenous genes and transgenes. RNA in situ hybridization analysis suggested that co-suppression occurred in the entire plant, and RNA degradation occurred in the cytoplasm. 相似文献
5.
6.
从水母雪莲Saussurea medusa Maxim. cDNA文库中得到一段查尔酮合酶基因 (SmCHS) 片段,然后通过RT-PCR得到完整的查尔酮合酶基因cDNA。序列分析表明SmCHS全长1 313 bp,其开放阅读框为1 170 bp,编码389个氨基酸,预测表达蛋白的分子量为43 kDa。构建原核表达质粒pET28a(+)-SmCHS,重组质粒转化大肠杆菌BL21(DE3),获得表达菌株。经IPTG诱导表达后,对表达产物进行SDS-PAGE分析,结果显示,表达的融合蛋白以部分可溶的形式存在。用Ni-NTA预装柱对融合蛋白进行亲和纯化,对纯化蛋白进行酶活检测,结果表明融合蛋白具有查尔酮合酶活性,可催化底物4-香豆酰辅酶A和丙二酰辅酶A缩合生成产物柚皮素查尔酮。 相似文献
7.
Low temperature enhances petunia flower pigmentation and induces chalcone synthase gene expression 总被引:6,自引:0,他引:6
Flower coloration is controlled by internal and external factors, including temperature. The aim of the present work was to examine the effect of temperature on anthocyanin synthesis and chalcone synthase gene ( chs ) expression in petunia flowers. A moderate-low temperature enhanced both anthocyanin accumulation and chs expression in the corollas. However, the effect on chs expression was not always correlated with that on anthocyanin content, suggesting a post-translational effect. The effect was local and required the exposure of corollas, but not the whole plant, to the ambient temperature. The response of chs to moderate-low temperatures did not coincide with its expression during flower development. Moderate-low temperatures only slightly affected gibberellic acid (GA3 )-induced chs expression in the light, but activated chs expression under non-inducing conditions, i.e. in the absence of GA3 in the dark. The results of this study suggest that moderate-low temperatures do not simply enhance the developmental regulation of anthocyanin biosynthetic gene expression; they act as a specific and separate signal. 相似文献
8.
Cloning, characterization and tissue specific expression of a sucrose synthase gene from tropical epiphytic CAM orchid Mokara Yellow 总被引:3,自引:0,他引:3
A full-length cDNA encoding sucrose synthase was isolated from the tropical epiphytic CAM orchid Mokara Yellow. The cDNA is 2748bp in length containing an open reading frame of 2447bp encoding 816 amino acids with a predicted molecular mass of 93.1 kDa. The deduced amino acid sequence of M. Yellow sucrose synthase (Msus1) shares more than 80% identity with those from other monocotyledonous plants. The sucrose synthase gene was demonstrated to encode a functional sucrose synthase protein by expression as recombinant protein in Escherichia coli. Northern blot analysis showed that the expression pattern of Msus1 mRNA is tissue specific with highest levels in strong sinks such as expanding leaves and root tips, but not detectable in mature leaves and flowers. Incubation with sugars resulted in a significant increase in the steady-state Msus1 mRNA levels in shoots of seedlings. 相似文献
9.
10.
Enhanced expression and differential inducibility of soybean chalcone synthase genes by supplemental UV-B in dark-grown seedlings 总被引:2,自引:0,他引:2
Shimizu Takeshi Akada Shinji Senda Mineo Ishikawa Ryuji Harada Takeo Niizeki Minoru Dube Shyam K. 《Plant molecular biology》1999,39(4):785-795
By developing gene-specific RT-PCR and using filters to allow transmission down to 290 nm (UV-B+) or blocking all radiation below 320 nm (UV-B–), the effect of UV-B+ and UV-B– light on expression of each of the presently known seven members of soybean chalcone synthase (CHS) gene family in dark-grown seedlings was analyzed. Dark expression was detectable already in 18 h dark-germinating embryos, with progressive increases on successive days, suggesting that chs belongs to a class of genes expressed very early during germination, and that the expression at this stage is either constitutive or induced by non-light-dependent factors present in the seed or made available following imbibition. Exposure of 18 h dark-germinating embryos to UV-B– or to UV-B+ light did not lead to an increase in chs signal. However, the 24 h dark-germinating embryos showed a distinct effect of UV-B+, interestingly coinciding with the stage when the head of seedlings was in the process of being pushed up above ground by stem elongation, suggesting the possibility of a developmental switch modulating the appearance of UV-B response. The response to UV-B– was most prominent in chs1 and almost silent in chs2, while the up-regulation by UV-B+ was most prominent in chs5 and chs6 and much less so in chs2. Interestingly, chs2 was noted to be the only member of the Gmchs gene family devoid of H-box, raising the possibility that the H-box may be a good indicator of the photo-inducibility of a chs gene. 相似文献
11.
Promoter analysis of the chalcone synthase (chsA) gene of Petunia hybrida: a 67 bp promoter region directs flower-specific expression 总被引:12,自引:0,他引:12
Ingrid M. van der Meer Cornelis E. Spelt Joseph N. M. Mol Antoine R. Stuitje 《Plant molecular biology》1990,15(1):95-109
In order to scan the 5 flanking region of the chalcone synthase (chs A) gene for regulatory sequences involved in directing flower-specific and UV-inducible expression, a chimaeric gene was constructed containing the chs A promoter of Petunia hybrida (V30), the chloramphenicol acetyl transferase (cat) structural sequence as a reporter gene and the chs A terminator region of Petunia hybrida (V30). This chimaeric gene and 5 end deletions thereof were introduced into Petunia plants with the help of Ti plasmid-derived plant vectors and CAT activity was measured. A 220 bp chs A promoter fragment contains cis-acting elements conferring flower-specific and UV-inducible expression. A promoter fragment from –67 to +1, although at a low level, was still able to direct flower-specific expression but could not drive UV-inducible expression in transgenic Petunia seedlings. Molecular analysis of binding of flower nuclear proteins to chs A promoter fragments by gel retardation assays showed strong specific binding to the sequences from –142 to +81. Promoter sequence comparison of chs genes from other plant species, combined with the deletion analysis and gel retardation assays, strongly suggests the involvement of the TACPyAT repeats (–59 and –52) in the regulation of organ-specificity of the chs A gene in Petunia hybrida. We also describe an in vitro organ-specific transient expression system, in which flower or purple callus protoplasts are used, that enables us to pre-screen organ-specific expression of a chimaeric reporter gene. 相似文献
12.
采用同源序列克隆和RT-PCR技术,首次克隆得到黄秋葵查尔酮合成酶基因(CHS)cDNA全长序列。序列分析表明,该序列全长1175 bp,包括一个1170 bp的完整ORF,编码389个氨基酸,命名为AeCHS。生物信息学分析表明,本研究所获得的AeCHS氨基酸序列与同科植物黄蜀葵和陆地棉的同源性较高,分别达99.23%和97.44%,AeCHS推断的氨基酸序列含有CHS蛋白的标签序列GFGPG以及4个保守活性位点Cys164、Phe215、His303、Asn336。实时荧光定量PCR分析黄秋葵果实、花、叶片不同发育时期AeCHS基因的表达量,结果表明AeCHS基因在上述植物材料中表现出不同的表达模式:花>果实>叶片,具体到不同植物组织,AeCHS基因在生长6 d的果实、盛开的花朵以及植株顶端第4片叶子中的表达量较高。 相似文献
13.
14.
An antisense chalcone synthase cDNA leads to novel colour patterns in lisianthus (Eustoma grandiflorum) flowers 总被引:5,自引:0,他引:5
Simon C. Deroles J. Marie Bradley Kathy E. Schwinn Kenneth R. Markham Stephen Bloor David G. Manson Kevin M. Davies 《Molecular breeding : new strategies in plant improvement》1998,4(1):59-66
15.
Photocontrol of chs gene expression in petunia flowers 总被引:4,自引:0,他引:4
16.
Chalcone synthase activity was demonstrated in flower extracts of defined genotypes of Antirrhinum majus. Independent of the genetic state of the g 相似文献
17.
18.
In the attempt to discover new genes involved in the floral development in monoeotyledonousin species,we have cloned and characterized the homologous PISTALLATA-like (PI-like) gone from Phalaenopsis hybrid cultivar named PhPI9 (Phalaenopsis PI STILLATA # 9).The eDNA of PhPI9 has a fragment of 834 bp and has 60% identity with the PISTILATA from Arabidopsis.The deduced amino acid sequence of PhPI9 had the typical PI-motif.It also formed a subelade with other monoeot PI-type genes in phylogenetie analysis.Southern analysis showed that PhPI9 was present in the Phalaenopsis orchid genome as a single copy.Furthermore,it was expressed only in the lip of the Phalaenopsis flower and no expression was detected in vegetative organs.Thus,as a B-function MADS-box gone,PhP19 specifies floral organ identity in orchids. 相似文献
19.
葡萄白藜芦醇合成酶基因的克隆 总被引:4,自引:0,他引:4
为了构建白藜芦醇合成酶(RS)基因的克隆载体,用PCR技术从葡萄叶片总DNA中扩增出RS基因全长,然后将其重组到克隆载体中。通过酶切对重组质粒进行了鉴定和测序,结果表明,RS基因已经正确克隆至pUC19中,将重组质粒转入大肠杆菌里,使RS基因能够在大肠杆菌里保存并且大量扩增,为RS基因构建表达载体表达白藜芦醇合成酶奠定了基础。 相似文献
20.
Y. Y. Han J. W. Wang N. Han Q. J. Liu T. M. Liu F. M. Guan F. Ming 《Russian Journal of Plant Physiology》2009,56(3):417-422
Chalcone synthase (CHS, EC 2.3.1.74) is a key enzyme in the biosynthesis of flavonoids, which plays an important role in flower
pigmentation and protection against UV, plant-microbe interactions, and plant fertility. In many plants, genes encoding CHS
constitute a multigene family, wherein sequence and functional divergence occurred repeatedly. Since the genome of rice (Oryza sativa) has been completely sequenced, many genes possessing typical CHS domains were assumed to be chs genes, although the sequence and functional divergence of this large gene family has not as yet been investigated. In this
study, all putative CHS members from O. sativa were analyzed by the phylogenetic methods. Our results indicate that the members of rice CHS superfamily probably diverged
into four branches. Members of each branch may perform specific functions. Two conserved chs genes clustered with chs genes from other monocotyledon and dicotyledon species are believed to encode true CHSs responsible for the biosynthesis
of flavonoids and anthocyanins. Two chs genes in one distant branch might play some functions in fertility. Several other putative chs genes were clustered together, and the function of this branch could not be predicted. Many tentative chs genes were clustered together with fatty acid synthase (FAS) genes. These genes may belong to the fas gene family.
Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 3, pp. 460–465.
This text was submitted by the authors in English. 相似文献