首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary This study evaluates the production of adrenergic nerve fibers by adrenal medullary tissue of the adult rat grafted to the anterior chamber of the eye of adult recipients. The chromaffin grafts attach to and become vascularized by the host iris. They decrease in size intraocularly during the first 3 weeks. This decrease is somewhat counteracted by sympathetic denervation of the host iris, and better counteracted by sympathetic denervation and addition of nerve growth factor (NGF, given at grafting and 1 and 2 weeks after grafting). Outgrowth of adrenergic nerve fibers from the grafts into the host iris was studied in wholemount preparations by use of the Falck-Hillarp technique 3 weeks after grafting. The innervated area of the host iris was approximately doubled in the chronically sympathectomized group and doubled again in the chronically sympathectomized NGF-supplemented group. Chronic sympathetic denervation had no effect on density of outgrowing nerves, whereas addition of NGF more than doubled nerve density. Since sympathetic denervation causes a slight elevation of NGF activity in the iris, the present experiments are taken as evidence that the level of NGF in the iris regulates formation of nerve fibers by adrenal medullary tissue grafts from adult rats.  相似文献   

2.
D J Anderson  R Axel 《Cell》1986,47(6):1079-1090
Adrenal medullary endocrine (chromaffin) cells and sympathetic neurons both derive from the neural crest. We have found that the embryonic adrenal medulla and sympathetic ganglia are both initially populated by precursors expressing neural-specific genes. By birth, however, the medulla consists largely of chromaffin cells. In primary culture, the medullary precursors have three developmental fates: in NGF they continue to mature into neurons and survive, whereas in glucocorticoid they either extinguish their neuronal properties and exhibit an endocrine phenotype, or else continue to develop into neurons but then die. These data suggest that, in vivo, the adrenal medulla develops through both the glucocorticoid-induced differentiation of bipotential progenitors and the degeneration of committed neuronal precursors, which have migrated into the gland.  相似文献   

3.
Adrenal medullary chromaffin cells are derivatives of the neural crest and are widely believed to share a common sympathoadrenal (SA) progenitor with sympathetic neurons. For decades, the adrenal cortical environment was assumed to be essential for channelling SA progenitors towards an endocrine chromaffin cell fate. Our recent analysis of steroidogenic factor 1(Sf1) −/− mice, which lack an adrenal cortex, has challenged this view: in Sf1 −/− mice chromaffin cells migrate to the correct “adrenal” location and undergo largely normal differentiation. In contrast to Sf1 homozygous mutants, heterozygous animals have an adrenal cortex, which, however, is smaller than in wildtype littermates. We show here that the Sf1 +/− adrenal cortical anlagen attract normal numbers of chromaffin progenitor cells into their vicinity by embryonic day 13.5 (E13.5). Two days later, however, only a few scattered cells with highly immature features have immigrated into the adrenal cortex, whereas the remainder form a coherent cell assembly ectopically located at the medial surface of the gland. These cells appear more mature than the scattered intracortical chromaffin progenitors and express the adrenaline synthesizing enzyme PNMT with a delay of 1 day in comparison with wildtype littermates. Nevertheless, chromaffin progenitor cells undergo a numerical reduction of approximately 30% by E17.5. Together, our data suggest that normal adrenocortical development is critical for the correct immigration of chromaffin progenitors into the cortical anlagen, for the timing of PNMT expression and for the regulation of chromaffin cell numbers.This work was supported by a grant from the Deutsche Forschungsgemeinschaft (SFB 488, TP A6).  相似文献   

4.
The diversification of neural-crest-derived sympathoadrenal (SA) progenitor cells into sympathetic neurons and neuroendocrine adrenal chromaffin cells was thought to be largely understood. In-vitro studies with isolated SA progenitor cells had suggested that chromaffin cell differentiation depends crucially on glucocorticoids provided by adrenal cortical cells. However, analysis of mice lacking the glucocorticoid receptor gene had revealed that adrenal chromaffin cells develop mostly normally in these mice. Alternative cues from the adrenal cortex that may promote chromaffin cell determination and differentiation have not been identified. We therefore investigated whether the chromaffin cell phenotype can develop in the absence of an adrenal cortex, using mice deficient for the nuclear orphan receptor steroidogenic factor-1 (SF1), which lack adrenal cortical cells and gonads. We show that in Sf1-/- mice typical chromaffin cells assemble correctly in the suprarenal region adjacent to the suprarenal sympathetic ganglion. The cells display most features of chromaffin cells, including the typical large chromaffin granules. Sf1-/- chromaffin cells are numerically reduced by about 50% compared with the wild type at embryonic day (E) 13.5 and E17.5. This phenotype is not accounted for by reduced survival or cell proliferation beyond E12.5. However, already at E12.5 the 'adrenal' region in Sf1-/- mice is occupied by fewer PHOX2B+ and TH+ SA cells as well as SOX10+ neural crest cells. Our results suggest that cortical cues are not essential for determining chromaffin cell fate, but may be required for proper migration of SA progenitors to and/or colonization of the adrenal anlage.  相似文献   

5.
We have analyzed the distribution of neural crest-derived precursors and the expression of catecholaminergic and neuronal markers in developing adrenal tissue of chick embryos. Undifferentiated neural crest cells are found in presumptive adrenal regions from embryonic day 3 (E3) onward. An increasing proportion of cells expressing tyrosine hydroxylase (TH) mRNA indicates catecholaminergic differentiation of precursors not only in primary sympathetic ganglia, but also in presumptive adrenal regions. Whereas precursors and differentiating cells show mesenchymal distribution until E5, discrete adrenal anlagen form during E6. Even during E5, catecholaminergic cells with low or undetectable neurofilament M (NF-M) mRNA expression prevail in positions at which adrenal anlagen become distinct during E6. The predominance of TH-positive and NF-M-negative cells is maintained throughout embryogenesis in adrenal tissue. RNA encoding SCG10, a pan-neuronal marker like NF-M, is strongly expressed throughout adrenal anlagen during E6 but is found at reduced levels in chromaffin cells compared with neuronal cells at E15. Two additional neuronal markers, synaptotagmin 1 and neurexin 1, are expressed at low to undetectable levels in developing chromaffin cells throughout embryogenesis. The developmental regulation of neuronal markers shows at least three different patterns among the four mRNAs analyzed. Importantly, there is no generalized downregulation of neuronal markers in developing adrenal anlagen. Thus, our observations question the classical concept of chromaffin differentiation from a common sympathoadrenal progenitor expressing neuronal properties and suggest alternative models with changing instructive signals or separate progenitor populations for sympathetic neuronal and chromaffin endocrine cells.Chaya Kalcheim and Klaus Unsicker are supported by the Deutsche Forschungsgemeinschaft (SFB 488)  相似文献   

6.
Development of chromaffin cells depends on MASH1 function   总被引:4,自引:0,他引:4  
The sympathoadrenal (SA) cell lineage is a derivative of the neural crest (NC), which gives rise to sympathetic neurons and neuroendocrine chromaffin cells. Signals that are important for specification of these two types of cells are largely unknown. MASH1 plays an important role for neuronal as well as catecholaminergic differentiation. Mash1 knockout mice display severe deficits in sympathetic ganglia, yet their adrenal medulla has been reported to be largely normal suggesting that MASH1 is essential for neuronal but not for neuroendocrine differentiation. We show now that MASH1 function is necessary for the development of the vast majority of chromaffin cells. Most adrenal medullary cells in Mash1(-/-) mice identified by Phox2b immunoreactivity, lack the catecholaminergic marker tyrosine hydroxylase. Mash1 mutant and wild-type mice have almost identical numbers of Phox2b-positive cells in their adrenal glands at embryonic day (E) 13.5; however, only one-third of the Phox2b-positive adrenal cell population seen in Mash1(+/+) mice is maintained in Mash1(-/-) mice at birth. Similar to Phox2b, cells expressing Phox2a and Hand2 (dHand) clearly outnumber TH-positive cells. Most cells in the adrenal medulla of Mash1(-/-) mice do not contain chromaffin granules, display a very immature, neuroblast-like phenotype, and, unlike wild-type adrenal chromaffin cells, show prolonged expression of neurofilament and Ret comparable with that observed in wild-type sympathetic ganglia. However, few chromaffin cells in Mash1(-/-) mice become PNMT positive and downregulate neurofilament and Ret expression. Together, these findings suggest that the development of chromaffin cells does depend on MASH1 function not only for catecholaminergic differentiation but also for general chromaffin cell differentiation.  相似文献   

7.
Neurotrophins and their trk receptors constitute major classes of signaling molecules with important actions in the developing and adult nervous system. With regard to the sympathoadrenal cell lineage, which gives rise to sympathetic neurons and chromaffin cells, neurotrophin-3 (NT-3) and nerve growth factor (NGF) are thought to influence developing sympathetic neurons. Neurotrophin requirements of chromaffin cells of the adrenal medulla are less well understood than those for NGF. In order to provide the bases for understanding of putative functions of neurotrophins for the development and maintenance of chromaffin cells and their preganglionic innervation, in situ hybridization has been used to study the expression of brain-derived neurotrophic factor (BDNF) and NT-3, together with their cognate receptors trkB and trkC, in the adrenal gland and in the intermediolateral column (IML) of the spinal cord. BDNF is highly expressed in the embryonic adrenal cortex and later in cells of the cortical reticularis zone. Adrenal medullary chromaffin cells fail to express detectable levels of mRNAs for BDNF, NT-3, and their cognate receptors trkB and trkC. Neurons in the IML express BDNF and trkB, and low levels of NT-3 and trkC. Our data make it unlikely that BDNF and NT-3 serve as retrograde trophic factors for IML neurons but suggest roles of BDNF and NT-3 locally within the spinal cord and possibly for sensory nerves of the adrenal cortex.  相似文献   

8.
9.
Summary Small pieces of rat adrenal medulla were homologously transplanted to the anterior chamber of the eye. The eyes were adrenergically denervated. Transplants became attached to and vascularized by the iris of the host eye. Transplants and irides were examined at various times postoperatively with the histochemical fluorescence method of Falck and Hillarp.It was shown that the adrenal medullary transplants were able to produce catecholamine-containing nerves that partly reinnervated the denervated host iris. The nerves derived at least partly from groups of highly fluorescent cells, similar to the adrenaline and/or noradrenaline cells of the normal adrenal medulla. The cells were thus not similar to sympathetic adrenergic nerve cells.Intravasal secretion of fluorescent material was observed in one case, indicating that the transplanted medullary tissue was also able to fullfill its normal endocrinological role of releasing hormones to the blood stream.This investigation was supported by grants from the Swedish Medical Research Council (B70-14x-714-05 and B70-14x-711-05B), Svenska Livförsäkringsbolags nämnd för medicinsk forskning, Ollie and Elof Ericssons Stiftelse and Stiftelsen Therese och Johan Anderssons Minne. The skilful technical assistance of Mrs. Ulla Flyger and Mrs. Barbro Norstedt is greatfully acknowledged.  相似文献   

10.
Using beta-bungarotoxin (beta-BTX) as a tool to eliminate the preganglionic cholinergic nerve supply to the embryonic rat adrenal gland, we have investigated whether or not these nerves affect the differentiation of embryonic chromaffin cells (pheochromoblasts). Rat fetuses received a single injection of 1 or 2 micrograms beta-BTX or an identical volume of saline at embryonic day (E) 17 and were taken for morphological and biochemical analyses at E 21. Administration of beta-BTX caused a 15 to 20% reduction in body weight, crown-rump-length and adrenal weight. Spinal cord development was reduced and acetylcholinesterase-positive cells in ventral and lateral columns were virtually absent in toxin-treated animals. In adrenal glands, a decrease of choline acetyltransferase activity to 13% of control levels and a concomitant decrease of ultrastructurally identifiable nerve fibers and axon terminals revealed that application of 2 micrograms beta-BTX effectively reduced the neuronal input to E 21 adrenal glands. Values for total adrenal catecholamines, relative amounts of adrenaline and noradrenaline, tyrosine hydroxylase and phenylethanolamine N-methyltransferase activities were unaltered. All ultrastructural features of pheochromoblasts (except the lack of synapse-like axon terminals) were inconspicuous. Corticosterone levels in adrenals and plasma were identical to controls. These data strongly suggest that normal embryonic development of adrenal chromaffin cells does not require an intact nerve supply.  相似文献   

11.
c-Ret encodes a receptor tyrosine kinase that is essential for normal development of the kidney as well as enteric and sympathetic neurons. Since sympathetic neurons and neuroendocrine chromaffin cells originate from a common progenitor cell, we have examined the relevance of c-Ret for the development of adrenal chromaffin cells by analyzing mouse mutants lacking c-Ret. Adrenal chromaffin cells express c-Ret mRNA at embryonic day (E) 12.5 and 13.5, yet levels of expression decline at later embryonic and postnatal ages. Adrenal medullae of c-Ret deficient mice show normal numbers of tyrosine hydroxylase (TH)-immunoreactive cells at E13.5 and at birth. Ultrastructurally, adrenal chromaffin cells of c-Ret(-/-) mice appear unaltered: chromaffin cells develop typical secretory chromaffin granules, the morphological hallmark of chromaffin cells, and synaptic terminals appear normal. However, adrenaline levels and numbers of chromaffin cells immunoreactive for the adrenaline synthesizing enzyme phenylethanolamine-N-methyltransferase (PNMT) are reduced by about 30% in c-Ret-deficient mice arguing for a direct or indirect role of c-Ret in the regulation of PNMT. Thus, despite expression of c-Ret, adrenal chromaffin cells develop largely normal in mice lacking c-Ret. We therefore conclude that sympathetic neurons and neuroendocrine chromaffin cells profoundly differ in their requirement for c-Ret signaling during development.  相似文献   

12.
Summary Expiants of adrenal medullary tissue taken from newborn guinea pigs were grown in culture for up to two weeks. The explants exhibited sparse outgrowth of neurite-like processes, in contrast to adrenal medullae taken from young postnatal rats or adult guinea pigs that were (i) grown under identical conditions (Unsicker and Chamley 1977) or (ii) transplanted to the anterior chamber of the eye (Unsicker et al. 1981), respectively. Nerve growth factor (10–100 ng/ml, 2.5S NGF) did not enhance formation of processes. However, electron-microscopic investigations revealed the presence of numerous processes within the explants, which extended from chromaffin cells and were characterized by longitudinally oriented cytoskeletal structures, various populations of clear and dense-cored vesicles, varicosities and growth cones. Chromaffin cell bodies largely resembled their in situ-counterparts, but had fewer and smaller storage vesicles than controls.The results are discussed in light of recent findings regarding the potency of NGF and NGF-like growth factors to induce neuronal transdifferentiation of adrenal chromaffin cells.Supported by grants from the Deutsche Forschungsgemeinschaft (SFB 103 and Un 34/6)  相似文献   

13.
The differentiation of glial cells in developing, neonatal, adult and neoplastic human adrenal medulla has been studied immunohistochemically. From 8 to 28 weeks' gestational age, S-100 protein and its β-subunit revealed two different glial cell populations in adrenal glands, namely Schwann-like and sustentacular cells. Schwann-like cells were spindle-shaped cells forming a continuous layer around groups of sympathetic neuroblasts, often in contact with Schwann cells of nerve fibres entering neuroblastic groups. Sustentacular cells were round or oval cells with dendritic cytoplasmic processes; they were not associated with nerve fibres and mingled both with sympathetic neuroblasts and differentiating chromaffin cells. The developmental fate of Schwann-like cells was different from that of sustentacular cells. Schwann-like cells disappeared from the 28th week of gestational age, in association with the disappearance of sympathetic neuroblastic groups, and they were rarely found in neonatal and adult adrenal medulla. In contrast, sustentacular cells persisted between medullary chromaffin cells, and their number and dendritic cytoplasmic processes progressively increased from foetus to adult. In eight cases of primitive adrenal neuroblastic tumours of neonatal age (five undifferentiated neuroblastomas and three ganglioneuroblastomas), Schwann-like cells were found at the periphery of tumoral nests with a lobular growth pattern, while rare sustentacular cells were associated with neuroblasts. In two cases of adult phaeochromocytomas, only sustentacular cells were detected between chromaffin tumoral cells. Our findings suggest that the glial cell types and their distribution in primitive adrenal medulla tumours closely resemble those observed during development in the groups of adrenal sympathetic neuroblasts and in the clusters of chromaffin cells  相似文献   

14.
Neurotrophic factors, such as nerve growth factor (NGF), have been shown to promote the differentiation of neural crest neuroblasts into sympathetic neurons, whereas glucocorticoids promote the endocrine phenotype of adrenal medullary chromaffin cells. This pluripotency is preserved to some extent in adult chromaffin cells, with NGF and other neurotrophic factors influencing the differentiation of these cells. In this study, the effects of glial cell line-derived neurotrophic factor (GDNF) on explanted chromaffin tissue have been investigated. The localization of mRNAs corresponding to the two components of the GDNF receptor, GDNF family receptor alpha 1 (GFRalpha1) and Ret, were demonstrated in adult adrenal medullary ganglion cells. GFRalpha1 mRNA was expressed in explanted chromaffin tissue at levels dependent on the presence of serum in the medium but decreased on the addition of blocking antibodies against transforming growth factor beta (TGFbeta). However, TGFbeta1 (1 ng/ml) did not upregulate GFRalpha1 mRNA expression when added to serum-free medium. GDNF induced neurite formation from chromaffin cells, as measured by the ratio of neurite-bearing versus total number of chromaffin cells in primary cultures of adult adrenal medulla. The most potent dose inducing neurites from chromaffin cells was 100 ng/ml GDNF. However, this dose was not as efficient as that seen when chromaffin cells were stimulated with NGF (100 ng/ml). Thus, adrenal medullary cells express mRNAs for the GDNF receptor components Ret and GFRalpha1, increase their expression upon being cultured in serum-containing medium and respond to GDNF treatment with an increase in the number of cells that develop nerve processes.  相似文献   

15.
The differentiation of glial cells in developing, neonatal, adult and neoplastic human adrenal medulla has been studied immunohistochemically. From 8 to 28 weeks' gestational age, S-100 protein and its β-subunit revealed two different glial cell populations in adrenal glands, namely Schwann-like and sustentacular cells. Schwann-like cells were spindle-shaped cells forming a continuous layer around groups of sympathetic neuroblasts, often in contact with Schwann cells of nerve fibres entering neuroblastic groups. Sustentacular cells were round or oval cells with dendritic cytoplasmic processes; they were not associated with nerve fibres and mingled both with sympathetic neuroblasts and differentiating chromaffin cells. The developmental fate of Schwann-like cells was different from that of sustentacular cells. Schwann-like cells disappeared from the 28th week of gestational age, in association with the disappearance of sympathetic neuroblastic groups, and they were rarely found in neonatal and adult adrenal medulla. In contrast, sustentacular cells persisted between medullary chromaffin cells, and their number and dendritic cytoplasmic processes progressively increased from foetus to adult. In eight cases of primitive adrenal neuroblastic tumours of neonatal age (five undifferentiated neuroblastomas and three ganglioneuroblastomas), Schwann-like cells were found at the periphery of tumoral nests with a lobular growth pattern, while rare sustentacular cells were associated with neuroblasts. In two cases of adult phaeochromocytomas, only sustentacular cells were detected between chromaffin tumoral cells. Our findings suggest that the glial cell types and their distribution in primitive adrenal medulla tumours closely resemble those observed during development in the groups of adrenal sympathetic neuroblasts and in the clusters of chromaffin cells  相似文献   

16.
Brain stimulation or activation of certain reflexes can result in differential activation of the two populations of adrenal medullary chromaffin cells: those secreting either epinephrine or norepinephrine, suggesting that they are controlled by different central sympathetic networks. In urethan-chloralose-anesthetized rats, we found that antidromically identified adrenal sympathetic preganglionic neurons (SPNs) were excited by stimulation of the rostral ventrolateral medulla (RVLM) with either a short (mean: 29 ms) or a long (mean: 129 ms) latency. The latter group of adrenal SPNs were remarkably insensitive to baroreceptor reflex activation but strongly activated by the glucopenic agent 2-deoxyglucose (2-DG), indicating their role in regulation of adrenal epinephrine release. In contrast, adrenal SPNs activated by RVLM stimulation at a short latency were completely inhibited by increases in arterial pressure or stimulation of the aortic depressor nerve, were unaffected by 2-DG administration, and are presumed to govern the discharge of adrenal norepinephrine-secreting chromaffin cells. These findings of a functionally distinct preganglionic innervation of epinephrine- and norepinephrine-releasing adrenal chromaffin cells provide a foundation for identifying the different sympathetic networks underlying the differential regulation of epinephrine and norepinephrine secretion from the adrenal medulla in response to physiological challenges and experimental stimuli.  相似文献   

17.
Atrial natriuretic polypeptide (ANP)-like immunoreactivity was found in the rat adrenal gland by using indirect immunofluorescence and peroxidase-antiperoxidase techniques. ANP-like immunostaining was present in most of chromaffin cells with varying degrees of immunoreactivity. The majority of medullary cells displayed very intense immunostaining, and several clusters revealed weaker immunostaining. No staining was found in the adrenal cortex or in the nerve fibers in this organ. In the consecutive sections treated for dopamine-beta-hydroxylase (DBH), apparently all medullary cells had intense immunofluorescence for DBH and its distribution pattern was very similar to that for ANP-like immunoreactivity. While phenylethanolamine N-methyltransferase (PNMT) immunoreactive cells largely corresponded to the intensely stained ANP-like immunoreactive cells, suggesting that adrenaline cells contained a large amount of ANP-like substance, noradrenaline cells contained a smaller amount of this substance than adrenaline cells. Ultrastructural study showed that end-products due to the immunoreaction with the ANP antiserum were primarily associating with chromaffin granules. In addition, the presence of ANP-like immunoreactivity was investigated in several sympathetic ganglia of the rat. No principal ganglion cells were ANP-positive, whereas a few small intensely fluorescent (SIF) cells were ANP-immunoreactive. The present findings suggest that catecholamines coexist with ANP which has a natriuretic and vasodilating effect, in adrenal medullary cells and SIF cells in several rat sympathetic ganglia, but not in principal ganglion cells.  相似文献   

18.
Neuroendocrine adrenal medullary chromaffin cells receive synaptic excitation through the sympathetic splanchnic nerve to elicit catecholamine release into the circulation. Under basal sympathetic tone, splanchnic-released acetylcholine evokes chromaffin cells to fire action potentials, leading to synchronous phasic catecholamine release. Under elevated splanchnic firing, experienced under the sympathoadrenal stress response, chromaffin cells undergo desensitization to cholinergic excitation. Yet, stress evokes a persistent and elevated adrenal catecholamine release. This sustained stress-evoked release has been shown to depend on splanchnic release of a peptide transmitter, pituitary adenylate cyclase-activating peptide (PACAP). PACAP stimulates catecholamine release through a PKC-dependent pathway that is mechanistically independent of cholinergic excitation. Moreover, it has also been reported that shorter term phospho-regulation of existing gap junction channels acts to increase junctional conductance. In this study, we test if PACAP-mediated excitation upregulates cell-cell electrical coupling to enhance chromaffin cell excitability. We utilize electrophysiological recordings conducted in adrenal tissue slices to measure the effects of PACAP stimulation on cell coupling. We report that PACAP excitation increases electrical coupling and the spread of electrical excitation between adrenal chromaffin cells. Thus PACAP acts not only as a secretagogue but also evokes an electrical remodeling of the medulla, presumably to adapt to the organism's needs during acute sympathetic stress.  相似文献   

19.
Adrenal chromaffin cells have been characterized by the ability to change the phenotype in response to neurotrophic factor stimulation. The adrenal gland expresses numerous trophic factors endogenously, but there is still a lack of knowledge as to how the adrenal medullary cells respond to these factors. Accordingly, we evaluated nerve fiber outgrowth and cell morphology, and measured catecholamine content in adult rat adrenal medullary tissue transplanted to the anterior chamber of the eye after exposure to neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4/5), basic fibroblast growth factor (bFGF), ciliary neurotrophic factor (CNTF), or glial cell line-derived neurotrophic factor (GDNF) compared with the effects after exposure to recombinant human nerve growth factor (rhNGF). The results show that rhNGF was the most potent factor in inducing neurite outgrowth from the grafted chromaffin cells. CNTF was also a powerful inducer of nerve fiber formation, while NT-4/5, GDNF, and bFGF were less potent. NT-3 did not produce neurite outgrowth above that seen in vehicle-treated eyes. Combining two neurotrophins, rhNGF and NT-3, reduced nerve fiber formation. Tyrosine hydroxylase (TH) immunohistochemistry revealed good cell survival in all grafts, and no morphological differences were detected with the different treatments. The adrenaline: noradrenaline: dopamine ratio was approximately 49%: 49%: 2%, independent of treatment, and the catecholamine content was equal irrespective of treatment. In conclusion, all neurotrophic factors used, except for NT-3, promoted neurite outgrowth from adult rat chromaffin transplants. Differences in outgrowth induced by the various trophic factors did not, however, change the catecholamine content in grafts when analyzed together with the graft-derived nerve plexus.  相似文献   

20.
The relationship between brown adipose tissue (BAT) and its sympathetic innervation during development was investigated by transplantation of undifferentiated (white fat-like) hamster BAT into the anterior eye chamber of adult hamsters. Such transplants are known to be revascularized and reinnervated by the vessels and the nerves of the host iris. The morphology of the BAT transplants was analysed during the post-operative weeks by light and electron microscopy, and the ingrowth of sympathetic nerve fibres from the iris was followed by radioautography. BAT appeared to differentiate in oculo, i.e. presented increasing amounts of adipocytes with multilocular fat deposits and abundant, well-developed mitochondria, but only after a delay of approx. 10 days, and remained much fatter than in situ. The establishment of the sympathetic innervation was not synchronous with the revascularization process. It occurred simultaneously with the morphological differentiation of the BAT transplants, and the nerve fibre density remained low. In the absence of sympathetic innervation, i.e. when the host irides were sympathectomized prior to transplantation, BAT still differentiated, but the process was further delayed and the proportion of differentiated brown adipocytes after 20 days in oculo was clearly lower than in control transplants. It is concluded that the sympathetic innervation in BAT is involved in the regulation of differentiating activity in the tissue, but is not obligatory for differentiation to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号