首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
In osteoarthritis (OA), cartilage destruction is associated not only with an imbalance of anabolic and catabolic processes but also with alterations of the cytoskeletal organization in chondrocytes, although their pathogenetic origin is largely unknown so far. Therefore, we have studied possible effects of the proinflammatory cytokine IL-1beta on components of the cytoskeleton in OA chondrocytes on gene expression level. Using a whole genome array, we found that IL-1beta is involved in the regulation of many cytoskeleton-related genes. Apart from well-known cytoskeletal components, the expression and regulation of four genes coding for LIM proteins were shown. These four genes were previously undescribed in the chondrocyte context. Quantitative PCR analysis confirmed significant downregulation of Fhl1, Fhl2, Lasp1, and Pdlim1 as well as Tubb and Vim by IL-1beta. Inhibition of p38 mitogen-activated protein kinase (MAPK) by SB203580 counteracted the influence of IL-1beta on Fhl2 and Tubb expression, indicating partial involvement of this signaling pathway. Downregulation of the LIM-only protein FHL2 was confirmed additionally on the protein level. In agreement with these results, IL-1beta induced changes in the morphology of chondrocytes, the organization of the cytoskeleton, and the cellular distribution of FHL2. We conclude that L-1beta is involved in the regulation of various cytoskeletal components in human chondrocytes including the multifunctional protein FHL2. This might be relevant for the pathogenesis of OA.  相似文献   

7.
The polyomavirus enhancer binding protein 2 (PEBP2) or core binding factor (CBF) is a heterodimeric enhancer binding protein that is associated with genetic regulation of hematopoiesis and osteogenesis. Aberrant forms of PEBP2/CBF are implicated in the cause of the acute human leukemias and in a disorder of bone development known as cleidocranial dysplasia. The common denominator in the natural and mutant forms of this protein is a highly conserved domain of PEBP2/CBF alpha, termed the Runt domain (RD), which is responsible for both DNA binding and heterodimerization with the beta subunit of PEBP2/CBF. The three-dimensional structure of the RD bound to DNA has been determined to be an S-type immunoglobulin fold, establishing a structural relationship between the RD and the core DNA binding domains of NF-kappaB, NFAT1, p53 and the STAT proteins. NMR spectroscopy of a 43.6 kD RD-beta-DNA ternary complex identified the surface of the RD in contact with the beta subunit, suggesting a mechanism for the enhancement of RD DNA binding by beta. Analysis of leukemogenic mutants within the RD provides molecular insights into the role of this factor in leukemogenesis and cleidocranial dysplasia.  相似文献   

8.
9.
Transforming growth factor beta 1 (TGF beta 1) has been shown to have multiple effects on primary cultures of palate-derived cell types. We report the analysis, by in situ hybridization, of RNA expression for three different TGF beta isoforms (TGF beta 1, beta 2, and beta 3) during murine embryonic palate development. Differential expression of the three TGF beta genes is seen in the palatal shelves in mesenchymal and epithelial cells known to be involved in the morphogenesis of this organ. Taken together, these results suggest that the TGF beta s act as endogenous factors involved in the formation of the mammalian palate.  相似文献   

10.
11.
12.
Hajjar E  Korkmaz B  Reuter N 《FEBS letters》2007,581(29):5685-5690
Understanding the differences between murine (m) and human (h) proteinase 3 (PR3) and neutrophil elastase (NE) is crucial for the interpretation of in vivo studies of inflammatory processes. We built structural models of mPR3 and mNE and analyzed their surface properties. We performed molecular dynamics (MD) simulations on several enzyme-peptide complexes to investigate their interaction patterns. The analysis of trajectories confirms that murine and human complexes have different interaction patterns with peptidic substrates. We provide a map of the binding sites of the murine proteases and suggest sequence motifs that we predict to be specific for mPR3 or mNE.  相似文献   

13.
14.
15.
We assembled three hybrid beta-globin genes by fusing the mouse beta-major promoter and initial transcribed region to one of three goat beta-like globin gene bodies: beta c (preadult), beta F (fetal), or epsilon II (embryonic). Thymidine kinase (tk)-deficient murine erythroleukemia (MEL) cells were cotransformed with one of these constructs and a separate plasmid bearing the tk gene. Half of the 24 cell lines containing either the mouse beta/goat beta c or mouse beta/goat beta F genes expressed the transferred genes at significant levels; in many cases the hybrid genes were, like the endogenous beta-globin genes, inducible with dimethyl sulfoxide. We obtained 13 cell lines containing the mouse beta/goat epsilon II hybrid gene, 6 of which were cotransfected with a mouse beta/human beta fusion gene known to function in MEL cells. In contrast to the results with the other fusion genes, the mouse beta/goat epsilon II hybrid was very poorly expressed: in two separate experiments, 0 of 13 and 2 of 13 lines showed significant mouse beta/goat epsilon II RNA levels after induction. In all these lines the endogenous mouse beta and cotransfected mouse beta/human beta genes were expressed. As an initial test of possible reasons for the inactivity of the mouse beta/goat epsilon II hybrid, we recloned this fusion gene into a tk-bearing plasmid, adjacent to the tk gene. Of 12 cell lines transformed with this plasmid, 11 produced mouse beta/goat epsilon II RNA; in 6 cases the expression was both strong and dimethyl sulfoxide inducible.  相似文献   

16.
The majority of radiation-induced murine myeloid leukaemias are characterized by deletion and/or translocation of an interstitial region of chromosome 2, and there is evidence that such events may occur very early in myeloid leukaemogenesis. Analyses presented and discussed here on the structure and function of two possibly relevant chromosome 2 encoded genes (c-abl and beta 2M) lead to the preliminary conclusion that neither are directly involved nor activationally changed by the characteristic chromosome 2 rearrangements.  相似文献   

17.
The murine neutrophil elastase (NE) gene is expressed specifically in immature myeloid cells. A 91-bp NE promoter region contains three cis elements which are conserved evolutionarily and are essential for activation of the promoter in differentiating 32D cl3 myeloid cells. These elements bound c-Myb (at -49), C/EBPalpha (at -57), and PU.1 (at -82). In NIH 3T3 cells, the NE promoter was activated by c-Myb, C/EBPalpha, and PU.1, via their respective binding sites. Cooperative activation was seen by any combination of c-Myb, C/EBPalpha, and PU.1, including all three together, again via their DNA-binding sites. In CV-1 cells, but not in NIH 3T3 cells, cooperation between Myb and C/EBPalpha depended on the integrity of the PU.1-binding site. In addition to C/EBPalpha, C/EBPdelta strongly activated the NE promoter, alone or with c-Myb, but C/EBPbeta was less active. Either of C/EBPalpha's two transactivation domains cooperatively activated the promoter with c-Myb, in both NIH 3T3 and 32D c13 cells. Synergistic binding to DNA in a gel shift assay between C/EBPalpha, c-Myb, and PU.1 could not be demonstrated. Also, separation of the C/EBP- and c-Myb-binding sites by 5 or 10 bp did not prevent cooperativity. These results suggest that a coactivator protein mediates cooperative activation of the NE promoter by a C/EBP and c-Myb. These factors, together with PU.1, direct restricted expression of the NE promoter to immature myeloid cells.  相似文献   

18.
19.
The human colorectal epithelium is maintained by multipotent stem cells that give rise to absorptive, mucous, and endocrine lineages. Recent evidence suggests that human colorectal cancers are likewise maintained by a minority population of so-called cancer stem cells. We have previously established a human colorectal cancer cell line with multipotent characteristics (HRA-19) and developed a serum-free medium that induces endocrine, mucous and absorptive lineage commitment by HRA-19 cells in vitro. In this study, we investigate the role of the beta1 integrin family of cell surface extracellular matrix receptors in multilineage differentiation by these multipotent human colorectal cancer cells. We show that endocrine and mucous lineage commitment is blocked in the presence of function-blocking antibodies to beta1 integrin. Function-blocking antibodies to alpha2 integrin also blocked both HRA-19 endocrine lineage commitment and enterocytic differentiation by Caco-2 human colon cancer cells; both effects being abrogated by the MEK inhibitor, PD98059, suggesting a role for ERK signaling in alpha2-mediated regulation of colorectal cancer cell differentiation. To further explore the role of alpha2 integrin in multilineage differentiation, we established multipotent cells expressing high levels of wild-type alpha2 integrin or a non-signaling chimeric alpha2 integrin. Overexpression of wild-type alpha2 integrin in HRA-19 cells significantly enhanced endocrine and mucous lineage commitment, while cells expressing the non-signaling chimeric alpha2 integrin had negligible ability for either endocrine or mucous lineage commitment. This study indicates that the collagen receptor alpha2beta1 integrin is a regulator of cell fate in human multipotent colorectal cancer cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号