共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Portes KF Ikegami CM Getz J Martins AP de Noronha L Zischler LF Klassen G Camargo AA Zanata SM Bevilacqua E Nakao LS 《Journal of molecular histology》2008,39(2):217-225
Quiescin Q6/sulfhydryl oxidases (QSOX) are revisited thiol oxidases considered to be involved in the oxidative protein folding,
cell cycle control and extracellular matrix remodeling. They contain thioredoxin domains and introduce disulfide bonds into
proteins and peptides, with the concomitant hydrogen peroxide formation, likely altering the redox environment. Since it is
known that several developmental processes are regulated by the redox state, here we assessed if QSOX could have a role during
mouse fetal development. For this purpose, an anti-recombinant mouse QSOX antibody was produced and characterized. In E13.5, E16.5 fetal tissues, QSOX immunostaining was confined to mesoderm- and ectoderm-derived tissues, while in P1 neonatal tissues it
was slightly extended to some endoderm-derived tissues. QSOX expression, particularly by epithelial tissues, seemed to be
developmentally-regulated, increasing with tissue maturation. QSOX was observed in loose connective tissues in all stages
analyzed, intra and possibly extracellularly, in agreement with its putative role in oxidative folding and extracellular matrix
remodeling. In conclusion, QSOX is expressed in several tissues during mouse development, but preferentially in those derived
from mesoderm and ectoderm, suggesting it could be of relevance during developmental processes.
Kelly F. Portes, Cecília M. Ikegami have contributed equally to this work. 相似文献
3.
Zanata SM Luvizon AC Batista DF Ikegami CM Pedrosa FO Souza EM Chaves DF Caron LF Pelizzari JV Laurindo FR Nakao LS 《Redox report : communications in free radical research》2005,10(6):319-323
The participation of thiol-oxidoreductases such as thioredoxin during implantation, embryogenesis and fetal development has been extensively studied. Here, we analyzed the expression of the thioredoxin superfamily enzyme quiescin Q6/sulfhydryl oxidase (QSOX) during development. Results show that QSOX is present in fetal bovine serum (4 months' gestation), but its levels decrease with time after birth (from P1 to P60). We also demonstrate that a sulfhydryl oxidase activity correlates with QSOX expression in such sera, suggesting a putative role in the redox modulation of developmental programs. 相似文献
4.
《Redox report : communications in free radical research》2013,18(6):319-323
AbstractThe participation of thiol-oxidoreductases such as thioredoxin during implantation, embryogenesis and fetal development has been extensively studied. Here, we analyzed the expression of the thioredoxin superfamily enzyme quiescin Q6/sulfhydryl oxidase (QSOX) during development. Results show that QSOX is present in fetal bovine serum (4 months' gestation), but its levels decrease with time after birth (from P1 to P60). We also demonstrate that a sulfhydryl oxidase activity correlates with QSOX expression in such sera, suggesting a putative role in the redox modulation of developmental programs. 相似文献
5.
Flavoproteins of the quiescin/sulfhydryl oxidase (QSOX) family catalyze oxidation of peptide and protein thiols to disulfides with the reduction of oxygen to hydrogen peroxide. QSOX family members contain several domains, including an N-terminal thioredoxin domain (Trx) and an FAD-binding-domain (ERV) toward the C-terminus. Partial proteolysis of avian QSOX leads to two fragments, designated 30 and 60 kDa from their apparent mobilities on SDS-PAGE. The 30 kDa fragment is a monomer under nondenaturing conditions and contains a Trx domain with a CxxC sequence typical of protein disulfide isomerase (WCGHC). This QSOX fragment is not detectably glycosylated, contains no detectable FAD, and shows undetectable sulfhydryl oxidase activity. In contrast, the 60 kDa fragment is a dimeric glycoprotein that binds FAD tightly and oxidizes dithiothreitol about 1000-fold slower than intact QSOX. Reduced RNase is not a significant substrate of the 60 kDa fragment. The redox behavior of the 60 kDa flavoprotein fragment is profoundly different from that of intact QSOX. Thus, dithionite or photochemical reduction of the 60 kDa fragment leads to two-electron reduction of the FAD without subsequent reduction of the other two CxxC motifs or the appearance of a thiolate to flavin charge-transfer complex. Further characterization of the fragments and insights gained from the crystal structure of yeast ERV2p (Gross, E., Sevier, C. S., Vala, A., Kaiser, C. A., and Fass, D. (2002) Nat. Struct. Biol. 9, 61-67) suggest that the flow of reducing equivalents in intact avian QSOX is dithiol substrate --> C80/83 --> C519/522 --> C459/462 --> FAD --> oxygen. The ancient fusion of thioredoxin domains to a catalytically more limited ERV domain has produced an efficient catalyst for the direct introduction of disulfide bonds into a wide range of proteins and peptides in multicellular organisms. 相似文献
6.
Coppock D Kopman C Gudas J Cina-Poppe DA 《Biochemical and biophysical research communications》2000,269(2):604-610
The transition from growth to quiescence is deeply deranged in cancer cells. Expression of the quiescence-induced genes, quiescin Q6, decorin, and S29, was examined in important physiological states and in several cell types. Senescent fibroblasts expressed neither Q6 nor decorin mRNAs. The quiescins were induced in serum-deprived cultures. Trypsinized cells, which rapidly reattached to the culture dish, expressed Q6, S29, and decorin mRNAs at reduced levels, compared to those that remained in suspension. Expression of Q6 and S29 mRNAs in endothelial cells was low in growth phase and high in quiescent cells. Q6 and S29 mRNAs were found in a large variety of human tissues. The quiescin Q6 protein was detected in WI38 cell extracts and in conditioned medium from quiescent cells. A complex regulation of the quiescins by growth and attachment status in specific cell types may be of importance in pathological growth regulation and the development of cancer. 相似文献
7.
Tomatinase from Fusarium oxysporum f. sp. lycopersici defines a new class of saponinases. 总被引:1,自引:0,他引:1
T Roldán-Arjona A Pérez-Espinosa M Ruiz-Rubio 《Molecular plant-microbe interactions : MPMI》1999,12(10):852-861
Plants produce a variety of secondary metabolites, many of which have antifungal activity. Saponins are plant glycosides that may provide a preformed chemical barrier against phytopathogenic fungi. Fusarium oxysporum f. sp. lycopersici and other tomato pathogens produce extracellular enzymes known as tomatinases, which deglycosylate alpha-tomatine to yield less toxic derivatives. We have cloned and characterized the cDNA and genomic DNA encoding tomatinase from the vascular pathogen of tomato F. oxysporum f. sp. lycopersici. This gene encodes a protein (FoTom1) with no amino acid sequence homology to any previously described saponinase, including tomatinase from Septoria lycopersici. Although FoTom1 is related to family 10 glycosyl hydrolases, which include mainly xylanases, it has no detectable xylanase activity. We have overexpressed and purified the protein with a bacterial heterologous system. The purified enzyme is active and cleaves alpha-tomatine into the less toxic compounds tomatidine and lycotetraose. Tomatinase from F. oxysporum f. sp. lycopersici is encoded by a single gene whose expression is induced by alpha-tomatine. This expression is fully repressed in the presence of glucose, which is consistent with the presence of two putative CREA binding sites in the promoter region of the tomatinase gene. The tomatinase gene is expressed in planta in both roots and stems throughout the entire disease cycle of F. oxysporum f. sp. lycopersici. 相似文献
8.
Enoyl-acyl carrier protein (ACP) reductase catalyzes the last step of the fatty acid elongation cycle. The paradigm enoyl-ACP reductase is the FabI protein of Escherichia coli that is the target of the antibacterial compound, triclosan. However, some Gram-positive bacteria are naturally resistant to triclosan due to the presence of the triclosan-resistant enoyl-ACP reductase isoforms, FabK and FabL. The genome of the Gram-negative bacterium, Vibrio cholerae lacks a gene encoding a homologue of any of the three known enoyl-ACP reductase isozymes suggesting that this organism encodes a novel fourth enoyl-ACP reductase isoform. We report that this is the case. The gene encoding the new isoform, called FabV, was isolated by complementation of a conditionally lethal E. coli fabI mutant strain and was shown to restore fatty acid synthesis to the mutant strain both in vivo and in vitro. Like FabI and FabL, FabV is a member of the short chain dehydrogenase reductase superfamily, although it is considerably larger (402 residues) than either FabI (262 residues) or FabL (250 residues). The FabV, FabI and FabL sequences can be aligned, but only poorly. Alignment requires many gaps and yields only 15% identical residues. Thus, FabV defines a new class of enoyl-ACP reductase. The native FabV protein has been purified to homogeneity and is active with both crotonyl-ACP and the model substrate, crotonyl-CoA. In contrast to FabI and FabL, FabV shows a very strong preference for NADH over NADPH. Expression of FabV in E. coli results in markedly increased resistance to triclosan and the purified enzyme is much more resistant to triclosan than is E. coli FabI. 相似文献
9.
We have identified a gene in Saccharomyces cerevisiae, MSH3, whose predicted protein product shares extensive sequence similarity with bacterial proteins involved in DNA mismatch repair as well as with the predicted protein product of the Rep-3 gene of mouse. MSH3 was obtained by performing a polymerase chain reaction on yeast genomic DNA using degenerate oligonucleotide primers designed to anneal with the most conserved regions of a gene that would be homologous to Rep-3 and Salmonella typhimurium mutS. MSH3 seems to play some role in DNA mismatch repair, inasmuch as its inactivation results in an increase in reversion rates of two different mutations and also causes an increase in postmeiotic segregation. However, the effect of MSH3 disruption on reversion rates and postmeiotic segregation appears to be much less than that of previously characterized yeast DNA mismatch repair genes. Alignment of the MSH3 sequence with all of the known MutS homologues suggests that its primary function may be different from the role of MutS in repair of replication errors. MSH3 appears to be more closely related to the mouse Rep-3 gene and other similar eukaryotic mutS homologues than to the yeast gene MSH2 and other mutS homologues that are involved in replication repair. We suggest that the primary function of MSH3 may be more closely related to one of the other known functions of mutS, such as its role in preventing recombination between non-identical sequences. 相似文献
10.
K L Hoober S L Sheasley H F Gilbert C Thorpe 《The Journal of biological chemistry》1999,274(32):22147-22150
Both metalloprotein and flavin-linked sulfhydryl oxidases catalyze the oxidation of thiols to disulfides with the reduction of oxygen to hydrogen peroxide. Despite earlier suggestions for a role in protein disulfide bond formation, these enzymes have received comparatively little general attention. Chicken egg white sulfhydryl oxidase utilizes an internal redox-active cystine bridge and a FAD moiety in the oxidation of a range of small molecular weight thiols such as glutathione, cysteine, and dithiothreitol. The oxidase is shown here to exhibit a high catalytic activity toward a range of reduced peptides and proteins including insulin A and B chains, lysozyme, ovalbumin, riboflavin-binding protein, and RNase. Catalytic efficiencies are up to 100-fold higher than for reduced glutathione, with typical K(m) values of about 110-330 microM/protein thiol, compared with 20 mM for glutathione. RNase activity is not significantly recovered when the cysteine residues are rapidly oxidized by sulfhydryl oxidase, but activity is efficiently restored when protein disulfide isomerase is also present. Sulfhydryl oxidase can also oxidize reduced protein disulfide isomerase directly. These data show that sulfhydryl oxidase and protein disulfide isomerase can cooperate in vitro in the generation and rearrangement of native disulfide pairings. A possible role for the oxidase in the protein secretory pathway in vivo is discussed. 相似文献
11.
The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins.
下载免费PDF全文

Translation of hunchback(mat) (hb[mat]) mRNA must be repressed in the posterior of the pre-blastoderm Drosophila embryo to permit formation of abdominal segments. This translational repression requires two copies of the Nanos Response Element (NRE), a 16-nt sequence in the hb[mat] 3'' untranslated region. Translational repression also requires the action of two proteins: Pumilio (PUM), a sequence-specific RNA-binding protein; and Nanos, a protein that determines the location of repression. Binding of PUM to the NRE is thought to target hb(mat) mRNA for repression. Here, we show the RNA-binding domain of PUM to be an evolutionarily conserved, 334-amino acid region at the carboxy-terminus of the approximately 158-kDa PUM protein. This contiguous region of PUM retains the RNA-binding specificity of full-length PUM protein. Proteins with sequences homologous to the PUM RNA-binding domain are found in animals, plants, and fungi. The high degree of sequence conservation of the PUM RNA-binding domain in other far-flung species suggests that the domain is an ancient protein motif, and we show that conservation of sequence reflects conservation of function: that is, the homologous region from a human protein binds RNA with sequence specificity related to but distinct from Drosophila PUM. 相似文献
12.
13.
Quiescin sulfhydryl oxidase (QSOX) catalyzes formation of disulfide bonds between cysteine residues in substrate proteins. Human QSOX1 is a multi-domain, monomeric enzyme containing a module related to the single-domain sulfhydryl oxidases of the Erv family. A partial QSOX1 crystal structure reveals a single-chain pseudo-dimer mimicking the quaternary structure of Erv enzymes. However, one pseudo-dimer “subunit” has lost its cofactor and catalytic activity. In QSOX evolution, a further concatenation to a member of the protein disulfide isomerase family resulted in an enzyme capable of both disulfide formation and efficient transfer to substrate proteins. 相似文献
14.
extramacrochaetae, a negative regulator of sensory organ development in Drosophila, defines a new class of helix-loop-helix proteins. 总被引:33,自引:0,他引:33
The function of the extramacrochaetae (emc) gene is required to establish the normal spatial pattern of adult sensory organs in Drosophila. emc acts to suppress sensory organ development in certain regions of the body surface, apparently by antagonizing the function of the achaete and scute genes of the achaetescute complex (AS.C). We have found that emc encodes a novel member of the helix-loop-helix (HLH) family of proteins. The emc protein shares the dimerization domain of other HLH proteins but lacks their DNA binding motif. We propose a model in which the emc protein negatively regulates sensory organ determination by forming heterodimers with the HLH proteins encoded by the AS-C and/or daughterless, thereby altering or interfering with their activity. 相似文献
15.
Isolation and characterization of a new class of cytochrome d terminal oxidase mutants of Escherichia coli.
下载免费PDF全文

Cytochrome d terminal oxidase mutants were isolated by using hydroxylamine mutagenesis of pNG2, a pBR322-derived plasmid containing the wild-type cyd operon. The mutagenized plasmid was transformed into a cyo cyd recA strain, and the transformants were screened for the inability to confer aerobic growth on nonfermentable carbon sources. Western blot analysis and visible-light spectroscopy were performed to characterize three independent mutants grown both aerobically and anaerobically. The mutational variants of the cytochrome d complex were stabilized under anaerobic growth conditions. All three mutations perturb the b595 and d heme components of the complex. These mutations were mapped and sequenced and are shown to be located in the N-terminal third of subunit II of the cytochrome d complex. It is proposed that the N terminus of subunit II may interact with subunit I to form an interface that binds the b595 and d heme centers. 相似文献
16.
17.
18.
19.
L Schepers P P Van Veldhoven M Casteels H J Eyssen G P Mannaerts 《The Journal of biological chemistry》1990,265(9):5242-5246
Mammalian liver peroxisomes are capable of beta-oxidizing a variety of substrates including very long chain fatty acids and the side chains of the bile acid intermediates di- and trihydroxycoprostanic acid. The first enzyme of peroxisomal beta-oxidation is acyl-CoA oxidase. It remains unknown whether peroxisomes possess one or several acyl-CoA oxidases. Peroxisomal oxidases from rat liver were partially purified by (NH4)2SO4 precipitation and heat treatment, and the preparation was subjected to chromatofocusing, chromatography on hydroxylapatite and dye affinity matrices, and gel filtration. The column eluates were assayed for palmitoyl-CoA and trihydroxycoprostanoyl-CoA oxidase activities and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The results revealed the presence of three acyl-CoA oxidases: 1) a fatty acyl-CoA oxidase with a pI of 8.3 and an apparent molecular mass of 145 kDa. The enzyme consisted mainly of 52- and 22.5-kDa subunits and could be induced by clofibrate treatment; 2) a noninducible fatty acyl-CoA oxidase with a pI of 7.1 and an apparent molecular mass of 427 kDa. It consisted mainly, if not exclusively, of one polypeptide component of 71 kDa; and 3) a noninducile trihydroxycoprostanoyl-CoA oxidase with a pI of 7.1 and an apparent molecular mass of 139 kDa. It consisted mainly, if not exclusively, of one polypeptide component of 69 kDa. Our findings are probably related to the recent discovery of two species of acyl-CoA oxidase mRNA in rat liver (Miyazawa, S., Hayashi, H., Hijikata, M., Ishii, N., Furata, S., Kagamiyama, H., Osumi, T., and Hashimoto, T. (1987) J. Biol. Chem. 262, 8131-8137) and they probably also explain why in human peroxisomal beta-oxidation defects an accumulation of very long chain fatty acids is not always accompanied by an excretion of bile acid intermediates and vice versa. 相似文献
20.
Acetobacter aceti produces two different terminal oxidases dependent on the culture conditions, shaking and static cultures. Cells grown on shaking culture contain cytochrome a1, while cytochrome o is present in cells grown on static culture. Cytochrome a1 and cytochrome o of A. aceti were compared especially with respect to the protein structure and the prosthetic groups. Cytochrome a1 exhibited lower CN sensitivity and higher affinity for O2 than cytochrome o. Both terminal oxidases consisted of four nonidentical polypeptides of which the molecular sizes were identical between both enzymes. Cytochrome a1 cross-reacted with an antibody raised against cytochrome o at the same level as cytochrome o did, and an antibody elicited against cytochrome a1 cross-reacted with both cytochrome o and cytochrome a1 at the same intensity, which indicates that both oxidases are indistinguishable immunochemically. Furthermore, almost the same peptide mapping pattern with chymotrypsin was observed in subunit I and in subunit II between both terminal oxidases, and the amino-terminal sequences in the subunit II of both oxidases were identical at least in their 10 amino acids. As for the prosthetic groups, both oxidases were shown to contain two heme-irons and one copper atom. Further, high performance liquid chromatography analysis of the heme moieties extracted from both the purified enzymes indicated that cytochrome a1 contains hemes b and a at a ratio of 1 to 1, whereas cytochrome o contains the same amounts of hemes b and o. Thus, data indicate that cytochrome a1 and cytochrome o of A. aceti are cytochrome ba and cytochrome bo ubiquinol oxidases, respectively, and that both oxidases have a closely similar protein structure and prosthetic groups, in which only heme a in the heme/copper binuclear center of cytochrome a1 is replaced by heme o in that of cytochrome o. 相似文献