首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Regulation of heterochromatin by histone methylation and small RNAs   总被引:12,自引:0,他引:12  
Heterochromatin mediates various nuclear processes including centromere function, gene silencing and nuclear organization. Although it was discovered nearly 75 years ago, the pathways involved in heterochromatin establishment, assembly and epigenetic maintenance have been elusive. Recent reports have demonstrated that distinct and novel chromatin-associated factors, including DNA, RNA and histone modifications, are involved in each of these events. These new findings define a novel conserved mechanism of heterochromatin formation that is likely to have an impact on all eukaryotic silencing pathways.  相似文献   

3.
Tatebayashi K  Tani T  Ikeda H 《Genetics》2001,157(4):1513-1522
We have cloned and characterized the Schizosaccharomyces pombe gene mog1(+), which encodes a protein with homology to the Saccharomyces cerevisiae Mog1p participating in the Ran-GTPase system. The S. pombe Mog1p is predominantly localized in the nucleus. In contrast to the S. cerevisiae MOG1 gene, the S. pombe mog1(+) gene is essential for cell viability. mog1(+) is required for the mitosis-to-interphase transition, as the mog1-1 mutant arrests at restrictive temperatures as septated, binucleated cells with highly condensed chromosomes and an aberrant nuclear envelope. FACS analysis showed that these cells do not undergo a subsequent round of DNA replication. Surprisingly, also unlike the Delta mog1 mutation in S. cerevisiae, the mog1-1 mutation causes nucleolar accumulation of poly(A)(+) RNA at the restrictive temperature in S. pombe, but the signals do not overlap with the fibrillarin-rich region of the nucleolus. Thus, we found that mog1(+) is required for the mitosis-to-interphase transition and a class of RNA metabolism. In our attempt to identify suppressors of mog1-1, we isolated the spi1(+) gene, which encodes the fission yeast homologue of Ran. We found that overexpression of Spi1p rescues the S. pombe Delta mog1 cells from death. On the basis of these results, we conclude that mog1(+) is involved in the Ran-GTPase system.  相似文献   

4.
The Ran-GTPase cycle is important for nucleus-cytosol exchange of macromolecules and other nuclear processes. We employed the two-hybrid method to identify proteins interacting with Ran and the Ran GTP/GDP exchange factor. Using PRP20, encoding the Ran GTP/GDP exchange factor, we identified YRB1, previously identified as a protein able to interact with human Ran GTP/GDP exchange factor RCC1 in the two-hybrid system. Using GSP1, encoding the yeast Ran, as bait, we isolated YRB2. YRB2 encodes a protein containing a Ran-binding motif similar to that found in Yrb1p and Nup2p. Yrb1p is located in the cytosol whereas Nup2p is nuclear. Similar to Yrb1p, Yrb2p bound to GTP-Gsp1p but not to GDP-Gsp1p and enhanced the GTPase-activating activity of Rna1p. However, unlike Yrb1p, Yrb2p did not inhibit the nucleotide-releasing activity of Prp20p. While overproduction of Yrb1p inhibited the growth of a mutant possessing a PRP20 mutation (srm1-1) and suppressed the rna1-1 mutation, overproduction of Yrb2p showed no effect on the growth of these mutants. Disruption of YRB2 made yeast cold sensitive and was synthetically lethal with rna1-1 but not with nup2delta. Nuclear protein import and the mRNA export were normal in strains possessing mutations of YRB2. We propose that Yrb2p is involved in the nuclear processes of the Ran-GTPase cycle which are not related to nucleus-cytosol exchange of macromolecules.  相似文献   

5.
Ran, a Ras-related GTPase, is required for transporting proteins in and out of the nucleus during interphase and for regulating the assembly of microtubules. cDNA cloning shows that rat testis, like mouse testis, expresses both somatic and testis-specific forms of Ran-GTPase. The presence of a homologous testis-specific form of Ran-GTPase in rodents implies that the Ran-GTPase pathway plays a significant role during sperm development. This suggestions is supported by distinct Ran-GTPase immunolocalization sites identified in developing spermatids. Confocal microscopy demonstrates that Ran-GTPase localizes in the nucleus of round spermatids and along the microtubules of the manchette in elongating spermatids. When the manchette disassembles, Ran-GTPase immunoreactivity is visualized in the centrosome region of maturing spermatids. The circumstantial observation that fractionated manchettes, containing copurified centrin-immunoreactive centrosomes, can organize a three-dimensional lattice in the presence of taxol and GTP, points to the role of Ran-GTPase and associated factors in microtubule nucleation as well as the potential nucleating function of spermatid centrosomes undergoing a reduction process. Electron microscopy demonstrates the presence in manchette preparations of spermatid centrosomes, recognized as such by their association with remnants of the implantation fossa, a dense plate observed only at the basal surface of developing spermatid and sperm nuclei. In addition, we have found importin beta1 immunoreactivity in the nucleus of elongating spermatids, a finding that, together with the presence of Ran-GTPase in the nucleus of round spermatids and the manchette, suggest a potential role of Ran-GTPase machinery in nucleocytoplasmic transport. Our expression and localization analysis, correlated with functional observations in other cell systems, suggest that Ran-GTPase may be involved in both nucleocytoplasmic transport and microtubules assembly, two critical events during the development of functional sperm. In addition, the manchette-to-centrosome Ran-GTPase relocation, together with the similar redistribution of various proteins associated to the manchette, suggest the existence of an intramanchette molecular transport mechanism, which may share molecular analogies with intraflagellar transport.  相似文献   

6.
The Ran-GTPase and cell-cycle control   总被引:14,自引:0,他引:14  
RCC1, the chromatin-bound guanine-nucleotide exchange factor (GEF) for the small nuclear GTPase, Ran, is required for coordinating the onset of mitosis with S-phase completion in mammalian cells. Other defects in the Ran-GTPase network also result in disruption of cell-cycle processes such as DNA replication, exit from mitosis and, at least in budding yeast, accurate chromosome segregation. However, the Ran system is now best known for its pivotal role in nucleocytoplasmic transport, where RanGTP is used as a positional flag for the nucleus during interphase. Ran's effectors are the shuttling transport factors, importins and exportins, which facilitate the transit of cargoes between the nucleus and cytoplasm: RanGTP regulates their cargo-binding properties so that they can move their cargo in the correct direction. RanGTP also plays a separate role during mitosis, influencing microtubule polymerisation, possibly specifically in the vicinity of chromosomes. Most recently, Ran has been shown to be crucial for the regeneration of a nuclear envelope after exit from mitosis. So, can the problems with cell-cycle progression and control induced by perturbing the Ran-system be attributed to defects in these three processes? This article examines this issue, concentrating on vertebrate systems. BioEssays 23:77-85, 2001.  相似文献   

7.
N Kataoka  M Ohno  I Moda    Y Shimura 《Nucleic acids research》1995,23(18):3638-3641
It has been shown that the monomethylated cap structure plays important roles in pre-mRNA splicing and nuclear export of RNA. As a candidate for the factor involved in these nuclear events we have previously purified an 80 kDa nuclear cap binding protein (NCBP) from a HeLa cell nuclear extract and isolated its full-length cDNA. In this report, in order to obtain a clue to the cellular functions of NCBP, we attempted to identify a factor(s) that interacts with NCBP. Using the yeast two-hybrid system we isolated three clones from a HeLa cell cDNA library. We designated the proteins encoded by these clones NIPs (NCBP interacting proteins). NIP1 and NIP2 have an RNP consensus-type RNA binding domain, whereas NIP3 contains a unique domain of Arg-Glu or Lys-Glu dipeptide repeats. We also show that NCBP requires NIP1 for binding to the cap structure. Possible roles of NIPs in cap-dependent nuclear processes are discussed.  相似文献   

8.
9.
10.
11.
Like its retroviral relatives, the long terminal repeat retrotransposon Ty1 in the yeast Saccharomyces cerevisiae must traverse a permanently intact nuclear membrane for successful transposition and replication. For retrotransposition to occur, at least a subset of Ty1 proteins, including the Ty1 integrase, must enter the nucleus. Nuclear localization of integrase is dependent upon a C-terminal nuclear targeting sequence. However, the nuclear import machinery that recognizes this nuclear targeting signal has not been defined. We investigated the mechanism by which Ty1 integrase gains access to nuclear DNA as a model for how other retroelements, including retroviruses like HIV, may utilize cellular nuclear transport machinery to import their essential nuclear proteins. We show that Ty1 retrotransposition is significantly impaired in yeast mutants that alter the classical nuclear protein import pathway, including the Ran-GTPase, and the dimeric import receptor, importin-alpha/beta. Although Ty1 proteins are made and processed in these mutant cells, our studies reveal that an integrase reporter is not properly targeted to the nucleus in cells carrying mutations in the classical nuclear import machinery. Furthermore, we demonstrate that integrase coimmunoprecipitates with the importin-alpha transport receptor and directly binds to importin-alpha. Taken together, these data suggest Ty1 integrase can employ the classical nuclear protein transport machinery to enter the nucleus.  相似文献   

12.
Using a differential extraction procedure which had previously been shown to yield one nucleic acid fraction enriched in cytoplasmic RNA and another enriched in nuclear RNA, we have been able to isolate two polyadenylated RNA populations from microplasmodia of Physarum polycephalum. The poly(A)-containing RNA from the cytoplasmic-enriched fraction accounts for approximately 1.2% of the cytoplasmic nucleic acid, has a number-average nucleotide size of 1339+/- 39 nucleotides, and has been shown, in a protein-synthesizing system in vitro, to be capable of directing the synthesis of peptides which have also been shown to be synthesized in vivo by microplasmodia. The poly(A)-containing RNA from the nuclear-enriched fraction has a number-average nucleotide size of 1533 +/- 104 nucleotides and represents a mixture of cytoplasmic and nuclear adenylated RNA molecules. Based upon these observations, we have identified the polyadenylated RNA isolated from the fraction enriched in cytoplasmic nuclei acid as Physarum poly(A)-containing messenger RNA.  相似文献   

13.
M Dasso  T Seki  Y Azuma  T Ohba    T Nishimoto 《The EMBO journal》1994,13(23):5732-5744
The Ran protein is a small GTPase that has been implicated in a large number of nuclear processes including transport. RNA processing and cell cycle checkpoint control. A similar spectrum of nuclear activities has been shown to require RCC1, the guanine nucleotide exchange factor (GEF) for Ran. We have used the Xenopus laevis egg extract system and in vitro assays of purified proteins to examine how Ran or RCC1 could be involved in these numerous processes. In these studies, we employed mutant Ran proteins to perturb nuclear assembly and function. The addition of a bacterially expressed mutant form of Ran (T24N-Ran), which was predicted to be primarily in the GDP-bound state, profoundly disrupted nuclear assembly and DNA replication in extracts. We further examined the molecular mechanism by which T24N-Ran disrupts normal nuclear activity and found that T24N-Ran binds tightly to the RCC1 protein within the extract, resulting in its inactivation as a GEF. The capacity of T24N-Ran-blocked interphase extracts to assemble nuclei from de-membranated sperm chromatin and to replicate their DNA could be restored by supplementing the extract with excess RCC1 and thereby providing excess GEF activity. Conversely, nuclear assembly and DNA replication were both rescued in extracts lacking RCC1 by the addition of high levels of wild-type GTP-bound Ran protein, indicating that RCC1 does not have an essential function beyond its role as a GEF in interphase Xenopus extracts.  相似文献   

14.
15.
16.
RNA splicing is one of the fundamental processes in gene expression in eukaryotes. Splicing of pre-mRNA is catalysed by a large ribonucleoprotein complex called the spliceosome, which consists of five small nuclear RNAs and numerous protein factors. The spliceosome is a highly dynamic structure, assembled by sequential binding and release of the small nuclear RNAs and protein factors. DExD/H-box RNA helicases are required to mediate structural changes in the spliceosome at various steps in the assembly pathway and have also been implicated in the fidelity control of the splicing reaction. Other proteins also play key roles in mediating the progression of the spliceosome pathway. In this review, we discuss the functional roles of the protein factors involved in the spliceosome pathway primarily from studies in the yeast system.  相似文献   

17.
The content of DNA and protein in the nuclei was determined cytophotometrically as well as DNA and RNA in nucleoli of chicken embryos of different gastrullation stages after 3 days of storage at +6 degrees, +2 degrees and - 2 degrees C. It was established that the response of embryos to cold at the cell level became apparent in inhibiting the protein synthesizing system (under effects of suboptimal and extreme temperature). inhibiting the migration processes of nuclear RNA into the nucleoplasm and nuclear proteins into the cytoplasm and a certain alteration in the nucleus ploidy (under extreme conditions). The reaction of each stage under study and different cellular layers of the same differentiation stage were shown to have certain specificity.  相似文献   

18.
19.
Nuclear bodies: multifaceted subdomains of the interchromatin space.   总被引:21,自引:0,他引:21  
  相似文献   

20.
应激颗粒(stress granules, SGs)是细胞在环境压力刺激下停止蛋白质翻译后,mRNA与多种细胞蛋白组装而成的胞质颗粒结构.RNA 解旋酶家族作为生物体内普遍存在的一类高度保守的蛋白质酶类,参与了RNA代谢各个环节,近年来其家族成员被陆续发现是一类新的SG重要组分.本文综述了RNA解旋酶参与应激颗粒形成过程,RNA解旋酶家族蛋白的结构和其参与应激颗粒形成的研究进展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号