首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA containing the aI3 group I intron of the yeast mitochondrial gene encoding cytochrome oxidase subunit I shows self-splicing in vitro. The excised intron, comprising 1514 nucleotides, is partially split into an upstream portion, containing the intronic reading frame, and a downstream portion, containing the typical group I conserved sequence elements. Full-length intron RNA and intron parts occur in linear and circular form. In the transesterification reactions leading to circle formation, only the guanosine nucleotide added during splicing is removed. Reincubation of isolated, complete circular intron RNA under self-splicing conditions leads to formation of free subintronic RNA circles. Under similar conditions, purified linear intron RNA gives rise to a number of circular and linear products, one of which consists of interlocked subintronic RNA circles. These observations suggest that the intron RNA possesses a dynamic structure in which subtle alterations in folding result in the formation of RNA products with different topology.  相似文献   

2.
The antiquity of group I introns.   总被引:2,自引:0,他引:2  
The recent discovery of self-splicing introns in cyanobacteria has given renewed interest to the question of whether introns may have been present in the ancestor of all living things. The properties of introns in genes of bacteria and bacteriophages are discussed in the context of their possible origin and biological function.  相似文献   

3.
Structural conventions for group I introns.   总被引:50,自引:22,他引:28       下载免费PDF全文
Conventions for nomenclature of structural elements and a standard secondary structure representation for group I introns have been established by workers in the field. These conventions are designed to facilitate effective communication of information concerning the structure and function of these self-splicing introns.  相似文献   

4.
H Trinkl  K Wolf 《Gene》1986,45(3):289-297
The gene encoding subunit 1 of cytochrome oxidase (cox1) in the fission yeast Schizosaccharomyces pombe is polymorphic. In strain 50 it contains two group I introns with open reading frames (ORFs) in phase with the upstream exons (Lang, 1984). In strain EF1 two additional very short group I introns which do not possess ORFs were detected by DNA sequencing. These two introns (AI2a and AI3) share distinct characteristics concerning their nucleotide sequence and secondary structure and are located at identical positions as the introns AI4 and AI5 beta, respectively, in the cox1 gene of Saccharomyces cerevisiae. The sequence homology of the cob and cox1 genes around the splice points of introns AI2a, AI4, and BI4 (cob intron 4) might reflect horizontal gene transfer between the distantly related species S. pombe and S. cerevisiae.  相似文献   

5.
New RNA-mediated reactions by yeast mitochondrial group I introns.   总被引:7,自引:1,他引:6       下载免费PDF全文
The group I self-splicing reaction is initiated by attack of a guanosine nucleotide at the 5' splice site of intron-containing precursor RNA. When precursor RNA containing a yeast mitochondrial group I intron is incubated in vitro under conditions of self-splicing, guanosine nucleotide attack can also occur at other positions: (i) the 3' splice site, resulting in formation of a 3' exon carrying an extra added guanosine nucleotide at its 5' end; (ii) the first phosphodiester bond in precursor RNA synthesized from the SP6 bacteriophage promoter, leading to substitution of the first 5'-guanosine by a guanosine nucleotide from the reaction mixture; (iii) the first phosphodiester bond in already excised intron RNA, resulting in exchange of the 5' terminal guanosine nucleotide for a guanosine nucleotide from the reaction mixture. An identical sequence motif (5'-GAA-3') occurs at the 3' splice site, the 5' end of SP6 precursor RNA and at the 5' end of excised intron RNA. We propose that the aberrant reactions can be explained by base-pairing of the GAA sequence to the Internal Guide Sequence. We suggest that these reactions are mediated by the same catalytic centre of the intron RNA that governs the normal splicing reactions.  相似文献   

6.
Self-splicing group I introns in eukaryotic viruses.   总被引:5,自引:1,他引:4       下载免费PDF全文
T Yamada  K Tamura  T Aimi    P Songsri 《Nucleic acids research》1994,22(13):2532-2537
  相似文献   

7.
Structure and assembly of group I introns   总被引:1,自引:0,他引:1  
Self-splicing group I introns have served as a model for RNA catalysis and folding for over two decades. New three-dimensional structures now bring the details into view. Revelations include an unanticipated turn in the RNA backbone around the guanosine-binding pocket. Two metal ions in the active site coordinate the substrate and phosphates from all three helical domains.  相似文献   

8.
There are four major classes of introns: self-splicing group I and group II introns, tRNA and/or archaeal introns and spliceosomal introns in nuclear pre-mRNA. Group I introns are widely distributed in protists, bacteria and bacteriophages. Group II introns are found in fungal and land plant mitochondria, algal plastids, bacteria and Archaea. Group II and spliceosomal introns share a common splicing pathway and might be related to each other. The tRNA and/or archaeal introns are found in the nuclear tRNA of eukaryotes and in archaeal tRNA, rRNA and mRNA. The mechanisms underlying the self-splicing and mobility of a few model group I introns are well understood. By contrast, the role of these highly distinct processes in the evolution of the 1500 group I introns found thus far in nature (e.g. in algae and fungi) has only recently been clarified. The explosion of new sequence data has facilitated the use of comparative methods to understand group I intron evolution in a broader context and to generate hypotheses about intron insertion, splicing and spread that can be tested experimentally.  相似文献   

9.
Many tRNA(Leu)UAA genes from plastids contain a group I intron. An intron is also inserted in the same gene at the same position in cyanobacteria, the bacterial progenitors of plastids, suggesting an ancient bacterial origin for this intron. A group I intron has also been found in the tRNA(fMet) gene of some cyanobacteria but not in plastids, suggesting a more recent origin for this intron. In this study, we investigate the phylogenetic distributions of the two introns among cyanobacteria, from the earliest branching to the more derived species. The phylogenetic distribution of the tRNA(Leu)UAA intron follows the clustering of rRNA sequences, being either absent or present in clades of closely related species, with only one exception in the Pseudanabaena group. Our data support the notion that the tRNA(Leu)UAA intron was inherited by cyanobacteria and plastids through a common ancestor. Conversely, the tRNA(fMet) intron has a sporadic distribution, implying that many gains and losses occurred during cyanobacterial evolution. Interestingly, a phylogenetic tree inferred from intronic sequences clearly separates the different tRNA introns, suggesting that each family has its own evolutionary history.  相似文献   

10.
Streptomycin is an aminocyclitol glycoside antibiotic, which interferes with prokaryotic protein synthesis by interacting with the ribosomal RNA. We report here that streptomycin is also able to inhibit self splicing of the group I intron of the thymidylate synthase gene of phage T4. The inhibition is kinetically competitive with the substrate guanosine. Streptomycin and guanosine have in common a guanidino group, which has been shown to undergo hydrogen bonds with the ribozyme (Bass & Cech, Biochemistry, 25, 1986, 4473). The inhibitory effect of streptomycin extends to other group I introns, but does not affect group II introns. Mutating the bulged nucleotide in the conserved P7 secondary structure element of the td intron alters the affinity of the ribozyme for both guanosine and streptomycin. Myomycin, an antibiotic with similar effects on protein synthesis as streptomycin, is also able to inhibit splicing. In contrast, bluensomycin, which is structurally related to streptomycin, but contains only one guanidino group does not inhibit splicing. We discuss these findings in support of an evolutionary model that stresses the antiquity of antibiotics (J. Davies, Molecular Microbiology 4, 1990, 1227).  相似文献   

11.
Group I and group II introns are unrelated classes of introns that each encode proteins that facilitate intron splicing and intron mobility. Here we describe a new subfamily of nine introns in fungi that are group II introns but encode LAGLIDADG ORFs typical of group I introns. The introns have fairly standard group IIB1 RNA structures and are inserted into three different sites in SSU and LSU rRNA genes. Therefore, introns should not be assumed to be group I introns based solely on the presence of a LAGLIDADG ORF.  相似文献   

12.
13.
14.
Twenty-two years after their discovery as ribozymes, the self-splicing group I introns are finally disclosing their architecture at the atomic level. The crystal structures of three group I introns solved at moderately high resolution (3.1-3.8A) reveal a remarkably conserved catalytic core bound to the metal ions required for activity. The structure of the core is stabilized by an intron-specific set of long-range interactions that involves peripheral elements. Group I intron structures thus provide much awaited and extremely valuable snapshots of how these ribozymes coordinate substrate binding and catalysis.  相似文献   

15.
A pure straight chain ceramide hexasaccharide (“lacto-N-norhexaosylceramide” Galβ1→4GlcNAcβ1→3Galβ1→4GlcNAcβ1→3Galβ1→4Glc→Ceramide) showed strong i-activity determined by hemagglutination inhibition and by radioimmunoassay with five out of six anti-i antisera. Two repeating Galβ1→4GlcNAc residues and GlcNAcβ1→3Gal residues could be essential for the full expression of this activity; eleven closely related analogues including those derived by chemical modification had lower or no detectable activity. The same structure reacted also with some anti-I antisera. The strong i-activity and the moderate I-activity were both abolished by elimination of the terminal Gal or by removal of the N-acetyl groups of the two GlcNAc residues.  相似文献   

16.
The catalytic mechanism for self-splicing of the group I intron in the pre-mRNA from the nrdB gene in bacteriophage T4 has been investigated using 2'-amino- 2'-deoxyguanosine or guanosine as cosubstrates in the presence of Mg2+, Mn2+and Zn2+. The results show that a divalent metal ion interacts with the cosubstrate and thereby influences the efficiency of catalysis in the first step of splicing. This suggests the existence of a metal ion that catalyses the nucleophilic attack of the cosubstrate. Of particular significance is that the transesterification reactions of the first step of splicing with 2'-amino-2'-deoxyguanosine as cosubstrate are more efficient in mixtures containing either Mn2+or Zn2+together with Mg2+than with only magnesium ions present. The experiments in metal ion mixtures show that two (or more) metal ions are crucial for the self-splicing of group I introns and suggest the possibility that more than one of these have a direct catalytic role. A working model for a two-metal-ion mechanism in the transesterification steps is suggested.  相似文献   

17.
The spread of group I introns depends on their association with intron-encoded homing endonucleases. Introns that encode functional homing endonuclease genes (HEGs) are highly invasive, whereas introns that only encode the group I ribozyme responsible for self-splicing are generally stably inherited (i.e., vertical inheritance). A number of recent case studies have provided new knowledge on the evolution of group I introns, however, there are still large gaps in understanding of their distribution on the tree of life, and how they have spread into new hosts and genic sites. During a larger phylogenetic survey of chlorophyceaen green algae, we found that 23 isolates contain at least one group I intron in the rbcL chloroplast gene. Structural analyses show that the introns belong to one of two intron lineages, group IA2 intron-HEG (GIY-YIG family) elements inserted after position 462 in the rbcL gene, and group IA1 introns inserted after position 699. The latter intron type sometimes encodes HNH homing endonucleases. The distribution of introns was analyzed on an exon phylogeny and patterns were recovered that are consistent with vertical inheritance and possible horizontal transfer. The rbcL 462 introns are thus far reported only within the Volvocales, Hydrodictyaceae and Bracteacoccus, and closely related isolates of algae differ in the presence of rbcL introns. Phylogenetic analysis of the intron conserved regions indicates that the rbcL699 and rbcL462 introns have distinct evolutionary origins. The rbcL699 introns were likely derived from ribosomal RNA L2449 introns, whereas the rbcL462 introns form a close relationship with psbA introns.  相似文献   

18.
One family within the Euascomycetes (Ascomycota), the lichen-forming Physciaceae, is particularly rich in nuclear ribosomal [r]DNA group I introns. We used phylogenetic analyses of group I introns and lichen-fungal host cells to address four questions about group I intron evolution in lichens, and generally in all eukaryotes: 1) Is intron spread in the lichens associated with the intimate association of the fungal and photosynthetic cells that make up the lichen thallus? 2) Are the multiple group I introns in the lichen-fungi of independent origins, or have existing introns spread into novel sites in the rDNA? 3) If introns have moved to novel sites, then does the exon context of these sites provide insights into the mechanism of intron spread? and 4) What is the pattern of intron loss in the small subunit rDNA gene of lichen-fungi? Our analyses show that group I introns in the lichen-fungi and in the lichen-algae (and lichenized cyanobacteria) do not share a close evolutionary relationship, suggesting that these introns do not move between the symbionts. Many group I introns appear to have originated in the common ancestor of the Lecanorales, whereas others have spread within this lineage (particularly in the Physciaceae) putatively through reverse-splicing into novel rRNA sites. We suggest that the evolutionary history of most lichen-fungal group I introns is characterized by rare gains followed by extensive losses in descendants, resulting in a sporadic intron distribution. Detailed phylogenetic analyses of the introns and host cells are required, therefore, to distinguish this scenario from the alternative hypothesis of widespread and independent intron gains in the different lichen-fungal lineages.  相似文献   

19.
We analyzed small subunit ribosomal DNA (ssu-rDNA) sequences to evaluate both the monophyly of the ciliate class Phyllopharyngea de Puytorac et al. (1974), and relationships among subclasses. Classifications based on morphology and ultrastructure divide the Phyllopharyngea into four subclasses, the Phyllopharyngia, Chonotrichia, Rhynchodia, and Suctoria. Our analyses of ssu-rDNA genealogies derived from sequence data collected from diverse members representing three of the four subclasses of Phyllopharyngea (Suctoria: Ephelota spp., Prodiscophyra collini, Acineta sp.; Phyllopharyngia: Chlamydodon exocellatus, Chlamydodon triquetrus, Dysteria sp.; and Chonotrichia: Isochona sp.) provide strong support for the monophyly of the Phyllopharyngea, and show that the Chonotrichia emerge from within the Phyllopharyngia. Based on this initial sampling, suctorian budding types are monophyletic, and exogenous budding appears to be basal to evaginative and endogenous budding. Further, we report the discovery of a group I intron at position 891 in the Suctoria Acineta sp. and Tokophrya lemnarum, and a second group I intron at position 1506 in T. lemnarum. These introns represent only the second examples of group I introns in a ciliate ribosomal gene, since the discovery of ribozymes in the LSU rRNA gene of Tetrahymena thermophila. Phylogenetic analyses of Group I introns suggest a complex evolutionary history involving either multiple loses or gains of introns within endogenously budding Suctoria.  相似文献   

20.
In the current era of massive discoveries of noncoding RNAs within genomes, being able to infer a function from a nucleotide sequence is of paramount interest. Although studies of individual group I introns have identified self-splicing and nonself-splicing examples, there is no overall understanding of the prevalence of self-splicing or the factors that determine it among the >2300 group I introns sequenced to date. Here, the self-splicing activities of 12 group I introns from various organisms were assayed under six reaction conditions that had been shown previously to promote RNA catalysis for different RNAs. Besides revealing that assessing self-splicing under only one condition can be misleading, this survey emphasizes that in vitro self-splicing efficiency is correlated with the GC content of the intron (>35% GC was generally conductive to self-splicing), and with the ability of the introns to form particular tertiary interactions. Addition of the Neurospora crassa CYT-18 protein activated splicing of two nonself-splicing introns, but inhibited the second step of self-splicing for two others. Together, correlations between sequence, predicted structure and splicing begin to establish rules that should facilitate our ability to predict the self-splicing activity of any group I intron from its sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号