首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Sorting nexin 1 (SNX1) is a protein that binds to the epidermal growth factor (EGF) receptor and is proposed to play a role in directing EGF receptors to lysosomes for degradation (R. C. Kurten, D. L. Cadena, and G. N. Gill, Science 272:1008–1010, 1996). We have obtained full-length cDNAs and deduced the amino acid sequences of three novel homologous proteins, which were denoted human sorting nexins (SNX2, SNX3, and SNX4). In addition, we identified a presumed splice variant isoform of SNX1 (SNX1A). These molecules contain a conserved domain of ~100 amino acids, which was termed the phox homology (PX) domain. Human SNX1 (522 amino acids), SNX1A (457 amino acids), SNX2 (519 amino acids), SNX3 (162 amino acids), and SNX4 (450 amino acids) are part of a larger family of hydrophilic molecules including proteins identified in Caenorhabditis elegans and Saccharomyces cerevisiae. Despite their hydrophilic nature, the sorting nexins are found partially associated with cellular membranes. They are widely expressed, although the tissue distribution of each sorting nexin mRNA varies. When expressed in COS7 cells, epitope-tagged sorting nexins SNX1, SNX1A, SNX2, and SNX4 coimmunoprecipitated with receptor tyrosine kinases for EGF, platelet-derived growth factor, and insulin. These sorting nexins also associated with the long isoform of the leptin receptor but not with the short and medium isoforms. Interestingly, endogenous COS7 transferrin receptors associated exclusively with SNX1 and SNX1A, while SNX3 was not found to associate with any of the receptors studied. Our demonstration of a large conserved family of sorting nexins that interact with a variety of receptor types suggests that these proteins may be involved in several stages of intracellular trafficking in mammalian cells.  相似文献   

2.
Members of the transforming growth factor-beta (TGF-beta) superfamily signal through unique cell membrane receptor serine-threonine kinases to activate downstream targets. TRAP1 is a previously described 96-kDa cytoplasmic protein shown to bind to TGF-beta receptors and suggested to play a role in TGF-beta signaling. We now fully characterize the binding properties of TRAP1, and show that it associates strongly with inactive heteromeric TGF-beta and activin receptor complexes and is released upon activation of signaling. Moreover, we demonstrate that TRAP1 plays a role in the Smad-mediated signal transduction pathway, interacting with the common mediator, Smad4, in a ligand-dependent fashion. While TRAP1 has only a small stimulatory effect on TGF-beta signaling in functional assays, deletion constructs of TRAP1 inhibit TGF-beta signaling and diminish the interaction of Smad4 with Smad2. These are the first data to identify a specific molecular chaperone for Smad4, suggesting a model in which TRAP1 brings Smad4 into the vicinity of the receptor complex and facilitates its transfer to the receptor-activated Smad proteins.  相似文献   

3.
Sorting nexins are a family of phox homology domain containing proteins that are homologous to yeast proteins involved in protein trafficking. We have identified a novel 342-amino acid residue sorting nexin, SNX15, and a 252-amino acid splice variant, SNX15A. Unlike many sorting nexins, a SNX15 ortholog has not been identified in yeast or Caenorhabditis elegans. By Northern blot analysis, SNX15 mRNA is widely expressed. Although predicted to be a soluble protein, both endogenous and overexpressed SNX15 are found on membranes and in the cytosol. The phox homology domain of SNX15 is required for its membrane association and for association with the platelet-derived growth factor receptor. We did not detect association of SNX15 with receptors for epidermal growth factor or insulin. However, overexpression of SNX15 led to a decrease in the processing of insulin and hepatocyte growth factor receptors to their mature subunits. Immunofluorescence studies showed that SNX15 overexpression resulted in mislocalization of furin, the endoprotease responsible for cleavage of insulin and hepatocyte growth factor receptors. Based on our data and the existing findings with yeast orthologs of other sorting nexins, we propose that overexpression of SNX15 disrupts the normal trafficking of proteins from the plasma membrane to recycling endosomes or the trans-Golgi network.  相似文献   

4.
TGF-beta signaling from receptors to the nucleus   总被引:13,自引:0,他引:13  
  相似文献   

5.
Glial cell line-derived neurotrophic factor (GDNF) family, consisting of GDNF, neurturin, artemin and persephin are distant members of the transforming growth factor-beta (TGF-beta) superfamily. Unlike other members of the TGF-beta superfamily, which signal through the receptor serine-threonine kinases, GDNF family ligands activate intracellular signalling cascades via the receptor tyrosine kinase Ret. GDNF family ligands first bind to the glycosylphosphatidylinositol (GPI)-anchored GDNF family receptor alpha (GFRalpha) and then the GDNF family ligand-GFRalpha complex binds to and stimulates autophosphorylation of Ret. Alternatively, a preassociated complex between GFRalpha and Ret could form the binding site for the GDNF family ligand. GFRalpha1, GFRalpha2, GFRalpha3 and GFRalpha4 are the physiological coreceptors for GDNF, neurturin, artemin and persephin, respectively. Although all GDNF family ligands signal via activated Ret, GDNF can signal also via GFRalpha1 in the absence of Ret. GPI-anchored GFRalpha receptors are localized in plasma membrane to lipid rafts. GDNF binding to GFRalpha1 also recruits Ret to the lipid rafts and triggers association with Src, which is required for effective downstream signalling, leading to differentiation and neuronal survival. GDNF family ligands are potent survival factors for midbrain dopamine neurons, motoneurons, noradrenergic neurons, as well as for sympathetic, parasympathetic and sensory neurons. However, for most neuronal populations, except for motoneurons, TGF-beta is required as a cofactor for GDNF family ligand signalling. Because GDNF and neurturin can rescue dopamine neurons in the animal models of Parkinson disease, as well as motoneurons in vivo, hopes have been raised that GDNF family ligands may be new drugs for the treatment of neurodegenerative diseases. GDNF also has distinct functions outside the nervous system, promoting ureteric branching in kidney development and regulating spermatogenesis.  相似文献   

6.
14-3-3 proteins are pSer/pThr-binding proteins that interact with a wide array of cellular ‘client’ proteins. The plant brassinosteroids (BRs) receptor, BRASSINOSTEROID INSENSITIVE 1 (BRI1), is a member of the large family of leucine-rich repeat receptor-like kinases (LRR-RLKs) that contain cytoplasmic protein kinase domains. At least two LRR-RLKs are involved in BR perception and signal transduction: BRI1 and BRI1-associated receptor kinase 1 (BAK1). We determined that several 14-3-3 proteins bind to BRI1-CD and are phosphorylated by BRI1, BAK1 and At3g21430 receptor kinases in vitro. Moreover, we observed14-3-3 s are phosphorylated on threonine residue(s) with BR-dependent manner. To reveal the function of 14-3-3 proteins interacting with LRR-RLKs, we treated tyrosine phosphatase (PTP1B) to the BRI1-CD recombinant protein, which is autophosphorylated on tyrosine residue(s). Tyrosine autophosphorylation signal was disappeared, suggesting that 14-3-3 proteins cannot protect BRI1 tyrosine phosphorylation from PTP1B phosphatase. Our study suggests that 14-3-3 proteins may be important for plant growth and development through BR signaling.  相似文献   

7.
Signals elicited by transforming growth factor-beta (TGF-beta) superfamily ligands are generated following the formation of heteromeric receptor complexes consisting of type I and type II receptors. TAK1, a member of the MAP kinase kinase kinase family, and its activator, TAB1, participate in the bone morphogenetic protein (BMP) signaling pathway involved in mesoderm induction and patterning in early Xenopus embryos. However, the events leading from receptor activation to TAK1 activation remain to be identified. A yeast interaction screen was used to search for proteins that function in the pathway linking the receptors and TAB1-TAK1. The human X-chromosome-linked inhibitor of apoptosis protein (XIAP) was isolated as a TAB1-binding protein. XIAP associated not only with TAB1 but also with the BMP receptors in mammalian cells. Injection of XIAP mRNA into dorsal blastomeres enhanced the ventralization of Xenopus embryos in a TAB1-TAK1-dependent manner. Furthermore, a truncated form of XIAP lacking the TAB1-binding domain partially blocked the expression of ventral mesodermal marker genes induced by a constitutively active BMP type I receptor. These results suggest that XIAP participates in the BMP signaling pathway as a positive regulator linking the BMP receptors and TAB1-TAK1.  相似文献   

8.
Guanylate cyclase, a cell surface receptor   总被引:9,自引:0,他引:9  
Guanylate cyclase appears to represent a central member of a diverse family of proteins involved in cell signaling mechanisms including the protein kinases, a low Mr ANP receptor, and possibly adenylate cyclase (based on limited sequence identity with the yeast enzyme). A membrane form of guanylate cyclase represents a new model for cell surface receptors, although such a model was once envisioned for adenylate cyclase (79). In original models for adenylate cyclase, hormone was thought to bind with either the enzyme or with an unknown protein to enhance cyclic AMP production (79). Guanylate cyclase appears to fall into the first adenylate cyclase model where binding of a ligand to an extracellular site on the enzyme transmits a signal to an intracellular catalytic site. The production of cyclic GMP, a second messenger, and of pyrophosphate are then increased. The protein tyrosine kinase family of receptors (80) and possibly another forthcoming family of cell surface receptors containing protein tyrosine phosphatase activity (81-83) contain a single transmembrane domain like guanylate cyclase. Furthermore, the protein tyrosine kinases are activated by ligand binding to the extracellular domain. However, the activation of guanylate cyclase, unlike these cell surface receptors, results in the formation of a low molecular weight second messenger.  相似文献   

9.
src family tyrosine kinases contain two noncatalytic domains termed src homology 3 (SH3) and SH2 domains. Although several other signal transduction molecules also contain tandemly occurring SH3 and SH2 domains, the function of these closely spaced domains is not well understood. To identify the role of the SH3 domains of src family tyrosine kinases, we sought to identify proteins that interacted with this domain. By using the yeast two-hybrid system, we identified p62, a tyrosine-phosphorylated protein that associates with p21ras GTPase-activating protein, as a src family kinase SH3-domain-binding protein. Reconstitution of complexes containing p62 and the src family kinase p59fyn in HeLa cells demonstrated that complex formation resulted in tyrosine phosphorylation of p62 and was mediated by both the SH3 and SH2 domains of p59fyn. The phosphorylation of p62 by p59fyn required an intact SH3 domain, demonstrating that one function of the src family kinase SH3 domains is to bind and present certain substrates to the kinase. As p62 contains at least five SH3-domain-binding motifs and multiple tyrosine phosphorylation sites, p62 may interact with other signalling molecules via SH3 and SH2 domain interactions. Here we show that the SH3 and/or SH2 domains of the signalling proteins Grb2 and phospholipase C gamma-1 can interact with p62 both in vitro and in vivo. Thus, we propose that one function of the tandemly occurring SH3 and SH2 domains of src family kinases is to bind p62, a multifunctional SH3 and SH2 domain adapter protein, linking src family kinases to downstream effector and regulatory molecules.  相似文献   

10.
11.
A new homodimer form of transforming growth factor-beta (TGF-beta), TGF-beta 2, has been identified in porcine blood platelets. TGF-beta 2 is homologous to ordinary TGF-beta (TGF-beta 1), which is also present in platelets. TGF-beta 1.2, a heterodimer containing one TGF-beta 1 chain and one TGF-beta 2 chain, has also been isolated. TGF-beta 1 and TGF-beta 2 interact differently with a family of receptors in target cells. A 280 kd receptor displays high affinity for both TGF-beta 1 and TGF-beta 2. Occupancy of this receptor by TGF-beta 1 or TGF-beta 2 correlates with the ability of these TGF-beta s to inhibit cell proliferation. In contrast, 65 kd and 85 kd receptors have high affinity for TGF-beta 1 but lower affinity for TGF-beta 2. The existence of distinct forms of TGF-beta that interact differently with a family of TGF-beta receptors could provide flexibility to the regulation of tissue growth and differentiation by the TGF-beta system.  相似文献   

12.
Sorting nexins (SNXs) comprise a family of proteins characterized by the presence of a phox-homology domain, which mediates the association of these proteins with phosphoinositides and recruits them to specific membranes or vesicular structures within cells. Although only limited information about SNXs and their functions is available, they seem to be involved in membrane trafficking and sorting processes by directly binding to target proteins such as certain growth factor receptors. We show that SNX17 binds to the intracellular domain of some members of the low-density lipoprotein receptor (LDLR) family such as LDLR, VLDLR, ApoER2 and LDLR-related protein. SNX17 resides on distinct vesicular structures partially overlapping with endosomal compartments characterized by the presence of EEA1 and rab4. Using rhodamine-labeled LDL, it was possible to demonstrate that during endocytosis, LDL passes through SNX17-positive compartments. Functional studies on the LDLR pathway showed that SNX17 enhances the endocytosis rate of this receptor. Our results identify SNX17 as a novel adaptor protein for LDLR family members and define a novel mechanism for modulation of their endocytic activity.  相似文献   

13.
The insulin receptor (IR) and the insulin-like growth factor receptor I (IGF-IR) have different functions in cell growth, apoptosis, differentation, and transformation. Although some of these differences may be explained by the relative level of receptor expression and receptor structure (alpha and beta subunits), they may also be attributed to differences in intracellular signals generated by insulin and IGF-I. The presence of hybrid receptors (IR alphabeta subunits and IGF-IR alphabeta subunits) making up the heterotetramers has added a new dimension to our understanding of the functional roles of these receptors. However, to date the results of efforts to understand the differences between these two closely related receptors have indicated mostly similarities. For example, both receptors utilize IRS-1/IRS-2 and Shc as immediate downstream adaptors, leading to activation of the Ras, Raf, ERK kinases and PI-3 kinase pathways. We have used the yeast two hybrid system to identify proteins which bind to the activated IGF-IR but not to the IR. The cytoplasmic domain of the IGF-IR was used to screen a human fetal brain library and two isoforms of the 14-3-3 family were identified. 14-3-3 proteins are a highly conserved family of proteins which have recently been shown to interact with other components of the mitogenic and apoptotic signaling pathways, including Raf, BAD, Bcr/Bcr-Abl, middle-T antigen, Ksr, PKC, PI-3 kinase, ASK1 kinase, and cdc25C phosphatase. We also identified human Grb10, an adaptor protein with SH2 domain associated with the IGF-IR beta subunit. Smith's laboratory showed that Grb10 preferentially binds to the IR in intact cells. Using the interaction trap screen (active cytoplasmic domain of the IGF-IR) 55PIK and SOCS-2 proteins were also identified. However, 55PIK and SOCS-2 also interact with the IR in the yeast two hybrid system. These studies raise the possibility that 14-3-3 and Grb10 may play a role in insulin and IGF-I signal transduction and may underlie the observed differences.  相似文献   

14.
Engagement of the B-cell antigen receptor complex induces immediate activation of receptor-associated Src family tyrosine kinases including p55blk, p59fyn, p53/56lyn, and perhaps p56lck, and this response is accompanied by tyrosine phosphorylation of distinct cellular substrates. These kinases act directly or indirectly to phosphorylate and/or activate effector proteins including p42 (microtubule-associated protein kinase) (MAPK), phospholipases C-gamma 1 (PLC gamma 1) and C-gamma 2 (PLC gamma 2), phosphatidylinositol 3-kinase (PI 3-K), and p21ras-GTPase-activating protein (GAP). Although coimmunoprecipitation results indicate that the Src family protein tyrosine kinases interact physically with some of these effector molecules, the molecular basis of this interaction has not been established. Here, we show that three distinct sites mediate the interaction of these kinases with effectors. The amino-terminal 27 residues of the unique domain of p56lyn mediate association with PLC gamma 2, MAPK, and GAP. Binding to PI 3-K is mediated through the Src homology 3 (SH3) domains of the Src family kinases. Relatively small proportions of cellular PI 3-K, PLC gamma 2, MAPK, and GAP, presumably those which are tyrosine phosphorylated, bind to the SH2 domains of these kinases. Comparative analysis of binding activities of Blk, Lyn, and Fyn shows that these kinases differ in their abilities to associate with MAPK and PI 3-K, suggesting that they may preferentially bind and subsequently phosphorylate distinct sets of downstream effector molecules in vivo. Fast protein liquid chromatography Mono Q column-fractionated MAPK maintains the ability to bind bacterially expressed Lyn, suggesting that the two kinases may interact directly.  相似文献   

15.
Activins, members of the transforming growth factor-beta family, are pleiotropic growth and differentiation factors. Activin A induces B-cell apoptosis. To identify the genes responsible for activin-induced apoptosis, we performed retrovirus-mediated gene trap screening in a mouse B-cell line. We identified the rasGAP-binding protein Dok-1 (p62) as an essential molecule that links activin receptors with Smad proteins. In B cells overexpressing Dok-1, activin A-induced apoptotic responses were augmented. The expression of bcl-X(L) was down-regulated by inhibition of the ras/Erk pathway. Activin stimulation triggered association of Dok-1 with Smad3, as well as association of Smad3 with Smad4. Dok-1 also associated with both the type I and type II activin receptors. Dok-1 has been characterized previously as a tyrosine-phosphorylated protein acting downstream of the protein tyrosine kinase pathway: intriguingly, activin signaling did not induce tyrosine phosphorylation of Dok-1. These findings indicate that Dok-1 acts as an adaptor protein that links the activin receptors with the Smads, suggesting a novel function for Dok-1 in activin signaling leading to B-cell apoptosis.  相似文献   

16.
Stein EG  Gustafson TA  Hubbard SR 《FEBS letters》2001,493(2-3):106-111
Grb7, Grb10 and Grb14 comprise a family of adaptor proteins that interact with numerous receptor tyrosine kinases upon receptor activation. Between the pleckstrin homology (PH) domain and the Src homology 2 (SH2) domain of these proteins is a region of approximately 50 residues known as the BPS (between PH and SH2) domain. Here we show, using purified recombinant proteins, that the BPS domain of Grb10 directly inhibits substrate phosphorylation by the activated tyrosine kinase domains of the insulin receptor and the insulin-like growth factor 1 (IGF1) receptor. Although inhibition by the BPS domain is dependent on tyrosine phosphorylation of the kinase activation loop, peptide competition experiments indicate that the BPS domain does not bind directly to phosphotyrosine. These studies provide a molecular mechanism by which Grb10 functions as a negative regulator of insulin- and/or IGF1-mediated signaling.  相似文献   

17.
18.
The bone morphogenetic proteins (BMPs) are a group of transforming growth factor beta (TGF-beta)-related factors whose only receptor identified to date is the product of the daf-4 gene from Caenorhabditis elegans. Mouse embryonic NIH 3T3 fibroblasts display high-affinity 125I-BMP-4 binding sites. Binding assays are not possible with the isoform 125I-BMP-2 unless the positively charged N-terminal sequence is removed to create a modified BMP-2, 125I-DR-BMP-2. Cross-competition experiments reveal that BMP-2 and BMP-4 interact with the same binding sites. Affinity cross-linking assays show that both BMPs interact with cell surface proteins corresponding in size to the type I (57- to 62-kDa) and type II (75- to 82-kDa) receptor components for TGF-beta and activin. Using a PCR approach, we have cloned a cDNA from NIH 3T3 cells which encodes a novel member of the transmembrane serine/threonine kinase family most closely resembling the cloned type I receptors for TGF-beta and activin. Transient expression of this receptor in COS-7 cells leads to an increase in specific 125I-BMP-4 binding and the appearance of a major affinity-labeled product of approximately 64 kDa that can be labeled by either tracer. This receptor has been named BRK-1 in recognition of its ability to bind BMP-2 and BMP-4 and its receptor kinase structure. Although BRK-1 does not require cotransfection of a type II receptor in order to bind ligand in COS cells, complex formation between BRK-1 and the BMP type II receptor DAF-4 can be demonstrated when the two receptors are coexpressed, affinity labeled, and immunoprecipitated with antibodies to either receptor subunit. We conclude that BRK-1 is a putative BMP type I receptor capable of interacting with a known type II receptor for BMPs.  相似文献   

19.
The transforming growth factor-beta superfamily of receptors   总被引:15,自引:0,他引:15  
The transforming growth factor-beta (TGF-beta) superfamily of receptors comprises two groups of transmembrane serine-threonine kinase receptors, so called type I, and type II receptors, that are activated following engagement by members of the TGF-beta superfamily of ligands. These events specify diverse downstream responses that are differentially regulated by controlling access and activation of the ligands, their receptors and downstream substrates in different cell types. The purpose of this review is to describe the biochemical properties of these receptors, focusing specifically on the mechanisms regulating receptor/ligand interactions and activation in mammalian cells.  相似文献   

20.
Signal transfer by Eph receptors   总被引:4,自引:0,他引:4  
The Eph receptors are a unique family of receptor tyrosine kinases that enforce cellular position in tissues through mainly repulsive signals generated upon cell-cell contact. Together, Eph receptors and their membrane-anchored ligands. the ephrins, are key molecules for establishing tissue organization through signaling pathways that control axonal projection, cell migration, and the maintenance of cellular boundaries. Through their SH2 (Src Homology 2) and PDZ (postsynaptic density protein, disks large, zona occludens) domains, several signaling molecules have been demonstrated to interact with the activated cytoplasmic domain of Eph receptors by using the yeast two-hybrid system and in vitro biochemical assays. Most proteins found to interact with Eph receptors are well-known regulators of cytoskeletal organization and cell adhesion, and also cell proliferation. Promoting growth, however, does not appear to be a primary role of Eph receptors. Explaining which signaling interactions identified for the Eph receptors have physiological significance, how Eph receptor signaling cascades are propagated, and characterizing the intrinsic signaling properties of the ephrins are all exciting questions currently being investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号