首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Dirr HW  Wallace LA 《Biochemistry》1999,38(47):15631-15640
Helix 9 at the C-terminus of class alpha glutathione transferase (GST) polypeptides is a unique structural feature in the GST superfamily. It plays an important structural role in the catalytic cycle. Its contribution toward protein stability/folding as well as the binding of nonsubstrate ligands was investigated by protein engineering, conformational stability, enzyme activity, and ligand-binding methods. The helix9 sequence displays an unfavorable propensity toward helix formation, but tertiary interactions between the amphipathic helix and the GST seem to contribute sufficient stability to populate the helix on the surface of the protein. The helix's stability is enhanced further by the binding of ligands at the active site. The order of ligand-induced stabilization increases from H-site occupation, to G-site occupation, to the simultaneous occupation of H- and G-sites. Ligand-induced stabilization of helix9 reduces solvent accessible hydrophobic surface by facilitating firmer packing at the hydrophobic interface between helix and GST. This stabilized form exhibits enhanced affinity for the binding of nonsubstrate ligands to ligandin sites (i.e., noncatalytic binding sites). Although helix9 contributes very little toward the global stability of hGSTA1-1, its conformational dynamics have significant implications for the protein's equilibrium unfolding/refolding pathway and unfolding kinetics. Considering the high concentration of reduced glutathione in human cells (about 10 mM), the physiological form of hGSTA1-1 is most likely the thiol-complexed protein with a stabilized helix9. The C-terminus region (including helix9) of the class alpha polypeptide appears not to have been optimized for stability but rather for catalytic and ligandin function.  相似文献   

2.
Rat liver glutathione S-transferase, isozyme 1-1, catalyzes the glutathione-dependent isomerization of Delta(5)-androstene-3,17-dione and also binds steroid sulfates at a nonsubstrate inhibitory steroid site. 17beta-Iodoacetoxy-estradiol-3-sulfate, a reactive steroid analogue, produces a time-dependent inactivation of this glutathione S-transferase to a limit of 60% residual activity. The rate constant for inactivation (k(obs)) exhibits a nonlinear dependence on reagent concentration with K(I) = 71 microm and k(max) = 0.0133 min(-1). Complete protection against inactivation is provided by 17beta-estradiol-3,17-disulfate, whereas Delta5-androstene-3,17-dione and S-methylglutathione have little effect on k(obs). These results indicate that 17beta-iodoacetoxy-estradiol-3-sulfate reacts as an affinity label of the nonsubstrate steroid site rather than of the substrate sites occupied by Delta5-androstene-3,17-dione or glutathione. Loss of activity occurs concomitant with incorporation of about 1 mol 14C-labeled reagent/mol enzyme dimer when the enzyme is maximally inactivated. Isolation of the labeled peptide from the chymotryptic digest shows that Cys(17) is the only enzymic amino acid modified. Covalent modification of Cys(17) by 17beta-iodoacetoxy-estradiol-3-sulfate on subunit A prevents reaction of the steroid analogue with subunit B. These results and examination of the crystal structure of the enzyme suggest that the interaction between the two subunits of glutathione S-transferase 1-1, and the electrostatic attraction between the 3-sulfate of the reagent and Arg(14) of subunit B, are important in binding steroid sulfates at the nonsubstrate steroid binding site and in determining the specificity of this affinity label.  相似文献   

3.
Mosebi S  Sayed Y  Burke J  Dirr HW 《Biochemistry》2003,42(51):15326-15332
The C-terminal region in class alpha glutathione transferases (GSTs) modulates the catalytic and nonsubstrate ligand binding functions of these enzymes. Except for mouse GST A1-1 (mGST A1-1), the structures of class alpha GSTs have a bulky aliphatic side chain topologically equivalent to Ile219 in human GST A1-1 (hGST A1-1). In mGST A1-1, the corresponding residue is an alanine. To investigate the role of Ile219 in determining the conformational dynamics of the C-terminal region in hGST A1-1, the residue was replaced by alanine. The substitution had no effect on the global structure of hGST A1-1 but did reduce the conformational stability of the C-terminal region of the protein. This region could be stabilized by ligands bound at the active site. The catalytic behavior of hGST A1-1 was significantly compromised by the I219A mutation as demonstrated by reduced enzyme activity, increased K(m) for the substrates glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB), and reduced catalytic efficiencies. Inhibition studies also indicated that the binding affinities for product and substrate analogues were dramatically decreased. The affinity of the mutant for GSH was, however, only slightly increased, indicating that the G-site was unaltered by the mutation. The binding affinity and stoichiometry for the anionic dye 8-anilino-1-naphthalene sulfonate (ANS) was also not significantly affected by the I219A mutation. However, the lower DeltaC(p) for ANS binding to the mutant (-0.34 kJ/mol per K compared with -0.84 kJ/mol per K for the wild-type protein) suggests that ANS binding to the mutant results in the burial of less hydrophobic surface area. Fluorescence data also indicates that ANS bound to the mutant is more prone to quenching by water. Overall, the data from this study, together with the structural details of the C-terminal region in mGST A1-1, show that Ile219 is an important structural determinant of the stability and dynamics of the C-terminal region of hGST A1-1.  相似文献   

4.
Monobromobimane (mBBr), functions as a substrate of porcine glutathione S-transferase pi (GST pi): The enzyme catalyzes the reaction of mBBr with glutathione. S-(Hydroxyethyl)bimane, a nonreactive analog of monobromobimane, acts as a competitive inhibitor with respect to mBBr as substrate but does not affect the reaction of GST pi with another substrate, 1-chloro-2,4-dinitrobenzene (CDNB). In the absence of glutathione, monobromobimane inactivates GST pi at pH 7.0 and 25 degrees C as assayed using mBBr as substrate, with a lesser effect on the enzyme's use of CDNB as substrate. These results indicate that the sites occupied by CDNB and mBBr are not identical. Inactivation is proportional to the incorporation of 2 moles of bimane/mole of subunit. Modification of GST pi with mBBr does not interfere with its binding of 8-anilino-1-naphthalene sulfonate, indicating that this hydrophobic site is not the target of monobromobimane. S-Methylglutathione and S-(hydroxyethyl)bimane each yield partial protection against inactivation and decrease reagent incorporation, while glutathionyl-bimane protects completely against inactivation. Peptide analysis after trypsin digestion indicates that mBBr modifies Cys45 and Cys99 equally. Modification of Cys45 is reduced in the presence of S-methylglutathione, indicating that this residue is at or near the glutathione binding region. In contrast, modification of Cys99 is reduced in the presence of S-(hydroxyethyl)bimane, suggesting that this residue is at or near the mBBr xenobiotic substrate binding site. Modification of Cys99 can best be understood by reaction with monobromobimane while it is bound to its xenobiotic substrate site in an alternate orientation. These results support the concept that glutathione S-transferase accomplishes its ability to react with a diversity of substrates in part by harboring distinct xenobiotic substrate sites.  相似文献   

5.
Cytosolic glutathione S-transferases (GSTs) play a critical role in xenobiotic binding and metabolism, as well as in modulation of oxidative stress. Here, the high-resolution X-ray crystal structures of homodimeric human GSTA1-1 in the apo form and in complex with S-hexyl glutathione (two data sets) are reported at 1.8, 1.5, and 1.3A respectively. At this level of resolution, distinct conformations of the alkyl chain of S-hexyl glutathione are observed, reflecting the nonspecific nature of the hydrophobic substrate binding site (H-site). Also, an extensive network of ordered water, including 75 discrete solvent molecules, traverses the open subunit-subunit interface and connects the glutathione binding sites in each subunit. In the highest-resolution structure, three glycerol moieties lie within this network and directly connect the amino termini of the glutathione molecules. A search for ligand binding sites with the docking program Molecular Operating Environment identified the ordered water network binding site, lined mainly with hydrophobic residues, suggesting an extended ligand binding surface for nonsubstrate ligands, the so-called ligandin site. Finally, detailed comparison of the structures reported here with previously published X-ray structures reveal a possible reaction coordinate for ligand-dependent conformational changes in the active site and the C-terminus.  相似文献   

6.
The diuretic drug ethacrynic acid (EA), both an inhibitor and substrate of pi class glutathione S‐transferase (GST P1‐1), has been tested in clinical trials as an adjuvant in chemotherapy. We recently studied the role of the active site residue Tyr‐108 in binding EA to the enzyme and found that the analysis was complicated by covalent binding of this drug to the highly reactive Cys‐47. Previous attempts to eliminate this binding by chemical modification yielded ambiguous results and therefore we decided here to produce a double mutant C47S/Y108V by site directed mutagenesis and further expression in Escherichia coli and the interaction of EA and its GSH conjugate (EASG) examined by calorimetric studies and X‐ray diffraction. Surprisingly, in the absence of Cys‐47, Cys‐101 (located at the dimer interface) becomes a target for modification by EA, albeit at a lower conjugation rate than Cys‐47. The Cys‐47 → Ser mutation in the double mutant enzyme induces a positive cooperativity between the two subunits when ligands with affinity to G‐site bind to enzyme. However, this mutation does not seem to affect the thermodynamic properties of ligand binding to the electrophilic binding site (H‐site) and the thermal or chemical stability of this double mutant does not significantly affect the unfolding mechanism in either the absence or presence of ligand. Crystal structures of apo and an EASG complex are essentially identical with a few exceptions in the H‐site and in the water network at the dimer interface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Reaction of rat liver glutathione S-transferase, isozyme 1-1, with 4-(fluorosulfonyl)benzoic acid (4-FSB), a xenobiotic substrate analogue, results in a time-dependent inactivation of the enzyme to a final value of 35% of its original activity when assayed at pH 6.5 with 1-chloro-2,4-dinitrobenzene (CDNB) as substrate. The rate of inactivation exhibits a nonlinear dependence on the concentration of 4-FSB from 0.25 mM to 9 mM, characterized by a KI of 0.78 mM and kmax of 0.011 min-1. S-Hexylglutathione or the xenobiotic substrate analogue, 2,4-dinitrophenol, protects against inactivation of the enzyme by 4-FSB, whereas S-methylglutathione has little effect on the reaction. These experiments indicate that reaction occurs within the active site of the enzyme, probably in the binding site of the xenobiotic substrate, close to the glutathione binding site. Incorporation of [3,5-3H]-4-FSB into the enzyme in the absence and presence of S-hexylglutathione suggests that modification of one residue is responsible for the partial loss of enzyme activity. Tyr 8 and Cys 17 are shown to be the reaction targets of 4-FSB, but only Tyr 8 is protected against 4-FSB by S-hexylglutathione. DTT regenerates cysteine from the reaction product of cysteine and 4-FSB, but does not reactivate the enzyme. These results show that modification of Tyr 8 by 4-FSB causes the partial inactivation of the enzyme. The Michaelis constants for various substrates are not changed by the modification of the enzyme. The pH dependence of the enzyme-catalyzed reaction of glutathione with CDNB for the modified enzyme, as compared with the native enzyme, reveals an increase of about 0.9 in the apparent pKa, which has been interpreted as representing the ionization of enzyme-bound glutathione; however, this pKa of about 7.4 for modified enzyme remains far below the pK of 9.1 for the -SH of free glutathione. Previously, it was considered that Tyr 8 was essential for GST catalysis. In contrast, we conclude that Tyr 8 facilitates the ionization of the thiol group of glutathione bound to glutathione S-transferase, but is not required for enzyme activity.  相似文献   

8.
In human glutathione transferase (GST) A1-1, the C-terminal region covers the active site and contributes to substrate binding. This region is flexible, but upon binding of an active-site ligand, it is stabilized as an amphipatic alpha-helix. The stabilization has implications for the catalytic activity of the enzyme. In the present study, residue M208 in GST A1-1 has been mutated to Lys and Glu, and residue F220 to Ala and Thr. These mutations are likely to destabilize the C-terminal region due to loss of hydrophobic interactions with the rest of the hydrophobic binding site. The rate constant for binding of glutathione to wild-type GST A1-1 is 450 mM(-)(1) s(-)(1) at 5 degrees C and pH 7.0, which is less than for an association limited by diffusion. However, the M208 and the F220 mutations increase the apparent on-rate constant for glutathione binding to 640-1170 mM(-)(1) s(-)(1). The binding data can be explained by a rapid reversible transition between different enzyme conformations occurring prior to glutathione binding, and restriction of the access to the active site by the C-terminal region. The effect of the mutations appears to be promotion of a less closed conformation, thereby facilitating the association of glutathione and enzyme. Both the M208 and F220 mutants display a lowered pK(a) value ( approximately 0.3 log unit) of the catalytically important Tyr9. Residue 208 does not interact directly with Tyr9 in the active site, and the shift in pK(a) value is therefore ascribed to the proposed dislocation of the C-terminal region caused by the mutation.  相似文献   

9.
The nitric oxide molecule (NO) is involved in many important physiological processes and seems to be stabilized by reduced thiol species, such as S-nitrosoglutathione (GSNO). GSNO binds strongly to glutathione transferases, a major superfamily of detoxifying enzymes. We have determined the crystal structure of GSNO bound to dimeric human glutathione transferase P1-1 (hGSTP1-1) at 1.4 A resolution. The GSNO ligand binds in the active site with the nitrosyl moiety involved in multiple interactions with the protein. Isothermal titration calorimetry and differential scanning calorimetry (DSC) have been used to characterize the interaction of GSNO with the enzyme. The binding of GSNO to wild-type hGSTP1-1 induces a negative cooperativity with a kinetic process concomitant to the binding process occurring at more physiological temperatures. GSNO inhibits wild-type enzyme competitively at lower temperatures but covalently at higher temperatures, presumably by S-nitrosylation of a sulfhydryl group. The C47S mutation removes the covalent modification potential of the enzyme by GSNO. These results are consistent with a model in which the flexible helix alpha2 of hGST P1-1 must move sufficiently to allow chemical modification of Cys47. In contrast to wild-type enzyme, the C47S mutation induces a positive cooperativity toward GSNO binding. The DSC results show that the thermal stability of the mutant is slightly higher than wild type, consistent with helix alpha2 forming new interactions with the other subunit. All these results suggest that Cys47 plays a key role in intersubunit cooperativity and that under certain pathological conditions S-nitrosylation of Cys47 by GSNO is a likely physiological scenario.  相似文献   

10.
The oxidation of lipids and cell membranes generates cytotoxic compounds implicated in the etiology of aging, cancer, atherosclerosis, neurodegenerative diseases, and other illnesses. Glutathione transferase (GST) A4-4 is a key component in the defense against the products of this oxidative stress because, unlike other Alpha class GSTs, GST A4-4 shows high catalytic activity with lipid peroxidation products such as 4-hydroxynon-2-enal (HNE). The crystal structure of human apo GST A4-4 unexpectedly possesses an ordered C-terminal alpha-helix, despite the absence of any ligand. The structure of human GST A4-4 in complex with the inhibitor S-(2-iodobenzyl) glutathione reveals key features of the electrophilic substrate-binding pocket which confer specificity toward HNE. Three structural modules form the binding site for electrophilic substrates and thereby govern substrate selectivity: the beta1-alpha1 loop, the end of the alpha4 helix, and the C-terminal alpha9 helix. A few residue changes in GST A4-4 result in alpha9 taking over a predominant role in ligand specificity from the N-terminal loop region important for GST A1-1. Thus, the C-terminal helix alpha9 in GST A4-4 provides pre-existing ligand complementarity rather than acting as a flexible cap as observed in other GST structures. Hydrophobic residues in the alpha9 helix, differing from those in the closely related GST A1-1, delineate a hydrophobic specificity canyon for the binding of lipid peroxidation products. The role of residue Tyr212 as a key catalytic residue, suggested by the crystal structure of the inhibitor complex, is confirmed by mutagenesis results. Tyr212 is positioned to interact with the aldehyde group of the substrate and polarize it for reaction. Tyr212 also coopts part of the binding cleft ordinarily formed by the N-terminal substrate recognition region in the homologous enzyme GST A1-1 to reveal an evolutionary swapping of function between different recognition elements. A structural model of catalysis is presented based on these results.  相似文献   

11.
Ralat LA  Colman RF 《Biochemistry》2006,45(41):12491-12499
Alpha-tocopherol, the most abundant form of vitamin E present in humans, is a noncompetitive inhibitor of glutathione S-transferase pi (GST pi), but its binding site had not been located. Tocopherol iodoacetate (TIA), a reactive analogue, produces a time-dependent inactivation of GST pi to a limit of 25% residual activity. The rate constant for inactivation, k(obs), exhibits a nonlinear dependence on reagent concentration, with K(I) = 19 microM and k(max) = 0.158 min(-)(1). Complete protection against inactivation is provided by tocopherol and tocopherol acetate, whereas glutathione derivatives, electrophilic substrate analogues, buffers, or nonsubstrate hydrophobic ligands have little effect on k(obs). These results indicate that TIA reacts as an affinity label of a distinguishable tocopherol binding site. Loss of activity occurs concomitant with incorporation of about 1 mol of reagent/mol of enzyme subunit when the enzyme is maximally inactivated. Isolation of the labeled peptide from the tryptic digest shows that Tyr(79) is the only enzymic amino acid modified. The Y79F, Y79S, and Y79A mutant enzymes were generated, expressed, and purified. Changing Tyr(79) to Ser or Ala, but not Phe, renders the enzyme insensitive to inhibition by either tocopherol or tocopherol acetate as demonstrated by increases of at least 49-fold in K(I) values as compared to the wild-type enzyme. These results and examination of the crystal structure of GST pi suggest that tocopherols bind at a novel site, where an aromatic residue at position 79 is essential for binding.  相似文献   

12.
Glutathionyl S-[4-(succinimidyl)benzophenone] (GS-Succ-BP), an analogue of the product of glutathione and electrophilic substrate, acts as a photoaffinity label of dimeric rat liver glutathione S-transferase (GST), isoenzyme 1-1. A time-dependent loss of enzyme activity is observed upon irradiation of the enzyme with long wavelength UV light in the presence of the reagent. The initial rate of inactivation exhibits nonlinear dependence on the concentration of the reagent, characterized by an apparent dissociation constant of the enzyme-reagent complex (K(R)) of 99 +/- 2 microM and k(max) of 0.082 +/- 0.005 min(-1). Protection against this inactivation is provided by the electrophilic substrate (ethacrynic acid), electrophilic substrate analogue (dinitrophenol), and product analogues (S-hexylglutathione and p-nitrobenzylglutathione) but not by steroids (Delta(5)-androstene-3,17-dione and 17beta-estradiol-3, 17-disulfate). These results suggest that GS-Succ-BP binds and reacts with the enzyme within the xenobiotic substrate binding site, and this reaction site is distinct from the substrate and nonsubstrate steroid binding sites of the enzyme. About 1 mol of reagent is incorporated into 1 mol of enzyme dimer when the enzyme is completely inactivated. Met-208 is the only amino acid target of the reagent, and modification of this residue in one enzyme subunit of the GST 1-1 dimer completely abolishes the enzyme activity of both subunits. In order to evaluate the role of subunit interactions in the Alpha class glutathione S-transferases, inactive GS-Succ-BP-modified GST 1-1 was mixed with unlabeled, active GST 2-2. The enzyme subunits were dissociated in dilute trifluoroacetic acid and then renatured at pH 7.8 and separated by chromatofocusing into GST 1-1, 1-2, and 2-2. The specific activities of the heterodimer toward several substrates indicate that the loss of catalytic activity in the unmodified subunit of the modified GST 1-1 is the indirect result of the interaction between the two enzyme subunits and that this subunit interaction is absent in the heterodimer GST 1-2.  相似文献   

13.
We have recently shown that dinitrosyl diglutathionyl iron complex, a possible in vivo nitric oxide (NO) donor, binds with extraordinary affinity to one of the active sites of human glutathione transferase (GST) P1-1 and triggers negative cooperativity in the neighboring subunit of the dimer. This strong interaction has also been observed in the human Mu, Alpha, and Theta GST classes, suggesting a common mechanism by which GSTs may act as intracellular NO carriers or scavengers. We present here the crystal structure of GST P1-1 in complex with the dinitrosyl diglutathionyl iron ligand at high resolution. In this complex the active site Tyr-7 coordinates to the iron atom through its phenolate group by displacing one of the GSH ligands. The crucial importance of this catalytic residue in binding the nitric oxide donor is demonstrated by site-directed mutagenesis of this residue with His, Cys, or Phe residues. The relative binding affinity for the complex is strongly reduced in all three mutants by about 3 orders of magnitude with respect to the wild type. Electron paramagnetic resonance spectroscopy studies on intact Escherichia coli cells expressing the recombinant GST P1-1 enzyme indicate that bacterial cells, in response to NO treatment, are able to form the dinitrosyl diglutathionyl iron complex using intracellular iron and GSH. We hypothesize the complex is stabilized in vivo through binding to GST P1-1.  相似文献   

14.
Zhang CM  Perona JJ  Hou YM 《Biochemistry》2003,42(37):10931-10937
Escherichia coli cysteinyl-tRNA synthetase (CysRS) achieves high amino acid specificity without the need for an editing reaction. Crystallographic and spectroscopic studies have previously demonstrated that a major determinant of the specificity is an active site zinc ion that recognizes the substrate cysteine through a strong zinc-thiolate interaction. The active site cleft of CysRS is composed of highly or strictly conserved amino acids, including four inner-sphere zinc ligands, five histidine imidazoles at the base of the cleft, and a tryptophan that flips down upon cysteine binding to complete formation of the binding pocket. Here we establish the significance of each of these major features of the active site cleft by mutational analysis. Substitutions generally lead to substantially deleterious effects on K(m) and k(cat) parameters with respect to each of the cysteine, ATP, and tRNA(Cys) substrates. These findings emphasize the importance of the highly differentiated nature of the active site and provide new insights into the origins of selectivity without editing. Most mutants are less attenuated in tRNA aminoacylation than in adenylate synthesis, suggesting that tRNA binding drives a conformational change to help assemble the active site.  相似文献   

15.
The binding interactions between dimeric glutathione transferase from Schistosoma japonicum (Sj26GST) and bromosulfophthalein (BS) or 8-anilino-1-naphthalene sulfonate (ANS) were characterised by fluorescence spectroscopy and isothermal titration calorimetry (ITC). Both ligands inhibit the enzymatic activity of Sj26GST in a non-competitive form. A stoichiometry of 1 molecule of ligand per mole of dimeric enzyme was obtained for the binding of these ligands. The affinity of BS is higher (K(d)=3.2 microM) than that for ANS (K(d)=195 microM). The thermodynamic parameters obtained by calorimetric titrations are pH-independent in the range of 5.5 to 7.5. The interaction process is enthalpically driven at all the studied temperatures. This enthalpic contribution is larger for the ANS anion than for BS. The strongly favourable enthalpic contribution for the binding of ANS to Sj26GST is compensated by a negative entropy change, due to enthalpy-entropy compensation. DeltaG degrees remains almost invariant over the temperature range studied. The free energy change for the binding of BS to Sj26GST is also favoured by entropic contributions at temperatures below 32 degrees C, thus indicating a strong hydrophobic interaction. Heat capacity change obtained for BS (DeltaC(p) degrees =(-580.3+/-54.2) cal x K(-1) mol(-1)) is twofold larger (in absolute value) than for ANS (DeltaC(p) degrees =(-294.8+/-15.8) cal x K(-1) mol(-1)). Taking together the thermodynamic parameters obtained for these inhibitors, it can be argued that the possible hydrophobic interactions in the binding of these inhibitors to L-site must be accompanied by other interactions whose contribution is enthalpic. Therefore, the non-substrate binding site (designed as ligandin) on Sj26GST may not be fully hydrophobic.  相似文献   

16.
The iron-sulphur cluster-free hydrogenase (Hmd, EC 1.12.98.2) from methanogenic archaea is a novel type of hydrogenase that tightly binds an iron-containing cofactor. The iron is coordinated by two CO molecules, one sulphur and a pyridone derivative, which is linked via a phosphodiester bond to a guanosine base. We report here on the crystal structure of the Hmd apoenzyme from Methanocaldococcus jannaschii at 1.75 A and from Methanopyrus kandleri at 2.4 A resolution. Homodimeric Hmd reveals a unique architecture composed of one central and two identical peripheral globular units. The central unit is composed of the intertwined C-terminal segments of both subunits, forming a novel intersubunit fold. The two peripheral units consist of the N-terminal domain of each subunit. The Rossmann fold-like structure of the N-terminal domain contains a mononucleotide-binding site, which could harbour the GMP moiety of the cofactor. Another binding site for the iron-containing cofactor is most probably Cys176, which is located at the bottom of a deep intersubunit cleft and which has been shown to be essential for enzyme activity. Adjacent to the iron of the cofactor modelled as a ligand to Cys176, an extended U-shaped extra electron density, interpreted as a polyethyleneglycol fragment, suggests a binding site for the substrate methenyltetrahydromethanopterin.  相似文献   

17.
The three-dimensional structure of class pi glutathione S-transferase from pig lung, a homodimeric enzyme, has been solved by multiple isomorphous replacement at 3 A resolution and preliminarily refined at 2.3 A resolution (R = 0.24). Each subunit (207 residues) is folded into two domains of different structure. Domain I (residues 1-74) consists of a central four-stranded beta-sheet flanked on one side by two alpha-helices and on the other side, facing the solvent, by a bent, irregular helix structure. The topological pattern resembles the bacteriophage T4 thioredoxin fold, in spite of their dissimilar sequences. Domain II (residues 81-207) contains five alpha-helices. The dimeric molecule is globular with dimensions of about 55 A x 52 A x 45 A. Between the subunits and along the local diad, is a large cavity which could possibly be involved in the transport of nonsubstrate ligands. The binding site of the competitive inhibitor, glutathione sulfonate, is located on domain I, and is part of a cleft formed between intrasubunit domains. Glutathione sulfonate is bound in an extended conformation through multiple interactions. Only three contact residues, namely Tyr7, Gln62 and Asp96 are conserved within the family of cytosolic glutathione S-transferases. The exact location of the binding site(s) of the electrophilic substrate is not clear. Catalytic models are discussed on the basis of the molecular structure.  相似文献   

18.
Immobilized protein receptors and enzymes are tools for isolating or enriching ligands and substrates based on affinity. For example, glutathione S-transferase (GST) is fused to proteins as a tag for binding to its substrate glutathione (GSH) linked to solid supports. One issue with this approach is that high-affinity interactions between receptors and ligands require harsh elution conditions such as low pH, which can result in leached receptor. Another issue is the inherent nonspecific chemical conjugation of reactive groups such as N-hydroxysuccinimide (NHS) that couple lysines to solid supports; the nonspecificity of NHS may result in residue modifications near the binding site(s) of the receptor that can affect ligand specificity. In this study, a simple conjugation procedure is presented that overcomes these limitations and results in immobilized GST fusion proteins that are functional and specific. Here, the affinity of GST for GSH was used to generate an enzyme–substrate site-specific cross-linking reaction; GSH–Sepharose was preactivated with 1-ethyl-3-(dimethylaminopropyl)carbodiimide (EDC) and then incubated Fc gamma receptor IIIa (FcγRIIIa)–GST. The immobilized FcγRIIIa–GST more specifically bound glycosylated immunoglobulin G1s (IgG1s) and was used to enrich nonfucosylated IgG1s from weaker binding species. This technique can be used when modifications of amino acids lead to changes in activity.  相似文献   

19.
Copper K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy and (15)N NMR relaxation studies were performed on samples of a variant azurin in which the surface-exposed histidine ligand of the copper atom (His117) has been replaced by glycine. The experiments were performed to probe the structure of the active site and the protein dynamics. The cavity in the protein structure created by the His-->Gly replacement could be filled by external ligands, which can either restore the spectroscopic properties of the original type-1 copper site or create a new type-2 copper site. The binding of external ligands occurs only when the copper atom is in its oxidised state. In the reduced form, the binding is abolished. From the EXAFS experiments, it is concluded that for the oxidised type-1 copper sites the protein plus external ligand (L) provide an NSS*L donor set deriving from His46, Cys112, Met121 and the external ligand. The type-2 copper site features an S(N/O)(3) donor set in which the S-donor derives from Cys112, one N-donor from His46 and the remaining two N or O donors from one or more external ligands. Upon reduction of the type-1 as well as the type-2 site, the external ligand drops out of the copper site and the coordination reduces to 3-fold with an SS*N donor set deriving from His46, Cys112 and Met121. The Cu-S(delta)(Met) distance is reduced from about 3.2 to 2.3 A. Analysis of the NMR data shows that the hydrophobic patch around His117 has gained fluxionality when compared to wild-type azurin, which may explain why the His117Gly variant is able to accommodate a variety of external ligands of different sizes and with different chelating properties. On the other hand, the structure and dynamics of the beta-sandwich, which comprises the main body of the protein, is only slightly affected by the mutation. The unusually high reduction potential of the His117Gly azurin is discussed in light of the present results.  相似文献   

20.
Rat 3-mercaptopyruvate sulfurtransferase (MST) contains three exposed cysteines as follows: a catalytic site cysteine, Cys(247), in the active site and Cys(154) and Cys(263) on the surface of MST. The corresponding cysteine to Cys(263) is conserved in mammalian MSTs, and Cys(154) is a unique cysteine. MST has monomer-dimer equilibrium with the assistance of oxidants and reductants. The monomer to dimer ratio is maintained at approximately 92:8 in 0.2 m potassium phosphate buffer containing no reductants under air-saturated conditions; the dimer might be symmetrical via an intersubunit disulfide bond between Cys(154) and Cys(154) and between Cys(263) and Cys(263), or asymmetrical via an intersubunit disulfide bond between Cys(154) and Cys(263). Escherichia coli reduced thioredoxin (Trx) cleaved the intersubunit disulfide bond to activate MST to 2.3- and 4.9-fold the levels of activation of dithiothreitol (DTT)-treated and DTT-untreated MST, respectively. Rat Trx also activated MST. On the other hand, reduced glutathione did not affect MST activity. E. coli C35S Trx, in which Cys(35) was replaced with Ser, formed some adducts with MST and activated MST after treatment with DTT. Thus, Cys(32) of E. coli Trx reacted with the redox-active cysteines, Cys(154) and Cys(263), by forming an intersubunit disulfide bond and a sulfenyl Cys(247). A consecutively formed disulfide bond between Trx and MST must be cleaved for the activation. E. coli C32S Trx, however, did not activate MST. Reduced Trx turns on a redox switch for the enzymatic activation of MST, which contributes to the maintenance of cellular redox homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号