首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was carried out on carotid artery plaque and plasma of 50 patients. We analyzed uric acid, hypoxanthine, xanthine, and allantoin levels to verify if enzymatic purine degradation occurs in advanced carotid plaque; we also determined free radicals and sulphydryl groups to check if there is a correlation between oxidant status and purine catabolism. Comparing plaque and plasma we found higher levels of free radicals, hypoxanthine, xanthine, and a decrease of some oxidant protectors, such as sulphydryl groups and uric acid, in plaque. We also observed a very important phenomenon in plaque, the presence of allantoin due to chemical oxidation of uric acid, since humans do not have the enzyme uricase. The hypothetical elevated activity of xanthine oxidase in atherosclerosis could be reduced by specific therapies using its inhibitors, such as oxypurinol or allopurinol.  相似文献   

2.
3.
In soluble rat brain fraction, the specific activities of purine nucleoside phosphorylase, guanine deaminase, 5'Nucleotidase and adenosine deaminase, decrease in their mentioned order. A kinetic parameter comparison between these enzymes shows that 5'Nucleotidase with AMP has the lowest KM and the greatest Vmax values, while purine nucleoside phosphorylase has its lowest KM and its greatest Vmax values with guanosine and with inosine, respectively. The enzymes activity is not modified by the metabolic intermediates differently from their own reaction products which behave as competitive inhibitors.  相似文献   

4.
1. The catabolism of purine nucleotides was investigated by both chemical and radiochemical methods in isolated rat hepatocytes, previously incubated with [14C]adenine. The production of allantoin reached 32±5nmol/min per g of cells (mean±s.e.m.) and as much as 30% of the radioactivity incorporated in the adenine nucleotides was lost after 1h. This rate of degradation is severalfold in excess over values previously reported to occur in the liver in vivo. An explanation for this enhancement of catabolism may be the decrease in the concentration of GTP. 2. In a high-speed supernatant of rat liver, adenosine deaminase was maximally inhibited by 0.1μm-coformycin. The activity of AMP deaminase, measured in the presence of its stimulator ATP in the same preparation, as well as the activity of the partially purified enzyme, measured after addition of its physiological inhibitors GTP and Pi, required 50μm-coformycin for maximal inhibition. 3. The production of allantoin by isolated hepatocytes was not influenced by the addition of 0.1μm-coformycin, but was decreased by concentrations of coformycin that were inhibitory for AMP deaminase. With 50μm-coformycin the production of allantoin was decreased by 85% and the formation of radioactive allantoin from [14C]adenine nucleotides was completely suppressed. 4. In the presence of 0.1μm-coformycin or in its absence, the addition of fructose (1mg/ml) to the incubation medium caused a rapid degradation of ATP, without equivalent increase in ADP and AMP, followed by transient increases in IMP and in the rate of production of allantoin; adenosine was not detectable. In the presence of 50μm-coformycin, the fructose-induced breakdown of ATP was not modified, but the depletion of the adenine nucleotide pool proceeded much more slowly and the rate of production of allantoin increased only slightly. No rise in IMP concentration could be detected, but AMP increased manyfold and reached values at which a participation of soluble 5′-nucleotidase in the catabolism of adenine nucleotides is most likely. 5. These results are in agreement with the hypothesis that the formation of allantoin is controlled by AMP deaminase. They constitute further evidence that 5′-nucleotidase is inactive on AMP, unless the concentration of this nucleotide rises to unphysiological values.  相似文献   

5.
6.
The relative rates of the synthetic, interconversion and catabolic reactions of purine metabolism in chopped mouse cerebrum were studied. The rates of incorporation of [(14)C]adenine and [(14)C]hypoxanthine into purine ribonucleotides were much less than the potential activities of adenine phosphoribosyltransferase and hypoxanthine phosphoribosyltransferase, and the rates of incorporation were stimulated by the addition of guanosine to the incubation mixture. The availability of ribose phosphates may be a limiting factor for the formation of ribonucleotides from purine bases. The rate of incorporation of [(14)C]adenosine into purine ribonucleotides was at least seven- to eight-fold higher than that of adenine. The radioactivity in adenine ribonucleotides synthesized from adenine and hypoxanthine was about 100- and ten-fold respectively higher than that in the radioactive guanine ribonucleotides. The conversion of inosinate into guanine ribonucleotides was probably limited by the amount of inosinate available, and the conversion of adenine ribonucleotides into guanine ribonucleotides was probably limited by the activity of adenylate deaminase. The rate of catabolism of [(14)C]adenosine was low in comparison with its rate of utilization for ribonucleotide synthesis. A fraction of the [(14)C]hypoxanthine was catabolized to xanthine and urate. [(14)C]Guanine was completely converted into xanthine, mostly by the guanine deaminase that was released during incubation of chopped mouse cerebrum.  相似文献   

7.
8.
Human placental microsomal 5'-nucleotidase (EC 3.1.3.5) was prepared free of alkaline phosphatase by isoelectric focusing. A total of seven electrophoretic variants were isolated during the preparation of six placentas. Only three to six variants were found in a single placenta. The isoelectric pH's were 6.70, 6.44, 6.23, 6.02, 5.76, 5.63 and 5.44. These were found to be composed of variable quantities of a large, medium and low molecular weight form. The apparent molecular weights of the medium and light form of the enzyme were 86 500 and 43 500, respectively, as estimated from Stokes radius and sedimentation velocity determinations. The electrophoretic variants were not distinguishable with respect to specific activity and Michaelis constants for AMP, GMP or CMP or inhibition by ATP, CTP or adenosine. These electrophoretic variants appeared to be pseudoisozymes based upon different states of aggregation of a common primary sequence. There was a wide range of substrate specificity among nucleoside 5'-monophosphates which included 2-deoxyribose compounds. With AMP as 100, substrate activity was: CMP, 122; NMN, 74; GMP, 68: IMP, 63; XMP, 28 and UDP-glucose, 68. The Michaelis constants for AMP, GMP and CMP ranged from 12-18 muM, from 33-67 muM and from 170-250 muM, respectively. Although 5'-nucleotidase was active in the absence of divalent cation, 5 mM MgCl2 stimulated the enzyme activity to 234% of control and shifted the pH optimum of 9.8 to a plateau from pH 7.4-9.8.  相似文献   

9.
The ureides, allantoin and allantoic acid, are the major nitrogenous substances transported within the xylem of N2-fixing soybeans (Glycine max L. Merr. cv Amsoy 71). The ureides accumulated in the cotyledons, roots and shoots of soybean seedlings inoculated with Rhizobium or grown in the presence of 10 millimolar nitrate. The patterns of activity for uricase and allantoinase, enzymes involved in ureide synthesis, were positively correlated with the accumulation of ureides in the roots and cotyledons. Allopurinol and azaserine inhibited ureide production in 3-day-old cotyledons while no inhibition was observed in the roots. Incubation of 4-day-old seedlings with [14C]serine indicated that in the cotyledons ureides arose via de novo synthesis of purines. The source of ureides in both 3- and 4-day-old roots was probably the cotyledons. The inhibition of ureide accumulation by allopurinol but not azaserine in 8-day-old cotyledons suggested that ureides in these older cotyledons arose via nucleotide breakdown. Incubation of 8-day-old plants with [14C]serine suggested that the roots had acquired the capability to synthesize ureides via de novo synthesis of purines. These data indicate that both de novo purine synthesis and nucleotide breakdown are involved in the production of ureides in young soybean seedlings.  相似文献   

10.
Escherichia coli is not known to utilize purines, other than adenine and adenosine, as nitrogen sources. We reinvestigated purine catabolism because a computer analysis suggested several potential sigma(54)-dependent promoters within a 23-gene cluster whose products have homology to purine catabolic enzymes. Our results did not provide conclusive evidence that the sigma(54)-dependent promoters are active. Nonetheless, our results suggest that some of the genes are metabolically significant. We found that even though several purines did not support growth as the sole nitrogen source, they did stimulate growth with aspartate as the nitrogen source. Cells produced (14)CO(2) from minimal medium containing [(14)C]adenine, which implies allantoin production. However, neither ammonia nor carbamoyl phosphate was produced, which implies that purine catabolism is incomplete and does not provide nitrogen during nitrogen-limited growth. We constructed strains with deletions of two genes whose products might catalyze the first reaction of purine catabolism. Deletion of one eliminated (14)CO(2) production from [(14)C]adenine, which implies that its product is necessary for xanthine dehydrogenase activity. We changed the name of this gene to xdhA. The xdhA mutant grew faster with aspartate as a nitrogen source. The mutant also exhibited sensitivity to adenine, which guanosine partially reversed. Adenine sensitivity has been previously associated with defective purine salvage resulting from impaired synthesis of guanine nucleotides from adenine. We propose that xanthine dehydrogenase contributes to this purine interconversion.  相似文献   

11.
Type I diabetes in rodents is associated with a spectrum of liver mitochondrial abnormalities ranging from evidence of oxidative stress and altered antioxidant defenses to frank defects in respiration rates and respiratory control ratios. To better address the myriad changes in redox metabolism in these mitochondria, we have applied new chromatographic techniques that enable simultaneous analysis of multiple components of pathways of interest (e.g., purine catabolites and oxidation by-products). We report here a portion of these results, which, in conjunction with other reported data, suggest that purine catabolism may contribute to mitochondrial antioxidant defenses by producing the antioxidant urate. In liver mitochondria from diabetic rats, increases in uric acid (threefold) and its direct precursor xanthine (sixfold) were observed in moderate diabetes, but levels fell essentially to normal in severe disease. Failure to maintain elevated xanthine and uric acid occurred contemporaneously with progressive mitochondrial dysfunction. Regression analysis revealed altered precursor-product relationships between xanthine, its precursors, and uric acid. An independent set of studies in isolated rat liver mitochondria showed that mitochondrial respiration was associated with essentially uniform decreases (approximately 30%) in all purine catabolites measured (urate, xanthine, hypoxanthine, guanine, guanosine, and xanthosine). That result suggests the potential for steady production of urate. Taken together, the two studies raise the possibility that purine catabolism may be a previously unappreciated component of the homeostatic response of mitochondria to oxidant stress and may play a critical role in slowing progressive mitochondrial dysfunction in certain disease states.  相似文献   

12.
13.
14.
Purine nucleoside phosphorylase (PNPase) deficiency is an autosomal recessive disorder affecting purine degradation and salvage pathways. Clinically, patients typically present with severe immunodeficiency, neurological dysfunction, and autoimmunity. Biochemically, PNPase deficiency may be suspected in the presence of hypouricemia. We report biochemical and genetic data on a cohort of seven patients from six families identified as PNPase deficient. In all patients, inosine, deoxyinosine, guanosine, and deoxyguanosine were elevated in urine, and mutation analysis revealed seven different mutations of which three were novel. The mutation c.770A>G resulted in the substitution p.His257Arg. A second novel mutation c.257A>G (p.His86Arg) was identified in two siblings and a third novel mutation, c.199C>T (p.Arg67X), was found in a 2-year-old female with delayed motor milestones and recurrent respiratory infections. A review of the literature identified 67 cases of PNPase deficiency from 49 families, including the cases from our own laboratory. PNPase deficiency was confirmed in 30 patients by genotyping and 24 disease causing mutations, including the three novel mutations described in this paper, have been reported to date. In five of the seven patients, plasma uric acid was found to be within the pediatric normal range, suggesting that PNPase deficiency should not be ruled out in the absence of hypouricemia.  相似文献   

15.
The 5'-phosphomonoesterase activity of 5'-nucleotidase (EC 3.1.3.5) and alkaline phosphatase (EC 3.1.3.5) participates in the catabolism of purine ribonucleotides to uric acid in humans. Initial velocity studies of 5'-nucleotidase suggest a sequential mechanism of interaction between AMP nad MgCl2, with a Km of 14 and 3 muM, respectively. With product inhibition studies the apparent Ki's for adenosine, inosine, cytidine, and inorganic phosphate were 0.4, 3.0, 5.0, and 42 mM, respectively. A large number of nucleoside mono-, di-, and tri-phosphate compounds were inhibitors of the enzyme. Allopurinol ribonucleotide, ADP, or ATP were competitive inhititors when AMP was the substrate, with a Ki slope of 120 muM. The phosphomonoesterase activity of human placental microsomal alkaline phosphatase had a pH optimum of 10.0 and had only 18% of maximum activity at pH 7.4. Substrates and inhibitors included almost any phosphorylated compound. The Km for AMP was 0.4 mM and the apparent Ki for Pi was 0.6 mM. Activity was increased only 19% by 5 mM MgCl2. These observations suggest that 5'-nucleotidase and alkaline phosphatase may be inhibited by ATP and Pi, respectively, under normal intracellular conditions, and that AMP may be preferentially hydrolyzed by 5'-nucleotidase.  相似文献   

16.
17.
Molybdenum cofactor deficiency (MIM 252150) is a rare progressive neurodegenerative disorder with about 100 cases reported worldwide. We have identified a male with molybdenum cofactor deficiency and analyzed the molybdenum cofactor synthesis (MOCS)1 gene, MOCS2 gene, MOCS3 gene and GEPH gene. We homozygously identified the CGA insertion after A666 of the MOCS1 gene which produces arginine insertion at codon 222 of MOCS1A. The parents, his brother and his sister who did not have any symptoms were heterozygous for the same mutation. This region was highly conserved in various species. The N-terminal part of MOCS1 a protein is suggested to form the central core of the protein and be composed of an incomplete [(alpha/beta)6] triosephosphate isomerase (TIM) barrel with a lateral opening that is covered by the C-terminal part of the protein. The insertion is located in the loop connecting the fifth beta strand to the sixth alpha helices of the TIM barrel structure. This arginine insertion would induce the conformation change and the lack of the activity.  相似文献   

18.
19.
Uric acid and allantoin are the key compounds of purine nucleotide catabolism formed in liver and many other organs of the rat. We observed that, after administration of 14C-formate, incorporation of radioactivity into uric acid and allantoin is not similar, as one would expect. The phenomenon was demonstrated to be specific to liver and perfused liver, and not to other organs such as heart, jejunal mucosa, lung, spleen, and kidney. To interpret these results, the specific radioactivity of uric acid and allantoin in rat liver were analysed comparatively, after administration of the following labelled precursors: 14C-glycine, 14C-formate, 14C-hypoxanthine, 14C-uric acid and 14C-adenine. After administration of 14C-formate the specific radioactivity of allantoin was higher than that of uric acid and the same behavior was observed after 14C-uric acid and 14C-hypoxanthine, but not after 14C-glycine and 14C-adenine administration. The results indicate that the rate of their incorporation into uric acid and allantoin, and the subsequent export of these compounds into serum, can only partially explain the observed phenomenon, while the presence of different pools of uric acid and allantoin may give a complete explanation.  相似文献   

20.
Nodulated root systems of soybean plants were exposed to 14CO2 in the presence and absence of allopurinol. After 5 h about one-fifth of the label in the perchloric acid-soluble fraction of the nodules was found to be in xanthine in the allopurinol-treated plants. Control plants contained much lower levels of xanthine, but with similar specific activity. Hypoxanthine was not detected in either control or allopurinol-treated plants, even though it would be expected to accumulate in the latter. Degradation of labeled xanthine from allopurinol-treated plants using xanthine oxidase and uricase resulted in the loss of most of the label. The preferential incorporation and accumulation of 14C from 14CO2 into C6 of xanthine in allopurinol-treated plants is consistent with the involvement of phosphoribosylaminoimidazole carboxylase in the de novo synthesis of purines. The accumulation of xanthine and absence of hypoxanthine in nodules of allopurinol-treated plants confirms earlier observations. In addition, the similar specific activities of 14C in xanthine in allopurinol-treated and control plants indicate that the xanthine which accumulates in allopurinol-treated plants is the product of de novo purine biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号