首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
RNA mediated formation of a phosphorothioate diester bond   总被引:7,自引:0,他引:7  
Previous results showed that multimeric, tandemly sequence-repeated forms of satellite tobacco ringspot virus RNA of the encapsidated polarity (STobRV (+)RNA) autolytically process at a specific phosphodiester bond, the junction. Substituting a phosphorothioate diester bond for the STobRV (+)RNA junction drastically slowed autolytic processing. Here we show that for the complementary STobRV (-)RNA, in contrast, replacing sets of phosphodiester bonds with phosphorothioate diester bonds, even at the junction, did not greatly slow autolytic processing or spontaneous ligation, the usual reactions of the unmodified RNA. In the ligation reaction STobRV (-)RNA directed the formation of an ApG phosphorothioate diester bond.  相似文献   

3.
The enzyme, RNA cyclase, has been purified from cell-free extracts of HeLa cells approximately 6000-fold. The enzyme catalyzes the conversion of 3'-phosphate ends of RNA chains to the 2',3'-cyclic phosphate derivative in the presence of ATP or adenosine 5'-(gamma-thio)triphosphate (ATP gamma S) and Mg2+. The formation of 1 mol of 2',3'-cyclic phosphate ends is associated with the disappearance of 1 mol of 3'-phosphate termini and the hydrolysis of 1 mol of ATP gamma S to AMP and thiopyrophosphate. No other nucleotides could substitute for ATP or ATP gamma S in the reaction. The reaction catalyzed by RNA cyclase was not reversible and exchange reactions between [32P]pyrophosphate and ATP were not detected. However, an enzyme-AMP intermediate could be identified that was hydrolyzed by the addition of inorganic pyrophosphate or 3'-phosphate terminated RNA chains but not by 3'-OH terminated chains or inorganic phosphate. 3'-[32P](Up)10Gp* could be converted to a form that yielded, (Formula: see text) after degradation with nuclease P1, by the addition of wheat germ RNA ligase, 5'-hydroxylpolynucleotide kinase, RNA cyclase, and ATP. This indicates that the RNA cyclase had catalyzed the formation of the 2',3'-cyclic phosphate derivative, the kinase had phosphorylated the 5'-hydroxyl end of the RNA, and the wheat germ RNA ligase had catalyzed the formation of a 3',5'-phosphodiester linkage concomitant with the conversion of the 2',3'-cyclic end to a 2'-phosphate terminated residue.  相似文献   

4.
The X-ray crystal structure of a complex between ribonuclease T1 and guanylyl(3'-6')-6'-deoxyhomouridine (GpcU) has been determined at 2. 0 A resolution. This ligand is an isosteric analogue of the minimal RNA substrate, guanylyl(3'-5')uridine (GpU), where a methylene is substituted for the uridine 5'-oxygen atom. Two protein molecules are part of the asymmetric unit and both have a GpcU bound at the active site in the same manner. The protein-protein interface reveals an extended aromatic stack involving both guanines and three enzyme phenolic groups. A third GpcU has its guanine moiety stacked on His92 at the active site on enzyme molecule A and interacts with GpcU on molecule B in a neighboring unit via hydrogen bonding between uridine ribose 2'- and 3'-OH groups. None of the uridine moieties of the three GpcU molecules in the asymmetric unit interacts directly with the protein. GpcU-active-site interactions involve extensive hydrogen bonding of the guanine moiety at the primary recognition site and of the guanosine 2'-hydroxyl group with His40 and Glu58. On the other hand, the phosphonate group is weakly bound only by a single hydrogen bond with Tyr38, unlike ligand phosphate groups of other substrate analogues and 3'-GMP, which hydrogen-bonded with three additional active-site residues. Hydrogen bonding of the guanylyl 2'-OH group and the phosphonate moiety is essentially the same as that recently observed for a novel structure of a RNase T1-3'-GMP complex obtained immediately after in situ hydrolysis of exo-(Sp)-guanosine 2',3'-cyclophosphorothioate [Zegers et al. (1998) Nature Struct. Biol. 5, 280-283]. It is likely that GpcU at the active site represents a nonproductive binding mode for GpU [Steyaert, J., and Engleborghs (1995) Eur. J. Biochem. 233, 140-144]. The results suggest that the active site of ribonuclease T1 is adapted for optimal tight binding of both the guanylyl 2'-OH and phosphate groups (of GpU) only in the transition state for catalytic transesterification, which is stabilized by adjacent binding of the leaving nucleoside (U) group.  相似文献   

5.
Archaeal RNA splicing involves at least two protein enzymes, a specific endonuclease and a specific ligase. The endonuclease recognizes and cleaves within a characteristic bulge-helix-bulge (BHB) structure formed by pairing of the regions near the two exon-intron junctions, producing 2',3'-cyclic phosphate and 5'-hydroxyl termini. The ligase joins the exons and converts the cyclic phosphate into junction phosphate. The ligated product contains a seven-base hairpin loop, in which the splice junction is in between the two 3' terminal residues of the loop. Archaeal splicing endonucleases are also involved in rRNA processing, cutting within the BHB structures formed by pairing of the 5' and 3' flanking regions of the rRNAs. Large free introns derived from pre-rRNAs have been observed as stable and abundant circular RNAs in certain Crenarchaeota, a kingdom in the domain Archaea. In the present study, we show that the cells of Haloferax volcanii, a Euryarchaeote, contain circular RNAs formed by 3',5'-phosphodiester linkage between the two termini of the introns derived from their pre-tRNAs. H. volcanii ligase, in vitro, can also circularize both endonuclease-cleaved introns, and non-endonuclease-produced substrates. Exon joining and intron circularization are mechanistically similar ligation reactions that can occur independently. The size of the ligated hairpin loop and position of the splice junction within this loop can be changed in in vitro ligation reactions. Overall, archaeal RNA splicing seems to involve two sets of two symmetric transesterification reactions each.  相似文献   

6.
Molecular structures of native and a pair of modified small interfering RNA-RNA duplexes containing carbocyclic [6?'-(R)-OH/7?'-(S)-methyl]- and [6?'-(S)-OH/7?'-(S)-methyl]-carba-LNA-thymine nucleotides, which are two diastereomeric analogs of the native T nucleotide, incorporated at position 13 in the antisense (AS) strand of siRNA, have been simulated using molecular mechanics/dynamics techniques. The main aim of the project has been to find a plausible structural explanation of why modification of siRNA at T(13) position by the [6?'(R)-O-(p-Toluoyl)-7?'(S)-methyl]-carba-LNA-Thymine [IC(50) of 3.32 ± 0.17 nM] is ca 24 times more active as an RNA silencing agent against the target HIV-1 TAR RNA than the [6?'(S)-O-(p-Toluoyl)-7?'(S)-methyl]-counterpart [IC(50) of 79.8 ± 17 nM] [1]. The simulations reveal that introduction of both C6?'(R)-OH and C6?'(S)-OH stereoisomers does not lead even to local perturbation of the siRNA-RNA duplex structures compared to the native, and the only significant difference between 6?'(S)- and 6?'(R)-diastereomers found is the exposure of the 6?'-OH group of the 6?'(R)-diastereoisomer toward the edge of the duplex while the 6?'-hydroxyl group of the 6?'(S)-diastereoisomer is somewhat buried in the minor groove of the duplex. This rules out a hypothesis about any possible local distortion by the nature of chemical modification of the siRNA-target the RNA duplex, which might have influenced the formation of the effective RNA silencing complex (RISC) and puts some weight on the hypothesis about the 6?'-hydroxy group being directly involved with most probably Ago protein, since it is known from exhaustive X-ray studies [2, 3] that the core residues are indeed involved with hydrogen bonding with the internucleotidyl phosphates. Further systematic investigation is in progress to map the position-dependent functional and nonfunctional interactions of the modified [6?'(R or S)-O-(p-Toluoyl)-7?'(S)-methyl]-carba-LNA-T with the Ago2 protein of the RISC.  相似文献   

7.
Current models of recombination between viral RNAs are based on replicative template-switch mechanisms. The existence of nonreplicative RNA recombination in poliovirus is demonstrated in the present study by the rescue of viable viruses after cotransfections with different pairs of genomic RNA fragments with suppressed translatable and replicating capacities. Approximately 100 distinct recombinant genomes have been identified. The majority of crossovers occurred between nonhomologous segments of the partners and might have resulted from transesterification reactions, not necessarily involving an enzymatic activity. Some of the crossover loci are clustered. The origin of some of these "hot spots" could be explained by invoking structures similar to known ribozymes. A significant proportion of recombinant RNAs contained the entire 5' partner, if its 3' end was oxidized or phosphorylated prior to being mixed with the 3' partner. All of these observations are consistent with a mechanism that involves intermediary formation of the 2',3'-cyclic phosphate and 5'-hydroxyl termini. It is proposed that nonreplicative RNA recombination may contribute to evolutionarily significant RNA rearrangements.  相似文献   

8.
HeLa cell extract contains RNA ligase activity that converts linear polyribonucleotides to covalently closed circles. RNA substrates containing 2',3'-cyclic phosphate and 5'-hydroxyl termini are circularized by formation of a normal 3',5' phosphodiester bond. This activity differs from a previously described wheat germ RNA ligase which circularizes molecules with 2',3'-cyclic and 5' phosphate ends by a 2'-phosphomonester, 3',5'-phosphodiester linkage (Konarska et al., Nature 293, 112-116, 1981; Proc. Natl. Acad. Sci. USA 79, 1474-1478, 1982). The HeLa cell ligase can also utilize molecules with 3'-phosphate ends. However, in this case ligation is preceded by an ATP-dependent conversion of the 3'-terminal phosphate to the 2',3' cyclic form by a novel activity, RNA 3'-terminal phosphate cyclase. Both RNA ligase and RNA 3'-terminal phosphate cyclase activities are also present in extract of Xenopus oocyte nuclei, consistent with a role in RNA processing.  相似文献   

9.
10.
Mg2+-independent hairpin ribozyme catalysis in hydrated RNA films   总被引:1,自引:1,他引:0       下载免费PDF全文
The hairpin ribozyme catalyzes RNA cleavage in partially hydrated RNA films in the absence of added divalent cations. This reaction exhibits the characteristics associated with the RNA cleavage reaction observed under standard conditions in solution. Catalysis is a site-specific intramolecular transesterification reaction, requires the 2'-hydroxyl group of substrate nucleotide A(-1), and generates 2',3'-cyclic phosphate and 5'-hydroxyl termini. Mutations in both ribozyme and substrate abolish catalysis in hydrated films. The reaction is accelerated by cations that may enhance binding, conformational stability, and catalytic activity, and is inhibited by Tb3+. The reaction has an apparent temperature optimum of 4 degrees C. At this temperature, cleavage is slow (k(obs): 2 d(-1)) and progressive, with accumulation of cleavage products to an extent of 40%. The use of synthetic RNAs, chelators, and analysis of all reaction components by inductively coupled plasma-optical spectrophotometry (ICPOES) effectively rules out the possibility of contaminating divalent metals in the reactions. Catalysis is minimal under conditions of extreme dehydration, indicating that the reaction requires hydration of RNA by atmospheric water. Our results provide a further caution for those studying the biochemical activity of ribozymes in vitro and in cells, as unanticipated catalysis could occur during RNA manipulation and lead to misinterpretation of data.  相似文献   

11.
Structure and function of the hairpin ribozyme   总被引:18,自引:0,他引:18  
The hairpin ribozyme belongs to the family of small catalytic RNAs that cleave RNA substrates in a reversible reaction that generates 2',3'-cyclic phosphate and 5'-hydroxyl termini. The hairpin catalytic motif was discovered in the negative strand of the tobacco ringspot virus satellite RNA, where hairpin ribozyme-mediated self-cleavage and ligation reactions participate in processing RNA replication intermediates. The self-cleaving hairpin, hammerhead, hepatitis delta and Neurospora VS RNAs each adopt unique structures and exploit distinct kinetic and catalytic mechanisms despite catalyzing the same chemical reactions. Mechanistic studies of hairpin ribozyme reactions provided early evidence that, like protein enzymes, RNA enzymes are able to exploit a variety of catalytic strategies. In contrast to the hammerhead and Tetrahymena ribozyme reactions, hairpin-mediated cleavage and ligation proceed through a catalytic mechanism that does not require direct coordination of metal cations to phosphate or water oxygens. The hairpin ribozyme is a better ligase than it is a nuclease while the hammerhead reaction favors cleavage over ligation of bound products by nearly 200-fold. Recent structure-function studies have begun to yield insights into the molecular bases of these unique features of the hairpin ribozyme.  相似文献   

12.
The NaCl-insoluble (2.5 M, 0 degrees C) fraction of wheat embryo RNA (iRNA) can be labelled when wheat embryos are subjected to either short-term (0.5 h) or long-term (24 h) imbibition in a medium that contains tritium-labelled adenosine, guanosine, cytidine and uridine. Electrophoretic analyses reveal that, after short-term labelling, there is a broadly heterodisperse distribution of radioactivity in 'rapidly labelled' i[3H]RNA, but after long-term labelling, there is an essentially trimodal distribution of radioactivity in i[3H]RNA. End-group analyses reveal that, after short-term labelling, adenosine is the principal 3'-hydroxyl terminus in all centrifugal subfractions of 'rapidly labelled' i[3H]RNA, whereas cytidine (in 5.8S rRNA), guanosine (in 18S rRNA) and uridine (in 26S rRNA) are the principal 3'-hydroxyl termini in centrifugal subfractions of wheat embryo i[3H]RNA. Guanosine is also the principal 3'-hydroxyl terminus in the 18S rRNA of differentiating embryos excized from both monocotyledonous (wheat, barley, corn) and dicotyledonous (pea) seedlings. The implications that the end-group measurements may have for current views about the possible biochemical involvements of 3'-hydroxyl terminal sequences in both mRNA and 18SrRNA are subjects of discussion. Incidental to the principal investigation, an existing technique for analyzing the RNA contents of cellular materials has been appropriately modified to circumvent interference from uv-absorbing pigments, which, when present, prevent application of the method to plant materials.  相似文献   

13.
An RNA ligase that catalyzes the formation of a 2'-phosphomonoester-3',5'-phosphodiester bond in the presence of ATP and Mg2+ was purified approximately 6000-fold from raw wheat germ. A 5'-hydroxyl polynucleotide kinase activity copurified with RNA ligase through all chromatographic steps. Both activities cosedimented upon glycerol gradient centrifugation even in the presence of high salt and urea. RNA ligase and kinase activities sedimented as a single peak on glycerol gradients with a sedimentation coefficient of 6.2 S. The purified polynucleotide kinase activity required dithiothreitol and a divalent cation for activity and was inhibited by pyrophosphate and by ADP. The kinase phosphorylated a variety of 5'-hydroxyl-terminated polynucleotide chains including some that were substrates for the RNA ligase (e.g. 2',3'-cyclic phosphate-terminated poly(A)) and others that were not ligase substrates (e.g. DNA or RNA containing 3'-hydroxyl termini). RNA molecules containing either 5'-hydroxyl or 5'-phosphate and 2',3'-cyclic or 2'-phosphate termini were substrates for the purified RNA ligase activity. The rate of ligation of 5'-hydroxyl-terminated RNA chains was greater than that of 5'-phosphate-terminated molecules, suggesting that an interaction between the wheat germ kinase and ligase activities occurs during the course of ligation.  相似文献   

14.
D Herschlag 《Biochemistry》1992,31(5):1386-1399
J1/2 of the Tetrahymena ribozyme, a sequence of three A residues, connects the RNA-binding site to the catalytic core. Addition or deletion of bases from J1/2 improves turnover and substrate specificity in the site-specific endonuclease reaction catalyzed by this ribozyme: G2CCCUCUA5 (S) + G in-equilibrium G2CCCUCU (P) + GA5. These paradoxical enhancements are caused by decreased affinity of the ribozyme for S and P [Young, B., Herschlag, D., & Cech, T.R. (1991) Cell 67, 1007]. An additional property of these mutant ribozymes, decreased fidelity of RNA cleavage, is now analyzed. (Fidelity is the ability to cleave at the correct phosphodiester bond within a particular RNA substrate.) Introduction of deoxy residues to give "chimeric" ribo/deoxyribooligonucleotides changes the positions of incorrect cleavage. Previous work indicated that S is bound to the ribozyme by both base pairing and teritary interactions involving 2'-hydroxyl groups of S. The data herein strongly suggest that the P1 duplex, which consists of S base-paired with the 5' exon binding site of the ribozyme, can dock into tertiary interactions in different registers; different 2'-hydroxyl groups of S plug into tertiary contacts with the ribozyme in the different registers. It is concluded that the mutations decrease fidelity by increasing the probability of docking out of register relative to docking in the normal register, thereby giving cleavage at different positions along S. These data also show that the contribution of J1/2 to the teritiary interactions is indirect, not direct. Thus, a structural role of the nonconserved J1/2 is indicated: this sequence positions S to optimize tertiary binding interactions and to ensure cleavage at the phosphodiester bond corresponding to the 5' splice site. Substitution of sulfur for the nonbridging pro-RP oxygen atom at the normal cleavage site has no effect on (kcat/Km)S but decreases the fraction of cleavage at the normal site in reactions catalyzed by the -3A mutant ribozyme, which has all three A residues of J1/2 removed. Thus, the ribozyme chooses where to cleave S after rate-limiting binding of S, indicating that docking can change after binding and suggesting that the ribozyme could act processively. Indeed, it is shown that the +2A ribozyme cleaves at one position along an RNA substrate and then, before releasing that RNA product, cleaves it again.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Purification of a RNA debranching activity from HeLa cells   总被引:6,自引:0,他引:6  
The splicing of messenger RNA precursors (pre-mRNA) of eukaryotic cells involves the formation of a branched RNA intermediate known as a RNA lariat. This structure is formed in the first step of the reaction when a cleavage at the 5' splice site generates the 5' exon and a RNA species containing the intron and 3' exon in which the phosphate moiety at the 5' end of the intron is forming a 2'-5' phosphodiester bond with the 2'-hydroxyl moiety of a specific adenine residue near the 3' end of the intron forming a RNA branch with the following structure: -pA2'-pX-3'-pZ-. We have purified a debranching activity approximately 700-fold from the cytosolic fraction of HeLa cells. This activity catalyzes the hydrolysis of the 2'-5' phosphodiester bond of branched RNA structures yielding a 5'-phosphate end and a 2'-hydroxyl group at the branch attachment site. The activity possessed a sedimentation coefficient of 3.5 S. The reaction catalyzed by the purified fraction requires a divalent cation and is optimal at pH 7.0. The purified activity can efficiently hydrolyze triester trinucleotide structures (pY2'-pX-3'-pZ-) prepared by digestion of RNA lariats with nuclease P1. In contrast, a 2' phosphate monoester product (-pG2'-p 3'-pC-), formed by the wheat germ RNA ligase, was not attacked.  相似文献   

16.
C Lee  R J Suhadolnik 《Biochemistry》1985,24(3):551-555
The enzymatic synthesis and characterization of (RP)-2',5'-AMPS trimer and tetramer (SP)-5'-O-(1-thiotriphosphates) from chirally substituted (SP)-[alpha-35S]ATP alpha S by 2',5'-oligoadenylate synthetase from interferon-treated L cell extracts are described. The (RP)-ATP alpha S isomer is not a substrate for the synthetase. The identification of the trimer and tetramer analogues (molar ratio 70:30) was accomplished by high-performance liquid chromatography and subsequent separation by charge using DEAE-cellulose thin-layer chromatography. The digestion of the analogue by snake venom phosphodiesterase I (SVPD) to [alpha-35S]ATP alpha S and [35S]AMPS but not by T2 RNase demonstrated the presence of the 2',5' linkage. The assignment of RP configuration of the 2',5'-phosphorothiodiester linkage was based on the highly specific stereoselectivity of SVPD for RP diastereomers [Burgers, P. M. J., & Eckstein, F. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 4978-4800; Bryant, F. R., & Benkovic, S. J. (1979) Biochemistry 18, 2825-2828; Nelson, P. S., Bach, C. T., & Verheyden, J. P. H. (1984) J. Org. Chem. 49, 2314-2317]. This suggests that the synthesis of the phosphorothioate analogues proceeded via inversion of configuration at the chiral phosphorus of (SP)-ATP alpha S. The putative (RP)-2',5'-AMPS tetramer (SP)-5'-O-(1-thiotriphosphate) displaced the 2',5'-p3A4[32P]pCp analogue from 2',5'-oligoadenylate-dependent endonuclease 5 times more efficiently than did equimolar concentrations of authentic 2',5'-adenylate tetramer triphosphate. Furthermore, in studies using the calcium phosphate coprecipitation technique, the 2',5'-phosphorothioate trimer and tetramer analogues inhibited protein synthesis better than did 2',5'-adenylate trimer and tetramer triphosphates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
19.
Desai KK  Raines RT 《Biochemistry》2012,51(7):1333-1335
The RNA ligase RtcB is conserved in all domains of life and is essential for tRNA maturation in archaea and metazoa. Here we show that bacterial and archaeal RtcB catalyze the GTP-dependent ligation of RNA with 3'-phosphate and 5'-hydroxyl termini. Reactions with analogues of RNA and GTP suggest a mechanism in which RtcB heals the 3'-phosphate terminus by forming a 2',3'-cyclic phosphate before joining it to the 5'-hydroxyl group of a second RNA strand. Thus, RtcB can ligate RNA cleaved by RNA endonucleases, which generate 2',3'-cyclic phosphate and then 3'-phosphate termini on one strand, and a 5'-hydroxyl terminus on another strand.  相似文献   

20.
The satellite RNA of tobacco ringspot virus (STobRV RNA) replicates and becomes encapsidated in association with tobacco ringspot virus. Previous results show that the infected tissue produces multimeric STobRV RNAs of both polarities. RNA that is complementary to encapsidated STobRV RNA, designated as having the (-) polarity, cleaves autolytically at a specific ApG bond. Purified autolysis products spontaneously join in a non-enzymic reaction. We report characteristics of this RNA ligation reaction: the terminal groups that react, the type of bond in the newly formed junction and the nucleotide sequence of the joined RNA. The nucleotide sequence of the ligated RNA shows that joining of the reacting RNAs restored an ApG bond. The junction ApG has a 3'-to-5' phosphodiester bond. Thus the net ligation reaction of STobRV (-)RNA is the precise reversal of autolysis. We discuss this new type of RNA ligation reaction and its implications for the formation of multimeric STobRV RNAs during replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号