首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ability of invading pathogens to proliferate within host tissues requires the capacity to resist the killing effects of a wide variety of host defense molecules. sap mutants of the facultative intracellular parasite Salmonella typhimurium exhibit hypersensitivity to antimicrobial peptides, cannot survive within macrophages in vitro and are attenuated for mouse virulence in vivo. We conducted a molecular genetic analysis of the sapG locus and showed that it encodes a product that is 99% identical to the NAD+ binding protein TrkA, a component of a low-affinity K+ uptake system in Escherichia coli. SapG exhibits similarity with other E. coli proteins implicated in K+ transport including KefC, a glutathione-regulated efflux protein, and Kch, a putative transporter similar to eukaryotic K+ channel proteins, sapG mutants were killed by the antimicrobial peptide protamine in the presence of both high and low K+, indicating that protamine hypersensitivity is not due to K+ starvation. Strains with mutations in sapG and either sapJ or the sapABCDF operon were as susceptible as sapG single mutants, suggesting that the proteins encoded by these loci participate in the same resistance pathway. SapG may modulate the activities of SapABCDF and SapJ to mediate the transport of peptides and potassium.  相似文献   

2.
Over the past decade, many efforts have been made to identify MHC class II-restricted epitopes from different tumor-associated Ags. Melan-A/MART-1(26-35) parental or Melan-A/MART-1(26-35(A27L)) analog epitopes have been widely used in melanoma immunotherapy to induce and boost CTL responses, but only one Th epitope is currently known (Melan-A51-73, DRB1*0401 restricted). In this study, we describe two novel Melan-A/MART-1-derived sequences recognized by CD4 T cells from melanoma patients. These epitopes can be mimicked by peptides Melan-A27-40 presented by HLA-DRB1*0101 and HLA-DRB1*0102 and Melan-A25-36 presented by HLA-DQB1*0602 and HLA-DRB1*0301. CD4 T cell clones specific for these epitopes recognize Melan-A/MART-1+ tumor cells and Melan-A/MART-1-transduced EBV-B cells and recognition is reduced by inhibitors of the MHC class II presentation pathway. This suggests that the epitopes are naturally processed and presented by EBV-B cells and melanoma cells. Moreover, Melan-A-specific Abs could be detected in the serum of patients with measurable CD4 T cell responses specific for Melan-A/MART-1. Interestingly, even the short Melan-A/MART-1(26-35(A27L)) peptide was recognized by CD4 T cells from HLA-DQ6+ and HLA-DR3+ melanoma patients. Using Melan-A/MART-1(25-36)/DQ6 tetramers, we could detect Ag-specific CD4 T cells directly ex vivo in circulating lymphocytes of a melanoma patient. Together, these results provide the basis for monitoring of naturally occurring and vaccine-induced Melan-A/MART-1-specific CD4 T cell responses, allowing precise and ex vivo characterization of responding T cells.  相似文献   

3.
A detailed study of the mass spectra of peptides produced by the new technique of fast-atom bombardment is reported. Molecular weights of unmodified peptides containing up to 21 amino acids have been determined. In favourable cases, the molecular-weight determination may be made on as little as 0.1 nmol of sample. Positive-ion and negative-ion spectra are obtained with equal facility. With sample sizes in the range 2-50nmol, sequence information can be obtained in many cases. The technique represents an important contribution to structural studies on peptides, since (i) blocked peptides may be studied, (ii) no prior formation of chemical derivatives is necessary (except for distinction between lysine and glutamine), (iii) sensitivity is good, (iv) large peptides, and, in some cases, mixtures of peptides, can be studied, and (v) the technique is easy to operate, with ions being produced over a long period (5-30 min).  相似文献   

4.
Mammalian protein carboxyl methyltransferases have recently been proposed to recognize atypical configurations of aspartic acid and may possibly function in the metabolism of covalently altered cellular proteins. Consistent with this proposal, the tetrapeptide tetragastrin, containing a single "normal" L-aspartyl residue (L-Trp-L-Met-L-Asp-L-Phe-NH2) was found here not to be an in vitro substrate for erythrocyte carboxyl methyltransferase activity. However, chemical treatment of tetragastrin by methyl esterification and then de-esterification of the aspartic acid residue yielded a mixture of peptide products, the major one of which could now be enzymatically methylated. We show here that this new peptide species is the isomeric beta-aspartyl form of tetragastrin (L-iso-tetragastrin; L-Trp-L-Met-L-Asp-L-Phe-NH2), and it appears that isomerization proceeds via an intramolecular succinimide intermediate during the de-esterification procedure. L-iso-Tetragastrin is stoichiometrically methylated (up to 90% in these experiments) with a Km for the enzyme of 5.0 microM. Similar chemical treatment of several other L-aspartyl peptides also resulted in the formation of new methyltransferase substrates. This general method for converting normal aspartyl peptides to isoaspartyl peptides may have application in the reverse process as well.  相似文献   

5.
6.
BACKGROUND: Herpesviruses are widespread viruses, causing severe infections in both humans and animals. Eradication of herpesviruses is extremely difficult because of their ability to establish latent and life-long infections. However, latency is only one tool that has evolved in herpesviruses to successfully infect their hosts; such viruses display a wide (and still incompletely known) panoply of genes and proteins that are able to counteract immune responses of their hosts. Envelope glycoproteins and cytokine inhibitors are two examples of such weapons. All of these factors make it difficult to develop diagnostics and vaccines, unless they are based on molecular techniques. MATERIALS AND METHODS: Animal herpesviruses, because of their striking similarity to human ones, are suitable models to study the molecular biology of herpesviruses and develop strategies aimed at designing neurotropic live vectors for gene therapy as well as engineered attenuated vaccines. RESULTS: BHV-1 is a neurotropic herpesvirus causing infectious rhinotracheitis (IBR) in cattle. It is a major plague in zootechnics and commercial trade, because of its ability to spread through asymptomatic carrier animals, frozen semen, and embryos. Such portals of infections are also important for human herpesviruses, which mainly cause systemic, eye, and genital tract infections, leading even to the development of cancer. CONCLUSIONS: This review covers both the genetics and molecular biology of BHV-1 and its related herpesviruses. Epidemiology and diagnostic approaches to herpesvirus infections are presented. The role of herpesviruses in gene therapy and a broad introduction to classic and engineered vaccines against herpesviruses are also provided. http://link.springer-ny. com/link/service/journals/00020/bibs/5n5p261.html  相似文献   

7.
The structure of the gene encoding bovine chromogranin-A has been determined by characterization of two isolated genomic clones. Chromogranin-A is encoded by eight exons, which organize the coding region into several distinct structural and functional domains. Exons 1-5 represent the highly conserved signal peptide and N-terminal domain, which are separated into regions corresponding to the signal peptide, N-terminal sequence, disulfide-bonded loop, and remainder of the conserved N-terminal domain. Exon 6 represents the variable domain and encodes a region that is identical to the novel chromogranin-A-derived peptide chromostatin. Exon 7 encodes the biologically active peptide pancreastatin as well as most of the conserved C-terminal domain, with the remainder found on exon 8. The mRNA sequence obtained from the gene contains five nucleotide differences from the consensus sequence of four reported bovine chromogranin-A cDNA clones. Two of the differences in the gene result in two amino acid changes in the region encoded by exon 6. The structural organization of the chromogranin-A gene resembles that of the chromogranin-B gene in the exons corresponding to the signal peptide, N-terminal sequence, disulfide loop, and C-terminal sequence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Human epidermal growth factor receptor (EGFR) has become a well-established target for the treatment of patients with non-small cell lung cancer (NSCLC). However, a large number of somatic mutations in such protein have been observed to cause drug resistance or sensitivity during pathological progression, limiting the application of reversible EGFR tyrosine kinase inhibitor therapy in NSCLC. In the current work, we describe an integration of in silico analysis and in vitro assay to profile six representative EGFR inhibitors against a panel of 71 observed somatic mutations in EGFR tyrosine kinase domain. In the procedure, the changes in interaction free energy of inhibitors with EGFR upon various mutations were calculated one by one using a rigorous computational scheme, which was pre-optimized based on a set of structure-solved, affinity-known samples to improve its performance in characterizing the EGFR-inhibitor system. This method was later demonstrated to be effective in inferring drug response to the classical L858R and G719S mutations that confer constitutive activation for the EGFR kinase. It is found that the Staurosporine, a natural product isolated from the bacterium Streptomyces staurosporeus, exhibits selective inhibitory activity on the T790M and T790M/L858R mutants. This finding was subsequently solidified by in vitro kinase assay experiment; the inhibitory IC50 values of Staurosporine against wild-type, T790M and T790M/L858R mutant EGFR were measured to be 937, 12 and 3 nM, respectively.  相似文献   

9.
《Comptes rendus biologies》2014,337(11):609-624
The biological information coming from electrophysiologic sensors like ECG, pulse sensor or from molecular signal devices like NMR spectrometry has to be visualized and manipulated in a compressed way for an efficient medical use by clinicians, if stored in scientific data bases or in personalized patient records repositories. Here, we define a new transform called Dynalet based on Liénard ordinary differential equations susceptible to model the mechanism at the source of the studied signal, and we propose to apply this new technique first to the modelling and compression of real biological periodic signals like ECG and pulse rhythm. We consider that the cardiovascular activity results from the summation of cellular oscillators located in the cardiac sinus node and we show that, as a result, the van der Pol oscillator (a particular Liénard system) fits well the ECG signal and the pulse signal. The reconstruction of the original signal (pulse or ECG) using Dynalet transform is then compared with that of Fourier, counting the number of parameters to be set for obtaining an expected signal-to-noise ratio. Then, we apply the Dynalet transform to the modelling and compression of molecular spectra obtained by protein NMR spectroscopy. The reconstruction of the original signal (peak) using Dynalet transform is again compared with that of Fourier. After reconstructing visually the peak, we propose to periodize the signal and give it to hear, the whole process being called the protein “stethoscope”.  相似文献   

10.
11.
Cellular phenotypes are established and controlled by complex and precisely orchestrated molecular networks. In cancer, mutations and dysregulations of multiple molecular factors perturb the regulation of these networks and lead to malignant transformation. High-throughput technologies are a valuable source of information to establish the complex molecular relationships behind the emergence of malignancy, but full exploitation of this massive amount of data requires bioinformatics tools that rely on network-based analyses.In this report we present the Virtual Melanoma Cell, an online tool developed to facilitate the mining and interpretation of high-throughput data on melanoma by biomedical researches. The platform is based on a comprehensive, manually generated and expert-validated regulatory map composed of signaling pathways important in malignant melanoma. The Virtual Melanoma Cell is a tool designed to accept, visualize and analyze user-generated datasets. It is available at: https://www.vcells.net/melanoma. To illustrate the utilization of the web platform and the regulatory map, we have analyzed a large publicly available dataset accounting for anti-PD1 immunotherapy treatment of malignant melanoma patients.  相似文献   

12.
A complex signal transduction network involving salicylic acid, jasmonic acid and ethylene underlies disease resistance in Arabidopsis. To understand this defence signalling network further, we identified mutants that expressed the marker gene PR-1::luciferase in the absence of pathogen infection. These cir mutants all display constitutive expression of a suite of defence-related genes but exhibit different disease resistance profiles to two biotrophic pathogens, Pseudomonas syringae pv. tomato and Peronospora parasitica NOCO2, and the necrotrophic pathogen Botrytis cinerea. We further characterized cir3, which displays enhanced resistance only to the necrotrophic pathogen. Cir3-mediated resistance to B. cinerea is dependent on accumulated salicylic acid and a functional EIN2 protein.  相似文献   

13.
Gas3/PMP22 is a tetraspan membrane protein highly expressed in myelinating Schwann cells. Point mutations in the gas3/PMP22 gene account for the dominant inherited peripheral neuropathies Charcot-Marie-Tooth type 1A disease (CMT1A) and Dejerine-Sottas syndrome (DSS). Gas3/PMP22 can regulate apoptosis and cell spreading in cultured cells. Gas3/PMP22 point mutations, which are responsible for these diseases, are defective in this respect. In this report, we demonstrate that Gas3/PMP22-WT is exposed at the cell surface, while its point-mutated derivatives are intracellularly retained, colocalizing mainly with the endoplasmic reticulum (ER). The putative retrieval motif present in the carboxyl terminus of Gas3/PMP22 is not sufficient for the intracellular sequestration of its point-mutated forms. On the contrary, the introduction of a retrieval signal at the carboxyl terminus of Gas3/PMP22-WT leads to its intracellular accumulation, which is accompanied by a failure to trigger cell death as well as by changes in cell spreading. In addition, by substituting the Asn at position 41 required for N-glycosylation, we provide evidence that N-glycosylation is required for the full effect on cell spreading, but it is not necessary for triggering cell death. In conclusion, we suggest that the DSS and the CMT1A neuropathies derived from point mutations of Gas3/PMP22 might arise, at the molecular level, from a reduced exposure of Gas3/PMP22 at the cell surface, which is required to exert its biological functions.  相似文献   

14.
15.
16.
Around 40 species of Hylarana amphibians are distributed in tropical and subtropical Asia, and Chinese broad-folded frog, Hylarana latouchii (Boulenger, 1899) is one of them. In this study, six different cDNAs encoding four novel antimicrobial peptide precursors were cloned by screening the cDNA library of the Chinese broad-folded frog skin. The protein sequence analysis demonstrated that two deduced peptides belong to the brevinin-1 family, and the other two belong to temporin family of amphibian antimicrobial peptides. Thus, they were named as brevinin-1LT1 (FMGSALRIAAKVLPAALCQIFKKC), brevinin-1LT2 (FFGSVLKVAAKVLPAALCQIFKKC), temporin-LT1 (FLPGLIAGIAKML–NH2) and temporin-LT2 (FLPIALKALGSIFPKIL–NH2), respectively. Furthermore, brevinin-1LT1 and temporin-LT1 were purified by HPLC from the skin secretion of H. latouchii. In this work, all the peptides kill microbes by membrane-disturbing mechanisms, and this procedure was visualized via scanning electron microscopy (SEM).  相似文献   

17.
A series of HIV-1 protease mutants has been designed in an effort to analyze the contribution to drug resistance provided by natural polymorphisms as well as therapy-selective (active and non-active site) mutations in the HIV-1 CRF_01 A/E (AE) protease when compared to that of the subtype B (B) protease. Kinetic analysis of these variants using chromogenic substrates showed differences in substrate specificity between pretherapy B and AE proteases. Inhibition analysis with ritonavir, indinavir, nelfinavir, amprenavir, saquinavir, lopinavir, and atazanavir revealed that the natural polymorphisms found in A/E can influence inhibitor resistance. It was also apparent that a high level of resistance in the A/E protease, as with B protease, is due to it aquiring a combination of active site and non-active site mutations. Structural analysis of atazanavir bound to a pretherapy B protease showed that the ability of atazanavir to maintain its binding affinity for variants containing some resistance mutations is due to its unique interactions with flap residues. This structure also explains why the I50L and I84V mutations are important in decreasing the binding affinity of atazanavir.  相似文献   

18.
M H Barros  F G Nobrega 《Gene》1999,233(1-2):197-203
Here we describe the identification of a yeast gene (YAH1) with significant homology to a mammalian enzyme, adrenodoxin, encoded in open reading frame (ORF) YPL252C. Adrenodoxin is the second electron carrier that participates in a mitochondrial electron transfer chain that, in mammals, catalyses the conversion of cholesterol into pregnenolone, the first step in the synthesis of all steroid hormones. The inactivation of the yeast gene's chromosomal copy reveals that it performs an essential function. We show that the protein is targeted to the mitochondrial matrix and describe attempts to complement the yeast knockout with the human adrenodoxin gene (FDX1) and with chimerical proteins constructed with the fusion of the yeast and the human gene. The previous identification of a homolog of the first mammalian enzyme in yeast, ARH1, also shown to be essential (Manzella, L., Barros, M.H., Nobrega, F.G., 1998. Yeast 14, 839-846), strongly suggests that there is a novel electron transfer chain, unlinked to respiration, and of essential function in mitochondria.  相似文献   

19.
Diabetes mellitus (DM) is a common disease which results from various causes including genetic and environmental factors. Glutathione S-Transferase M1 (GSTM1) and Glutathione S-Transferase T1 (GSTT1) genes are polymorphic in human and the null genotypes lead to the absence of enzyme function. Many studies assessed the associations between GSTM1/GSTT1 null genotypes and DM risk but reported conflicting results. In order to get a more precise estimate of the associations of GSTM1/GSTT1 null genotypes with DM risk, we performed this meta-analysis. Published literature from PubMed, Embase and China Biology Medicine (CBM) databases was searched for eligible studies. Pooled odds ratios (OR) and corresponding 95% confidence intervals (95%CI) were calculated using a fixed- or random-effects model. 11 publications (a total of 2577 cases and 4572 controls) were finally included into this meta-analysis. Meta-analyses indicated that null genotypes of GSTM1/GSTT1 and dual null genotype of GSTM1–GSTT1 were all associated with increased risk of DM (GSTM1: OR random-effects = 1.60, 95%CI 1.10–2.34, POR = 0.014; GSTT1: OR random-effects = 1.47, 95%CI 1.12–1.92, POR = 0.005; GSTM1–GSTT1: OR fixed-effects = 1.83, 95%CI 1.30–2.59, POR = 0.001). Subgroup by ethnicity suggested significant associations between null genotypes of GSTM1 and GSTT1 and DM risk among Asians (GSTM1: OR random-effects = 1.77, 95%CI 1.24–2.53, POR = 0.002; GSTT1: OR random-effects = 1.58, 95%CI 1.09–2.27, POR = 0.015). This meta-analysis suggests null genotypes of GSTM1/GSTT1 and dual null genotype of GSTM1–GSTT1 are all associated with increased risk of DM, and null genotypes of GSTM1/GSTT1 and dual null genotype of GSTM1–GSTT1 are potential biomarkers of DM.  相似文献   

20.
A chloroquine resistant cloned isolate of Plasmodium falciparum, FAC8, which carries an amplification in the pfmdr1 gene was selected for high-level chloroquine resistance, resulting in a cell line resistant to a 10-fold higher concentration of chloroquine. These cells were found to have lost the amplification in pfmdr1 and to no longer over-produce the protein product termed P-glycoprotein homologue 1 (Pgh1). The pfmdr1 gene from this highly resistant cell line was not found to encode any amino acid changes that would account for increased resistance. Verapamil, which reverses chloroquine resistance in FAC8, also reversed high-level chloroquine resistance. Furthermore, verapamil caused a biphasic reversal of chloroquine resistance as the high-level resistance was very sensitive to low amounts of verapamil. These data suggest that over-expression of the P-glycoprotein homologue is incompatible with high levels of chloroquine resistance. In order to show that these results were applicable to other chloroquine selected lines, two additional mutants were selected for resistance to high levels of chloroquine. In both cases they were found to deamplify pfmdr1. Interestingly, while the level of chloroquine resistance of these mutants increased, they became more sensitive to mefloquine. This suggests a linkage between the copy number of the pfmdr1 gene and the level of chloroquine and mefloquine resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号