首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lin MC  Jan CR 《Life sciences》2002,71(9):1071-1079
The effect of the anti-anginal drug fendiline on intracellular free Ca(2+) levels ([Ca(2+)](i)) in a rabbit corneal epithelial cell line (SIRC) was explored using fura-2 as a fluorescent Ca(2+) indicator. At a concentration above 1 microM, fendiline increased [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 7 microM. The [Ca(2+)](i) response consisted of an immediate rise and an elevated phase. Extracellular Ca(2+) removal decreased half of the [Ca(2+)](i )signal. Fendiline induced quench of fura-2 fluorescence by Mn(2+) (50 microM), suggesting the presence of Ca(2+) influx across the plasma membrane. This Ca(2+) influx was abolished by La(3+) (50 microM), but was insensitive to dihydropyridines, verapamil and diltiazem. Fendiline (10 microM)-induced store Ca(2+) release was largely reduced by pretreatment with thapsigargin (1 microM) (an endoplasmic reticulum Ca(2+) pump inhibitor) to deplete the endoplasmic reticulum Ca(2+). Conversely, pretreatment with 10 microM fendiline abolished thapsigargin-induced Ca(2+) release. Fendiline (10 microM)-induced Ca(2+) release was not altered by inhibiting phospholipase C with 2 microM 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122). Cumulatively, this study shows that fendiline induced concentration-dependent [Ca(2+)](i )increases in corneal epithelial cells by releasing the endoplasmic reticulum Ca(2+) in a phospholipase C-independent manner, and by causing Ca(2+) influx.  相似文献   

2.
Curcumin, a natural, biologically active compound extracted from rhizomes of Curcuma species, has been shown to possess potent anti-inflammatory, anti-tumor, and anti-oxidative properties. The mechanism by which curcumin initiates apoptosis remains poorly understood. In the present report we investigated the effect of curcumin on the activation of the apoptotic pathway in human leukemia U937 cells. Curcumin induces apoptosis in U937 cells via a mechanism that appears to involve down-regulation of the anti-apoptotic Bcl-xL, and IAP proteins, release of cytochrome c, and activation of caspase 3. Ruthenium red, an inhibitor of mitochondrial uniporter, specifically inhibits curcumin-induced apoptosis in U937 cells. Cotreatment with ruthenium red markedly prevented the activation of caspase 3, cytochrome c release, and cell death, suggesting a role for intracellular Ca(2+) in this process. Curcumin induced a marked depletion of [Ca(2+)](i) in Caki cells bathed with both Ca(2+)-containing and -free solutions. Thapsigargin (TG), cyclopiazonic acid (CPA), and dantolene (DAN) had no effect. Ruthenium red, an inhibitor of mitochondrial uniporter, only attenuated the curcumin-induced [Ca(2+)](i) depletion in a dose-dependent manner. These data indicate that curcumin acts as a stimulator of intracellular Ca(2+) uptake into mitochondria via uniporter pathway and may involve in the execution of apoptosis.  相似文献   

3.
Capsazepine is thought to be a selective antagonist of vanilloid type 1 receptors; however, its other in vitro effect on different cell types is unclear. In human MG63 osteosarcoma cells, the effect of capsazepine on intracellular Ca(2+) concentrations ([Ca(2+)](i)) and cytotoxicity was explored by using fura-2 and tetrazolium, respectively. Capsazepine caused a rapid rise in [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 100 microM. Capsazepine-induced [Ca(2+)](i) rise was partly reduced by removal of extracellular Ca(2+), suggesting that the capsazepine-induced [Ca(2+)](i) rise was composed of extracellular Ca(2+) influx and intracellular Ca(2+). In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which the increasing effect of capsazepine on [Ca(2+)](i) was inhibited by 75%. Conversely, pretreatment with capsazepine to deplete intracellular Ca(2+) stores totally prevented thapsigargin from releasing more Ca(2+). U73122, an inhibitor of phospholipase C, abolished histamine (an inositol 1,4,5-trisphosphate-dependent Ca(2+) mobilizer)-induced, but not capsazepine-induced, [Ca(2+)](i) rise. Overnight treatment with 1-100 microM capsazepine inhibited cell proliferation in a concentration-dependent manner. These findings suggest that in human MG63 osteosarcoma cells, capsazepine increases [Ca(2+)](i) by stimulating extracellular Ca(2+) influx and also by causing intracellular Ca(2+) release from the endoplasmic reticulum via a phospholiase C-independent manner. Capsazepine may be mildly cytotoxic.  相似文献   

4.
Park KS  Lee HY  Lee SY  Kim MK  Kim SD  Kim JM  Yun J  Im DS  Bae YS 《FEBS letters》2007,581(23):4411-4416
We investigated whether lysophosphatidylethanolamine (LPE) modulates cellular signaling in different cell types. SK-OV3 ovarian cancer cells and OVCAR-3 ovarian cancer cells were responsive to LPE. LPE-stimulated intracellular calcium concentration ([Ca(2+)](i)) increase was inhibited by U-73122, suggesting that LPE stimulates calcium signaling via phospholipase C activation. Moreover, pertussis toxin (PTX) almost completely inhibited [Ca(2+)](i) increase by LPE, indicating the involvement of PTX-sensitive G-proteins. Furthermore, we found that LPE stimulated chemotactic migration and cellular invasion in SK-OV3 ovarian cancer cells. We examined the role of lysophosphatidic acid receptors on LPE-stimulated cellular responses using HepG2 cells transfected with different LPA receptors, and found that LPE failed to stimulate nuclear factor kappa B-driven luciferase. We suggest that LPE stimulates a membrane bound receptor, different from well known LPA receptors, resulting in chemotactic migration and cellular invasion in SK-OV3 ovarian cancer cells.  相似文献   

5.
Recently, we have isolated a cDNA encoding a muscarinic acetylcholine receptor (mAChR) from Caenorhabditis elegans. To investigate the regulation of phospholipase D (PLD) signaling via a muscarinic receptor, we generated stable transfected Chinese hamster ovary (CHO) cells that overexpress the mAChR of C. elegans (CHO-GAR-3). Carbachol (CCh) induced inositol phosphate formation and a significantly higher Ca(2+) elevation and stimulated PLD activity through the mAChR; this was insensitive to pertussis toxin, but its activity was abolished by the phospholipase C (PLC) inhibitor U73122. Western blot analysis revealed several apparent tyrosine-phosphorylated protein bands after CCh treatment. The CCh-induced PLD activation and tyrosine phosphorylation were significantly reduced by the protein kinase C (PKC) inhibitor calphostin C and down-regulation of PKC and the tyrosine kinase inhibitor genistein. Moreover, the Ca(2+)-calmodulin-dependent protein kinase II (CaM kinase II) inhibitor KN62, in addition to chelation of extracellular or intracellular Ca(2+) by EGTA and BAPTA/AM, abolished CCh-induced PLD activation and protein tyrosine phosphorylation. Taken together, these results suggest that the PLC/PKC-PLD pathway and the CaM kinase II/tyrosine kinase-PLD pathway are involved in the activation of PLD through mAChRs of C. elegans.  相似文献   

6.
Chao YY  Jan CR 《Life sciences》2004,74(7):923-933
In canine renal tubular cells, the effect of Y-24180, a presumed specific platelet activating factor (PAF) receptor antagonist, on intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured by using fura-2 as a Ca(2+)-sensitive fluorescent probe. Y-24180 (0.1-10 microM) caused a rapid and sustained [Ca(2+)](i) rise in a concentration-dependent manner. The [Ca(2+)](i) rise was prevented by 30% by removal of extracellular Ca(2+), but was not changed by dihydropyridines, verapamil and diltiazem. Y-24180-induced Ca(2+) influx was confirmed by Mn(2+)-influx induced quench of fura-2 fluorescence. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which the increasing effect of 5 microM Y-24180 on [Ca(2+)](i) was abolished; conversely, depletion of Ca(2+) stores with 5 microM Y-24180 abolished thapsigargin-induced [Ca(2+)](i) rise. U73122, an inhibitor of phoispholipase C, inhibited ATP-, but not Y-24180-induced [Ca(2+)](i) rise. Overnight treatment with Y-24180 did not alter cell proliferation rate. Collectively, these results suggest that Y-24180 acts as a potent, but not cytotoxic, Ca(2+) mobilizer in renal tubular cells, by stimulating both extracellular Ca(2+) influx and intracellular Ca(2+) release. Since alterations in Ca(2+) movement may interfere many cellular signaling processes unrelated to modulation of PAF receptors, caution must be applied in using this chemical as a selective PAF receptor antagonist.  相似文献   

7.
We investigated signal transduction between receptor-operated Ca(2+) influx (ROCI) and Src-related nonreceptor protein tyrosine kinase (PTK) in rat pancreatic acini. CCK and the Ca(2+) ionophore enhanced the Src-related PTK activity, whereas the high-affinity CCK-A receptor agonists, fibroblast growth factor (FGF), and the protein kinase C (PKC) activator had no or little effect. This increase was abolished by eliminating [Ca(2+)](o), loading of the intracellular Ca(2+) chelator, and administering the PTK inhibitor genistein. While genistein inhibited extracellular Ca(2+) or Mn(2+) entry induced by CCK and carbachol, it did not affect intracellular Ca(2+) release and oscillations. CCK dose-dependently increased the Src phosphotransferase activity, which was abolished by inhibitors of G(q) protein, phospholipase C (PLC), and Src, but not by the calmodulin kinase (CaMK) inhibitor. Intensities of the Src band and amounts of tyrosine phosphorylated Src were enhanced by CCK stimulation. Thus, Src cascades appear to be coupled to the low-affinity CCK-A receptor and utilize G(q)-PLC pathways for their activation, independent of PKC and CaMK cascades. The low-affinity CCK-A receptor regulates ROCI via mediation of Src-related PTK and activates Src pathways to cause [Ca(2+)](o)-dependent pancreatic exocytosis.  相似文献   

8.
A complex phospholipid from bovine vitreous body with a strong Ca(2+)-mobilizing activity has been recently isolated to homogeneity by our group. In this work, a sequential analysis of its transmembrane signaling pathway has been undertaken to characterize the intracellular mechanisms responsible for the Ca(2+) rise. The results show that this phospholipid induces, in a dose-dependent manner (ED(50) of around 0.25 microgram/ml), a Ca(2+) mobilization from inositol 1,4,5-trisphosphate-insensitive intracellular stores, with no participation of extracellular Ca(2+). Upon repeated administration, it shows no signs of autologous desensitization, does not induce heterologous desensitization of the L-alpha-lysophosphatidic acid (LPA) receptor but is desensitized by the previous administration of LPA. The Ca(2+)-mobilizing activity requires a membrane protein, is blocked after preincubation of the cells with pertussis toxin and phorbol esters, as well as by U73122 (an inhibitor of phospholipases C/D), R59022 (a diacylglycerol kinase inhibitor), and D609 (which inhibits phosphatidylcholine-specific phospholipase C). Upon administration of this phospholipid, the intracellular levels of phosphatidic acid (PA) rise with a time course that parallels that of the Ca(2+) mobilization, suggesting that PA could be responsible for this Ca(2+) signal. Exposure to AACOCF(3) (a specific inhibitor of phospholipase A(2)) does not modify the Ca(2+) rise, ruling out the possibility that the PA generated could be further converted to LPA by the action of phospholipase A(2). Based on the experimental data obtained, a signaling pathway involving a phosphatidylcholine-specific phospholipase C coupled to diacylglycerol kinase is proposed. This compound may represent a new class of bioactive lipids with a putative role in the physiology of the vitreous body.  相似文献   

9.
Integrin signaling modulates trophoblast adhesion to extracellular matrices during blastocyst implantation. Fibronectin (FN)-binding activity on the apical surface of trophoblast cells is strengthened after elevation of intracellular Ca(2+) downstream of integrin ligation by FN. We report here that phosphoinositide-specific phospholipase C (PLC) mediates Ca(2+) signaling in response to FN. Pharmacological agents used to antagonize PLC (U73122) or the inositol phosphate receptor (Xestospongin C) inhibited FN-induced elevation of intracellular Ca(2+) and prevented the upregulation of FN-binding activity. In contrast, inhibitors of Ca(2+) influx through either voltage-gated or non-voltage-gated Ca(2+) channels were without effect. Inhibition of protein tyrosine kinase activity by genistein, but not G-protein inhibition by suramin, blocked FN-induced intracellular Ca(2+) signaling and upregulation of adhesion, consistent with involvement of PLC-gamma. Confocal immunofluorescence imaging of peri-implantation blastocysts demonstrated that PLC-gamma2, but not PLC-gamma1 nor PLC-beta1, accumulated near the outer surface of the embryo. Phosphotyrosine site-directed antibodies revealed phosphorylation of PLC-gamma2, but not PLC-gamma1, upon integrin ligation by FN. These data suggest that integrin-mediated activation of PLC-gamma to initiate phosphoinositide signaling and intracellular Ca(2+) mobilization is required for blastocyst adhesion to FN. Signaling cascades regulating PLC-gamma could, therefore, control a critical feature of trophoblast differentiation during peri-implantation development.  相似文献   

10.
11.
The effect of nordihydroguaiaretic acid (NDGA) on Ca(2+) signaling in C6 glioma cells has been investigated. NDGA (5-100 microM) increased [Ca(2+)]i concentration-dependently. The [Ca(2+)]i increase comprised an initial rise and an elevated phase over a time period of 4 min. Removal of extracellular Ca(2+) reduced NDGA-induced [Ca(2+)]i signals by 52+/-2%. After incubation of cells with NDGA in Ca(2+)-free medium for 4 min, addition of 3 mM CaCl2 induced a concentration-dependent increase in [Ca(2+)]i. NDGA (100 microM)-induced [Ca(2+)]i increases in Ca(2+)-containing medium was not changed by pretreatment with 10 microM nifedipine or verapamil. In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (1 microM) abolished 100 microM NDGA-induced [Ca(2+)]i increases. Inhibition of phospholipase C with 2 microM U73122 had little effect on 100 microM NDGA-induced Ca(2+) release. Several other lipoxygenase inhibitors had no effect on basal [Ca(2+)]i. Collectively, the results suggest that NDGA increased [Ca(2+)]i in glioma cells in a lipoxygenase-independent manner, by releasing Ca(2+) from the endoplasmic reticulum in a manner independent of phospholipase C activity and by causing Ca(2+) influx.  相似文献   

12.
We have previously shown that acetylcholine-induced contraction of oesophageal circular muscle depends on activation of phosphatidylcholine selective phospholipase C and D, which result in formation of diacylglycerol, and of phospholipase 2 which produces arachidonic acid. Diacylglycerol and arachidonic acid interact synergistically to activate protein kinase C. We have therefore investigated the relationship between cytosolic Ca(2+) and activation of phospholipase A(2) in response to acetylcholine-induced stimulation, by measuring the intracellular free Ca(2+) ([Ca(2+)]i), muscle tension, and [3H] arachidonic acid release. Acetylcholine-induced contraction was associated with increased [Ca(2+)]i and arachidonic acid release in a dose-dependent manner. In Ca(2+)-free medium, acetylcholine did not produce contraction, [Ca(2+)]i increase, and arachidonic acid release. In contrast, after depletion of Ca(2+) stores by thapsigargin (3 microM), acetylcholine caused a normal contraction, [Ca(2+)]i increase and arachidonic acid release. The increase in [Ca(2+)]i and arachidonic acid release were attenuated by the M2 receptor antagonist methoctramine, but not by the M3 receptor antagonist p-fluoro-hexahydro siladifenidol. Increase in [Ca(2+)]i and arachidonic acid release by acetylcholine were inhibited by pertussis toxin and C3 toxin. These findings indicate that contraction and arachidonic acid release are mediated through muscarinic M2 coupled to Gi or rho protein activation and Ca(2+) influx. Acetylcholine-induced contraction and the associated increase in [Ca(2+)]i and release of arachidonic acid were completely reduced by the combination treatment with a phospholipase A(2) inhibitor dimethyleicosadienoic acid and a phospholipase D inhibitor pCMB. They increased by the action of the inhibitor of diacylglycerol kinase R59949, whereas they decreased by a protein kinase C inhibitor chelerythrine. These data suggest that in oesophageal circular muscle acetylcholine-induced [Ca(2+)]i increase and arachidonic acid release are mediated through activation of M2 receptor coupled to Gi or rho protein, resulting in the activation of phospholipase A(2) and phospholipase D to activate protein kinase C.  相似文献   

13.
We characterized the alpha(1B)-adrenoreceptor (alpha(1B)-AR)-mediated intracellular Ca(2+) signaling involving G alpha(h) (transglutaminase II, TGII) and phospholipase C (PLC)-delta 1 using DDT1-MF2 cell. Expression of wild-type TGII and a TGII mutant lacking transglutaminase activity resulted in significant increases in a rapid peak and a sustained level of intracellular Ca(2+) concentration ([Ca(2+)](i)) in response to activation of the alpha(1B)-AR. Expression of a TGII mutant lacking the interaction with the receptor or PLC-delta 1 substantially reduced both the peak and sustained levels of [Ca(2+)](i). Expression of TGII mutants lacking the interaction with PLC-delta 1 resulted in a reduced capacitative Ca(2+) entry. Reduced expression of PLC-delta 1 displayed a transient elevation of [Ca(2+)](i) and a reduction in capacitative Ca(2+) entry. Expression of the C2-domain of PLC-delta 1, which contains the TGII interaction site, resulted in reduction of the alpha(1B)-AR-evoked peak increase in [Ca(2+)](i), while the sustained elevation in [Ca(2+)](i) and capacitative Ca(2+) entry remained unchanged. These findings demonstrate that stimulation of PLC-delta 1 via coupling of the alpha(1B)-AR with TGII evokes both Ca(2+) release and capacitative Ca(2+) entry and that capacitative Ca(2+) entry is mediated by the interaction of TGII with PLC-delta 1.  相似文献   

14.
Calcium influx is critical for T cell activation. Evidence has been presented that T cell receptor-stimulated calcium influx in helper T lymphocytes occurs via channels activated as a consequence of depletion of intracellular calcium stores, a mechanism known as capacitative Ca(2+) entry (CCE). However, two key questions have not been addressed. First, the mechanism of calcium influx in cytotoxic T cells has not been examined. While the T cell receptor-mediated early signals in helper and cytotoxic T cells are similar, the physiology of the cells is strikingly different, raising the possibility that the mechanism of calcium influx is also different. Second, contact of T cells with antigen-presenting cells or targets involves a host of intercellular interactions in addition to those between antigen-MHC and the T cell receptor. The possibility that calcium influx pathways in addition to those activated via the T cell receptor may be activated by contact with relevant cells has not been addressed. We have used imaging techniques to show that target-cell-stimulated calcium influx in CTLs occurs primarily through CCE. We investigated the permeability of the CTL influx pathway for divalent cations, and compared it to the permeability of CCE in Jurkat human leukemic T cells. CCE in CTLs shows a similar ability to discriminate between calcium, barium, and strontium as CCE in Jurkat human leukemic T lymphocytes, where CCE is likely to mediated by Ca(2+) release-activated Ca(2+) current (CRAC) channels, suggesting that CRAC channels also underlie CCE in CTLs. These results are the first determination of the mechanism of calcium influx in cytotoxic T cells and the first demonstration that cell contact-mediated calcium signals in T cells occur via depletion-activated channels.  相似文献   

15.
Qiu J  Wang CG  Huang XY  Chen YZ 《Life sciences》2003,72(22):2533-2542
Many stimulants, including bradykinin (BK), can induce increase in [Ca(2+)](i) in PC12 cells. Bradykinin induces an increase in [Ca(2+)](i) via intracellular Ca(2+) release and extracellular Ca(2+) influx through the transduction of G protein, but not through voltage-sensitive calcium channels. In this experiment, We analyzed how corticosterone (Cort) influences BK-induced intracellular Ca(2+) release and extracellular Ca(2+) influx, and further studied the mechanism of glucocorticoid's action. To dissociate the intracellular Ca(2+) release and extracellular Ca(2+) influx induced by BK, the Ca(2+)-free/Ca(2+)- reintroduction protocol was used. The results were as follows: (1) The Ca(2+) influx induced by BK could be rapidly inhibited by Cort, but intracellular Ca(2+) release could not be affected significantly. (2) The inhibitory effect of Cort-BSA (BSA -conjugated Cort) on Ca(2+) influx induced by BK was the same as the effect of free Cort. (3) Protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate) could mimic and PKC inhibitor G?6976 could reverse the inhibitory effect of Cort. (4) There was no inhibitory effect of Cort on Ca(2+) influx induced by BK when pretreated with pertussis toxin. The results suggested, for the first time, that Cort might act via a putative membrane receptor and inhibit the Ca(2+) influx induced by BK through the pertussis toxin -sensitive G protein-PKC pathway.  相似文献   

16.
The difference of Ca(2+) mobilization induced by muscarinic receptor activation between parotid acinar and duct cells was examined. Oxotremorine, a muscarinic-cholinergic agonist, induced intracellular Ca(2+) release and extracellular Ca(2+) entry through store-operated Ca(2+) entry (SOC) and non-SOC channels in acinar cells, but it activated only Ca(2+) entry from non-SOC channels in duct cells. RT-PCR experiments showed that both types of cells expressed the same muscarinic receptor, M3. Given that ATP activated the intracellular Ca(2+) stores, the machinery for intracellular Ca(2+) release was intact in the duct cells. By immunocytochemical experiments, IP(3)R2 colocalized with M3 receptors in the plasma membrane area of acinar cells; in duct cells, IP(3)R2 resided in the region on the opposite side of the M3 receptors. On the other hand, purinergic P2Y2 receptors were found in the apical area of duct cells where they colocalized with IP(3)R2. These results suggest that the expression of the IP(3)Rs near G-protein-coupled receptors is necessary for the activation of intracellular Ca(2+) stores. Therefore, the microenvironment probably affects intracellular Ca(2+) release and Ca(2+) entry.  相似文献   

17.
In the breast tumor cell line MCF-7, extracellular nucleotides induce transient elevations in intracellular calcium concentration ([Ca(2+)](i)). In this study we show that stimulation with ATP or UTP sensitizes MCF-7 cells to mechanical stress leading to an additional transient Ca(2+) influx. ATP> or =ATPgamma-S> or =UTP>ADP=ADPbeta-S elevate [Ca(2+)](i), proving the presence of P2Y(2)/P2Y(4) purinergic receptor subtypes. In addition, cell stimulation with ATP, ATPgamma-S or UTP but not ADPbeta-S induced the phosphorylation of ERK1/2, p38 and JNK1/2 mitogen activated protein kinases (MAPKs). The use of Gd(3+), La(3+) or a Ca(2+)-free medium, inhibited ATP-dependent stress activated Ca(2+) (SAC) influx, but had no effect on MAPK phosphorylation. ATP-induced activation of MAPKs was diminished by two PI-PLC inhibitors and an IP(3) receptor antagonist. These results evidence an ATP-sensitive SAC influx in MCF-7 cells and indicate that phosphorylation of MAPKs by ATP is dependent on PI-PLC/IP(3)/Ca(2+)(i) release but independent of SAC influx in these cells, differently to other cell types.  相似文献   

18.
ATP is released into extracellular space as an autocrine/paracrine molecule by mechanical stress and pharmacological-receptor activation. Released ATP is partly metabolized by ectoenzymes to adenosine. In the present study, we found that adenosine causes ATP release in Madin-Darby canine kidney cells. This release was completely inhibited by CPT (an A1 receptor antagonist), U-73122 (a phospholipase C inhibitor), 2-APB (an inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) receptor blocker), thapsigargin (a Ca2+-ATPase inhibitor), and BAPTA/AM (an intracellular Ca2+ chelator), but not by DMPX (an A2 receptor antagonist). However, forskolin, epinephrine, and isoproterenol, inducers of cAMP accumulation, failed to release ATP. Adenosine increased intracellular Ca2+ concentrations that were strongly blocked by CPT, U-73122, 2-APB, and thapsigargin. Moreover, adenosine enhanced accumulations of Ins(1,4,5)P3 that were significantly reduced by U-73122 and CPT. These data suggest that adenosine induces the release of ATP by activating an Ins(1,4,5)P3 sensitive-Ca2+ pathway through the stimulation of A1 receptors.  相似文献   

19.
Adenine and uridine nucleotides evoke Ca(2+) signals via four subtypes of P2Y receptor in cultured aortic smooth muscle cells, but the mechanisms underlying the different patterns of these Ca(2+) signals are unresolved. Cytosolic Ca(2+) signals were recorded from single cells and populations of cultured rat aortic smooth muscle cells, loaded with a fluorescent Ca(2+) indicator and stimulated with agonists that allow subtype-selective activation of P2Y1, P2Y2, P2Y4, or P2Y6 receptors. Activation of P2Y1, P2Y2, and P2Y6 receptors caused homologous desensitisation, while activation of P2Y2 receptors also caused heterologous desensitisation of the other subtypes. The Ca(2+) signals evoked by each P2Y receptor subtype required activation of phospholipase C and release of Ca(2+) from intracellular stores via inositol 1,4,5-trisphosphate (IP(3)) receptors, but they were unaffected by inhibition of ryanodine or nicotinic acid adenine dinucleotide phosphate (NAADP) receptors. Sustained Ca(2+) signals were independent of the Na(+)/Ca(2+) exchanger and were probably mediated by store-operated Ca(2+) entry. Analyses of single cells established that most cells express P2Y2 receptors and at least two other P2Y receptor subtypes. We conclude that four P2Y receptor subtypes evoke Ca(2+) signals in cultured aortic smooth muscle cells using the same intracellular (IP(3) receptors) and Ca(2+) entry pathways (store-operated Ca(2+) entry). Different rates of homologous desensitisation and different levels of receptor expression account for the different patterns of Ca(2+) signal evoked by each P2Y receptor subtype.  相似文献   

20.
The relationship between calcium mobilization and phospholipase D (PLD) activation in response to E-series prostaglandins (PGEs) was investigated in human erythroleukemia cells. Intracellular free Ca2+ concentration ([Ca2+]i) was increased by PGE1 and PGE2 over the same concentration range at which PLD activation was seen. Pretreatment of cells with pertussis toxin greatly inhibited the PGE-stimulated increase in [Ca2+]i, implying that a G protein participates in the PGE receptor signaling process. The peak level and also the plateau level of Ca2+ mobilization stimulated by these prostaglandins were markedly decreased in Ca(2+)-depleted medium, indicating that both extracellular and intracellular Ca2+ stores contribute to the changes in [Ca2+]i. Likewise, activation of PLD by PGE1 and PGE2 was abolished by pertussis toxin pretreatment or incubation in Ca(2+)-depleted medium. U73122, a putative phospholipase C inhibitor, blocked both Ca2+ mobilization and PLD activation in PGE-stimulated cells. Furthermore, the intracellular loading of BAPTA, a Ca2+ chelator, inhibited both Ca2+ mobilization and PLD activation by PGE1 and PGE2 in a similar dose-dependent manner. Simultaneous measurement of [Ca2+]i and PLD activity in the same cell samples indicated that PLD activity increases as a function of [Ca2+]i in a similar fashion in cells stimulated either by PGEs or by the calcium ionophore ionomycin. Taken together, these findings suggest that a rise in [Ca2+]i is necessary for PGE-stimulated PLD activity in human erythroleukemia cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号