首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The partial purification and characterization of cell wall polysaccharides isolated from suspension-cultured Douglas fir (Pseudotsuga menziesii) cells are described. Extraction of isolated cell walls with 1.0 m LiCl solubilized pectic polysaccharides with glycosyl-linkage compositions similar to those of rhamnogalacturonans I and II, pectic polysaccharides isolated from walls of suspension-cultured sycamore cells. Treatment of LiCl-extracted Douglas fir walls with an endo-α-1,4-polygalacturonase released only small, additional amounts of pectic polysaccharide, which had a glycosyl-linkage composition similar to that of rhamnogalacturonan I. Xyloglucan oligosaccharides were released from the endo-α-1,4-polygalacturonase-treated walls by treatment with an endo-β-1,4-glucanase. These oligosaccharides included hepta- and nonasaccharides similar or identical to those released from sycamore cell walls by the same enzyme, and structurally related octa- and decasaccharides similar to those isolated from various angiosperms. Finally, additional xyloglucan and small amounts of xylan were extracted from the endo-β-1,4-glucanase-treated walls by 0.5 n NaOH. The xylan resembled that extracted by NaOH from dicot cell walls in that it contained 2,4- but not 3,4-linked xylosyl residues. In this study, a total of 15% of the cell wall was isolated as pectic material, 10% as xyloglucan, and less than 1% as xylan. The noncellulosic polysaccharides accounted for 26% of the cell walls, cellulose for 23%, protein for 34%, and ash for 5%, for a total of 88% of the cell wall. The cell walls of Douglas fir were more similar to dicot (sycamore) cell walls than to those of graminaceous monocots, because they had a predominance of xyloglucan over xylan as the principle hemicellulose and because they possessed relatively large amounts of rhamnogalacturonan-like pectic polysaccharides.  相似文献   

2.
Thompson JE  Fry SC 《Planta》2000,211(2):275-286
 Neutral xyloglucan was purified from the cell walls of suspension-cultured rose (Rosa sp. `Paul's Scarlet') cells by alkali extraction, ethanol precipitation and anion-exchange chromatography on `Q-Sepharose FastFlow'. The procedure recovered 70% of the total xyloglucan at about 95% purity in the neutral fraction. The remaining 30% of the xyloglucan was anionic, as demonstrated both by anion-exchange chromatography at pH 4.7 and by high-voltage electrophoresis at pH 6.5. Alkali did not cause neutral xyloglucan to become anionic, indicating that the anionic nature of the rose xyloglucan was not an artefact of the extraction procedure. Pre-incubation of neutral [3H]xyloglucan with any of ten non-radioactive acidic polysaccharides did not cause the radioactive material to become anionic as judged by electrophoresis, indicating that stable complexes between neutral xyloglucan and acidic polysaccharides were not readily formed in vitro. The anionic xyloglucan did not lose its charge in the presence of 8 M urea or after a second treatment with NaOH, indicating that its anionic nature was not due to hydrogen-bonding of xyloglucan to an acidic polymer. Proteinase did not affect the anionic xyloglucan, indicating that it was not associated with an acidic protein. Cellulase converted the anionic xyloglucan to the expected neutral nonasaccharide and heptasaccharide, indicating that the repeat-units of the xyloglucan did not contain acidic residues. Endo-polygalacturonase converted about 40% of the anionic xyloglucan to neutral material. Arabinanase and galactanase also converted appreciable proportions of the anionic xyloglucan to neutral material. These results show that about 30% of the xyloglucan in the cell walls of suspension-cultured rose cells exists in covalently-linked complexes with acidic pectins. Received: 5 November 1999 / Accepted: 18 January 2000  相似文献   

3.
Xyloglucan endotransglycosylases (XETs) cleave and then re-join xyloglucan chains and may thus contribute to both wall-assembly and wall-loosening. The present experiments demonstrate the simultaneous occurrence in vivo of two types of interpolymeric transglycosylation: "integrational" (in which a newly secreted xyloglucan reacts with a previously wall-bound one) and "restructuring" (in which one previously wall-bound xyloglucan reacts with another). Xyloglucans synthesised by cultured rose (Rosa sp.) cells in "heavy" or "light" media (with [13C,2H]glucose or [12C,1H]glucose, respectively) had buoyant densities of 1.643 and 1.585 g ml-1, respectively, estimated by isopycnic centrifugation in caesium trifluoroacetate. To detect transglycosylation, we shifted heavy rose cells into light medium, then supplied a 2-h pulse of L-[1-3H]arabinose. Light [3H]xyloglucans were thus secreted into heavy, non-radioactive walls and chased by light, non-radioactive xyloglucans. At 2 h after the start of radiolabelling, the (neutral) [3H]xyloglucans were on average 29% heavy, indicating molecular grafting during integrational transglycosylation. The [3H]xyloglucans then gradually increased in density until, by 11 h, they were 38% heavy. This density increase suggests that restructuring transglycosylation reactions occurred between the now wall-bound [3H]xyloglucan and other (mainly older, i.e. heavy) wall-bound non-radioactive xyloglucans. Brefeldin A (BFA), which blocked xyloglucan secretion, did not prevent the increase in density of wall-bound [3H]xyloglucan (2-11 h). This confirms that restructuring transglycosylation occurred between pairs of previously wall-bound xyloglucans. After 7 d in BFA, the 3H was in hybrid xyloglucans in which on average 55% of the molecule was heavy. Exogenous xyloglucan oligosaccharides (competing acceptor substrates for XETs) did not affect integrational transglycosylation whereas they inhibited restructuring transglycosylation. Possible reasons for this difference are discussed. This is the first experimental evidence for restructuring transglycosylation in vivo. We argue that both integrational and restructuring transglycosylation can contribute to both wall-assembly and -loosening.  相似文献   

4.
It has been proposed that plant cell-wall polysaccharides are subject in vivo to non-enzymic scission mediated by hydroxyl radicals (-*OH). In the present study, xyloglucan was subjected in vitro to partial, non-enzymic scission by treatment with ascorbate plus H(2)O(2), which together generate -*OH. The partially degraded xyloglucan appeared to contain ester bonds within the backbone, as indicated by an irreversible decrease in viscosity upon alkaline hydrolysis. Aldehyde and/or ketone groups were also introduced into the polysaccharide by -*OH-attack, as indicated by staining with aniline hydrogen-phthalate and by reaction with NaB(3)H(4). The introduction of ester and oxo groups supports the proposed sequence of reactions: (a) -*OH-mediated H-abstraction to produce a carbon-centred carbohydrate radical; (b) reaction of the latter with O(2); and (c) elimination of a hydroperoxyl radical (HO(2)*-). When the partially degraded xyloglucan was reduced with NaB(3)H(4) followed by acid hydrolysis, several 3H-aldoses were detected ([3H]galactose, [3H]xylose, [3H]glucose, [3H]ribose and probably [3H]mannose), in addition to unidentified 3H-products (probably including anhydroaldoses). 3H-Alditols were undetectable, showing that few or no conventional reducing termini were introduced. Digestion of the NaB(3)H(4)-reduced, partially degraded xyloglucan with Driselase released 25 times more [3H]Xyl-alpha-(1-->6)-Glc than Xyl-alpha-(1-->6)-[3H]Glc, suggesting that the xylose side-chains of the xyloglucan had been more heavily attacked by -*OH than the glucose residues of the backbone. The radioactive xyloglucan was readily digested by cellulase, yielding 3H-products in the hepta- to nonasaccharide range. A fingerprinting strategy for identifying -*OH-attacked xyloglucan in plant cell walls is proposed.  相似文献   

5.
Popper ZA  Fry SC 《Planta》2008,227(4):781-794
We tested two hypotheses for the mechanism by which xyloglucan–pectin covalent bonds are formed in Arabidopsis cell cultures. Hypothesis 1 proposed hetero-transglycosylation, with xyloglucan as donor substrate and a rhamnogalacturonan-I (RG-I) side-chain as acceptor. We looked for enzyme activities that catalyse this reaction using α-(1→5)-l-[3H]arabino- or β-(1→4)-d-[3H]galacto-oligosaccharides as model acceptor substrates. The 3H-oligosaccharides were supplied (with or without added xyloglucans) to living Arabidopsis cell-cultures, permeabilised cells, cell-free extracts, or four authentic XTHs. No hetero-transglycosylation occurred. Therefore, we cannot support hypothesis 1. Hypothesis 2 proposed that some xyloglucan is manufactured de novo as a side-chain on RG-I. To test this, we pulse-labelled Arabidopsis cell-cultures with [3H]arabinose and monitored the radiolabelling of anionic (pectin-bonded) xyloglucan, which was resolved from free xyloglucan by ion-exchange chromatography. [3H]Xyloglucan–pectin complexes were detectable <4 min after [3H]arabinose feeding, which is shorter than the transit-time for polysaccharide secretion, indicating that xyloglucan–pectin bonds were formed intra-protoplasmically. Thereafter, the proportion of the wall-bound [3H]xyloglucan that was anionic remained almost constant at ∼50% for ≥6 days, showing that the xyloglucan–pectin bond was stable in vivo. Some [3H]xyloglucan was rapidly sloughed into the medium instead of becoming wall-bound. Only ∼30% of the sloughed [3H]xyloglucan was anionic, indicating that bonding to pectin promoted the integration of xyloglucan into the wall. We conclude that ∼50% of xyloglucan in cultured Arabidopsis cells is synthesised on a pectic primer, then secreted into the apoplast, where the xyloglucan–pectin bonds are stable and the pectic moiety aids wall-assembly.  相似文献   

6.
The molecular structure, chemical properties, and biological function of the xyloglucan polysaccharide isolated from cell walls of suspension-cultured sycamore (Acer pseudoplatanus) cells are described. The sycamore wall xyloglucan is compared to the extracellular xyloglucan secreted by suspension-cultured sycamore cells into their culture medium and is also compared to the seed “amyloid” xyloglucans.  相似文献   

7.
Abstract

Xyloglucan endotransglycosylase (XET) activity is widespread in plant cell walls, but its action on xyloglucan in vivo has been difficult to prove because the reaction products are not expected to differ chemically from the reactants. By feeding of cultured Rosa cells with [13C]glucose and [3H]arabinose followed by [12-C]glucose, and isopyenic centrifugation of the extracted xyloglucan in caesium trifluoroacetate, we have obtained evidence for the annealing of segments of newly-secreted xyloglucan to xyloglucan chains that were already present in the cell wall. This is the first evidence for interpolymeric transglycosylation of xyloglucan in vivo.  相似文献   

8.
The polysaccharide-rich cell walls (CWs) of plants perform essential functions such as maintaining tensile strength and allowing plant growth. Using two- and three-dimensional magic-angle-spinning (MAS) solid-state NMR and uniformly (13)C-labeled Arabidopsis thaliana, we have assigned the resonances of the major polysaccharides in the intact and insoluble primary CW and determined the intermolecular contacts and dynamics of cellulose, hemicelluloses, and pectins. Cellulose microfibrils showed extensive interactions with pectins, while the main hemicellulose, xyloglucan, exhibited few cellulose cross-peaks, suggesting limited entrapment in the microfibrils rather than extensive surface coating. Site-resolved (13)C T(1) and (1)H T(1ρ) relaxation times indicate that the entrapped xyloglucan has motional properties that are intermediate between the rigid cellulose and the dynamic pectins. Xyloglucan absence in a triple knockout mutant caused the polysaccharides to undergo much faster motions than in the wild-type CW. These results suggest that load bearing in plant CWs is accomplished by a single network of all three types of polysaccharides instead of a cellulose-xyloglucan network, thus revising the existing paradigm of CW structure. The extensive pectin-cellulose interaction suggests a central role for pectins in maintaining the structure and function of plant CWs. This study demonstrates the power of multidimensional MAS NMR for molecular level investigation of the structure and dynamics of complex and energy-rich plant materials.  相似文献   

9.
Pea xyloglucan and cellulose : I. Macromolecular organization   总被引:25,自引:18,他引:7       下载免费PDF全文
A macromolecular complex composed of xyloglucan and cellulose was obtained from elongating regions of etiolated pea (Pisum sativum L. var. Alaska) stems. Xyloglucan could be solubilized by extraction of this complex with 24% KOH-0.1% NaBH4 or by extended treatment with endo-1,4-β-glucanase. The polysaccharide was homogeneous by ultracentrifugal analysis and gel filtration on Sepharose CL-6B, molecular weight 330,000. The structure of pea xyloglucan was examined by fragmentation analysis of enzymic hydrolysates, methylation analysis, and precipitation tests with fucose- or galactose-binding lectins. The polysaccharide was composed of equal amounts of two subunits, a nonasaccharide (glucose/xylose/galactose/fucose, 4:3:1:1) and a heptasaccharide (glucose/xylose, 4:3), which appeared to be distributed at random, but primarily in alternating sequence. The xyloglucan:cellulose complex was examined by light microscopy using iodine staining, by radioautography after labeling with [3H]fucose, by fluorescence microscopy using a fluorescein-lectin (fucose-binding) as probe, and by electron microscopy after shadowing. The techniques all demonstrated that the macromolecule was present in files of cell shapes, referred to here as cell-wall `ghosts,' in which xyloglucan was localized both on and between the cellulose microfibrils. Since the average chain length of pea xyloglucan was many times the diameter of cellulose microfibrils, it could introduce cross-links by binding to adjacent fibrils and thereby contribute rigidity to the wall.  相似文献   

10.
The water-soluble polysaccharides (SEPS) secreted into the medium by suspension-cultured sycamore cells were examined to determine whether the polysaccharides were the same as those present in the walls of sycamore cells. The SEPS were made more amenable to fractionation by treatment with a highly purified α-1,4-endopolygalacturonase (EPG). The EPG-treated SEPS were fractionated by anion-exchange and gelpermeation chromatography. The following polysaccharides were found: xyloglucan, arabinoxylan, at least two arabinogalactans, a rhamnogalacturonan-II-like polysaccharide, and a polygalacturonic acid-rich polysaccharide. The oligogalacturonide fragments expected from EPG-digested homogalacturonan were also identified. Evidence was obtained for the presence of a rhamnogalacturonan-I-like polysaccharide. All of the above polysaccharides have been isolated from or are believed to be present in sycamore cell walls. Furthermore, all of the noncellulosic polysaccharides known to be present in sycamore cell-walls appear to be present in the SEPS.  相似文献   

11.
Cell‐wall components are hydrolysed by numerous plant glycosidase and glycanase activities. We investigated whether plant enzymes also modify xyloglucan structures by transglycosidase activities. Diverse angiosperm extracts exhibited transglycosidase activities that progressively transferred single sugar residues between xyloglucan heptasaccharide (XXXG or its reduced form, XXXGol) molecules, at 16 μm and above, creating octa‐ to decasaccharides plus smaller products. We measured remarkably high transglycosylation:hydrolysis ratios under optimized conditions. To identify the transferred monosaccharide(s), we devised a dual‐labelling strategy in which a neutral radiolabelled oligosaccharide (donor substrate) reacted with an amino‐labelled non‐radioactive oligosaccharide (acceptor substrate), generating radioactive cationic products. For example, 37 μm [Xyl3H]XXXG plus 1 mm XXLG‐NH2 generated 3H‐labelled cations, demonstrating xylosyl transfer, which exceeded xylosyl hydrolysis 1.6‐ to 7.3‐fold, implying the presence of enzymes that favour transglycosylation. The transferred xylose residues remained α‐linked but were relatively resistant to hydrolysis by plant enzymes. Driselase digestion of the products released a trisaccharide (α‐[3H]xylosyl‐isoprimeverose), indicating that a new xyloglucan repeat unit had been formed. In similar assays, [Gal3H]XXLG and [Gal3H]XLLG (but not [Fuc3H]XXFG) yielded radioactive cations. Thus plants exhibit trans‐α‐xylosidase and trans‐β‐galactosidase (but not trans‐α‐fucosidase) activities that graft sugar residues from one xyloglucan oligosaccharide to another. Reconstructing xyloglucan oligosaccharides in this way may alter oligosaccharin activities or increase their longevity in vivo. Trans‐α‐xylosidase activity also transferred xylose residues from xyloglucan oligosaccharides to long‐chain hemicelluloses (xyloglucan, water‐soluble cellulose acetate, mixed‐linkage β‐glucan, glucomannan and arabinoxylan). With xyloglucan as acceptor substrate, such an activity potentially affects the polysaccharide’s suitability as a substrate for xyloglucan endotransglucosylase action and thereby modulates cell expansion. We conclude that certain proteins annotated as glycosidases can function as transglycosidases.  相似文献   

12.
Labelling with stable isotopes has under-exploited potential for studies of polysaccharide endotransglycosylation in vivo. Ideally, the labelled polysaccharides should have the highest possible buoyant density. Although [13C6]glucose has previously been used as a precursor, it was unclear whether 2H would be efficiently incorporated from [2H]glucose or lost as D2O. Rose (Rosa sp.) cell-suspension cultures efficiently incorporated 13C from D-[13C6,2H7]glucose into wall polysaccharides with negligible dilution from atmospheric 12CO2. Also, approximately 70% of the 2H atoms in D-[13C6,2H7]glucose were retained during polysaccharide biosynthesis. This shows that relatively few cycles of intermediary metabolism leading to the release of D2O occurred before sugar residues were incorporated into wall polysaccharides. In agreement with these observations, isopycnic centrifugation in caesium trifluoroacetate gradients showed that the hydrated buoyant density of xyloglucan synthesised by rose cells growing on [13C6,2H7]glucose and [13C6]glucose was 3.7 and 2.6% higher, respectively, than in isotopically non-labelled cultures. Thus, [13C,2H]glucose-feeding enabled a 42% better resolution of 'heavy' from 'light' xyloglucan than [13C]glucose-feeding.  相似文献   

13.
Xyloglucan is an important hemicellulosic polysaccharide in dicot primary cell walls. Most of the enzymes involved in xyloglucan synthesis have been identified. However, many important details of its synthesis in vivo remain unknown. The roles of three genes encoding xylosyltransferases participating in xyloglucan biosynthesis in Arabidopsis (Arabidopsis thaliana) were further investigated using reverse genetic, biochemical, and immunological approaches. New double mutants (xxt1 xxt5 and xxt2 xxt5) and a triple mutant (xxt1 xxt2 xxt5) were generated, characterized, and compared with three single mutants and the xxt1 xxt2 double mutant that had been isolated previously. Antibody-based glycome profiling was applied in combination with chemical and immunohistochemical analyses for these characterizations. From the combined data, we conclude that XXT1 and XXT2 are responsible for the bulk of the xylosylation of the glucan backbone, and at least one of these proteins must be present and active for xyloglucan to be made. XXT5 plays a significant but as yet uncharacterized role in this process. The glycome profiling data demonstrate that the lack of detectable xyloglucan does not cause significant compensatory changes in other polysaccharides, although changes in nonxyloglucan polysaccharide amounts cannot be ruled out. Structural rearrangements of the polysaccharide network appear responsible for maintaining wall integrity in the absence of xyloglucan, thereby allowing nearly normal plant growth in plants lacking xyloglucan. Finally, results from immunohistochemical studies, combined with known information about expression patterns of the three genes, suggest that different combinations of xylosyltransferases contribute differently to xyloglucan biosynthesis in the various cell types found in stems, roots, and hypocotyls.  相似文献   

14.
Xyloglucan is the major hemicellulosic polymer found in the primary cell walls of dicots. Xyloglucan tethers cellulose microfibrils conferring rigidity and strength for maintenance of cell integrity, and it is thought that its metabolism contributes to cell elongation and thus plant growth. Here, we have cloned and characterized a Eucalyptus grandis gene ortholog of the Arabidopsis thaliana MUR3 gene (xyloglucan galactosyltransferase), thus termed EgMUR3. EgMUR3 represents an intronless sequence of 1,854 bp predicted to encode a protein of 617 amino acid residues. It exhibits 73% identity and 82% similarity to the A. thaliana MUR3 gene. To demonstrate that this gene encodes a functional enzyme, the putative ORF was cloned into a binary vector under the control of a constitutive promoter and transformed into the A. thaliana mur3 mutant. The effect of the genetic complementation was investigated by xyloglucan oligosaccharide fingerprinting of wall material. The results confirmed that EgMUR3 represents indeed a xyloglucan galactosyltransferase of E. grandis able to use endogenous substrate(s) in A. thaliana, suggesting that both species share common steps in xyloglucan biosynthesis.  相似文献   

15.
Angiosperms possess a retaining trans-α-xylosidase activity that catalyses the inter-molecular transfer of xylose residues between xyloglucan structures. To identify the linkage of the newly transferred α-xylose residue, we used [Xyl-3H]XXXG (xyloglucan heptasaccharide) as donor substrate and reductively-aminated xyloglucan oligosaccharides (XGO–NH2) as acceptor. Asparagus officinalis enzyme extracts generated cationic radioactive products ([3H]Xyl·XGO–NH2) that were Driselase-digestible to a neutral trisaccharide containing an α-[3H]xylose residue. After borohydride reduction, the trimer exhibited high molybdate-affinity, indicating xylobiosyl-(1→6)-glucitol rather than a di-xylosylated glucitol. Thus the trans-α-xylosidase had grafted an additional α-[3H]xylose residue onto the xylose of an isoprimeverose unit. The trisaccharide was rapidly acetolysed to an α-[3H]xylobiose, confirming the presence of an acetolysis-labile (1→6)-bond. The α-[3H]xylobiitol formed by reduction of this α-[3H]xylobiose had low molybdate-affinity, indicating a (1→2) or (1→4) linkage. In NaOH, the α-[3H]xylobiose underwent alkaline peeling at the moderate rate characteristic of a (1→4)-disaccharide. Finally, we synthesised eight non-radioactive xylobioses [α and β; (1↔1), (1→2), (1→3) and (1→4)] and found that the [3H]xylobiose co-chromatographed only with (1→4)-α-xylobiose. We conclude that Asparagus trans-α-xylosidase activity generates a novel xyloglucan building block, α-d-Xylp-(1→4)-α-d-Xylp-(1→6)-d-Glc (abbreviation: ‘V’). Modifying xyloglucan structures in this way may alter oligosaccharin activities, or change their suitability as acceptor substrates for xyloglucan endotransglucosylase (XET) activity.  相似文献   

16.
Pectic polysaccharides of growing plant tissues   总被引:13,自引:9,他引:4  
1. The polysaccharide compositions of the cell walls of sycamore cambium and sycamore callus tissue have been analysed and found to be directly comparable. 2. Electrophoretic analyses of the whole pectins prepared from actively growing callus and cambial tissue have shown that these preparations contain, in addition to the neutral and weakly acidic components present in apple fruit, a strongly acidic polygalacturonic acid component. 3. The weakly acidic component of all the pectins was directly comparable with that of the pectinic acid of apple fruit. 4. The components of the whole pectin of sycamore callus tissue have been partially purified and analysed. The neutral and weakly acidic components also found in apple fruit were isolated. 5. The pattern of the composition of the neutral sugars present in the pectins of actively growing tissues of cambium and callus has been compared with those present in apple-fruit pectinic acid. 6. The presence of rhamnose linked as galacturonosyl-(1-->2)-rhamnose has been found in sycamore whole pectin. 7. The difference in the pectins of callus, cambium and fruit appears not to be that of species difference but is more characteristic of the nature of the growth and growth conditions of the cells. This is discussed in relation to the problems of the control and mechanism of plant-cell growth and differentiation.  相似文献   

17.
When UDP-[14C]glucose or UDP-[14C]xylose was incubated witha particulate fraction from soybean cells, radioactive polymerswere synthesized. On digestion with Aspergillus oryzae enzymes,these polymers gave 14C-monosaccharides and a 14C-disaccharidewith chromatographic and electrophoretic mobilities indistinguishablefrom those of authentic isoprimeverose (6-O--D-xylopyranosyl-D-glucopyranose).The disaccharide consisted of xylose and glucose, and the latterwas located at the reducing end. Evidence that the disaccharideis isoprimeverose was provided by methylation analysis. Hydrolysisof the methylated disaccharide yielded 2,3,4-tri-O-methyl-D-xyloseand 2,3,4-tri-O-methyl-D-glucose. Thus, incorporation of radioactivityinto isoprimeverose, the smallest structural unit of xyloglucan,suggests that xyloglucan is synthesized in vitro from UDP-glucoseand UDP-xylose. (Received November 20, 1980; Accepted February 14, 1981)  相似文献   

18.
Mutation of the Arabidopsis thaliana (L.) Heynh. gene MUR1, which encodes an isoform of GDP-D-mannose-4,6-dehydratase, affects the biosynthetic conversion of GDP-mannose to GDP-fucose. Cell walls in the aerial tissues of mur1 plants are almost devoid of alpha-L-fucosyl residues, which are partially replaced by closely related alpha-L-galactosyl residues. A line of suspension-cultured A. thaliana cells was generated from leaves of mur1 plants and the structure of the xyloglucan in the walls of these cells was structurally characterized. Xyloglucan fractions were prepared from the walls of both wild-type (WT) and mur1 cells by sequential extraction with a xyloglucan-specific endoglucanase (XEG) and aqueous KOH. Structural analysis of these fractions revealed that xyloglucan produced by cultured mur1 cells is similar, but not identical to that isolated from leaves of mur1 plants. As previously reported for mur1 leaves, the xyloglucan from cultured mur1 cells contains less than 5% of the fucose present in the xyloglucan from WT cells. Fucosylation of the xyloglucan is substantially restored when mur1 cells are grown in medium supplemented with L-fucose. Xyloglucan isolated from leaves contains more oligosaccharide subunits in which the central sidechain is terminated with a beta-D-galactosyl residue than does xyloglucan prepared from cultured cells. This was observed for both mur1 and WT plants, indicating that this correlation is independent of the mur1 mutation and that it is possible to distinguish changes due to genetic mutation from those due to the physiological state of the cells in culture. Suspension-cultured cells thus provide a convenient source of genetically altered cell wall material, facilitating the biochemical characterization of mutations that affect cell wall structure.  相似文献   

19.
Our previous work (E. Shedletzky, M. Shmuel, D.P. Delmer, D.T.A. Lamport [1990] Plant Physiol 94:980-987) showed that suspension-cultured tomato cells adapted to growth on the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile (DCB) have a markedly altered cell wall composition, most notably a markedly reduced level of the cellulose-xyloglucan network. This study compares the adaptation to DCB of two cell lines from dicots (tomato [Lycopersicon esculentum] and tobacco [Nicotiana tabacum]) and a Graminaceous monocot (barley [Hordeum bulbosum] endosperm). The difference in wall structures between the dicots and the monocot is reflected in the very different types of wall modifications induced by growth on DCB. The dicots, having reduced levels of cellulose and xyloglucan, possess walls the major integrity of which is provided by Ca2+-bridged pectates because protoplasts can be prepared from these cells simply by treatment with divalent cation chelator and a purified endopolygalacturonase. The tensile strength of these walls is considerably less than walls from nonadapted cells, but wall porosity is not altered. In contrast, walls from adapted barley cells contain very little pectic material and normal to elevated levels of noncellulosic polysaccharides compared with walls from nonadapted cells. Surprisingly, they have tensile strengths higher than their nonadapted counterpart, although cellulose levels are reduced by 70%. Evidence is presented that these walls obtain their additional strength by an altered pattern of cross-linking of polymers involving phenolic components. Such cross-linking may also explain the observation that the porosity of these walls is also considerably reduced. Cells of adapted lines of both the dicots and barley are resistant to plasmolysis, suggesting that they possess very strong connections between the wall and the plasma membrane.  相似文献   

20.
The main load-bearing network in the primary cell wall of most land plants is commonly depicted as a scaffold of cellulose microfibrils tethered by xyloglucans. However, a xyloglucan-deficient mutant (xylosyltransferase1/xylosyltransferase2 [xxt1/xxt2]) was recently developed that was smaller than the wild type but otherwise nearly normal in its development, casting doubt on xyloglucan's role in wall structure. To assess xyloglucan function in the Arabidopsis (Arabidopsis thaliana) wall, we compared the behavior of petiole cell walls from xxt1/xxt2 and wild-type plants using creep, stress relaxation, and stress/strain assays, in combination with reagents that cut or solubilize specific components of the wall matrix. Stress/strain assays showed xxt1/xxt2 walls to be more extensible than wild-type walls (supporting a reinforcing role for xyloglucan) but less extensible in creep and stress relaxation processes mediated by α-expansin. Fusicoccin-induced "acid growth" was likewise reduced in xxt1/xxt2 petioles. The results show that xyloglucan is important for wall loosening by α-expansin, and the smaller size of the xxt1/xxt2 mutant may stem from the reduced effectiveness of α-expansins in the absence of xyloglucan. Loosening agents that act on xylans and pectins elicited greater extension in creep assays of xxt1/xxt2 cell walls compared with wild-type walls, consistent with a larger mechanical role for these matrix polymers in the absence of xyloglucan. Our results illustrate the need for multiple biomechanical assays to evaluate wall properties and indicate that the common depiction of a cellulose-xyloglucan network as the major load-bearing structure is in need of revision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号