首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiac neural crest cells undergo extensive cell rearrangements during the formation of the aorticopulmonary septum in the outflow tract. However, the morphogenetic mechanisms involved in this fundamental process remain poorly understood. To determine the function of the Ca2+-dependent cell adhesion molecule, N-cadherin, in murine neural crest, we applied the Cre/loxP system and created mouse embryos genetically mosaic for N-cadherin. Specifically, deletion of N-cadherin in neural crest cells led to embryonic lethality with distinct cardiovascular defects. Neural crest cell migration and homing to the cardiac outflow tract niche were unaffected by loss of N-cadherin. However, N-cadherin-deficient neural crest cells were unable to undergo the normal morphogenetic changes associated with outflow tract remodeling, resulting in persistent truncus arteriosus in the majority of mutant embryos. Other mutant embryos initiated aorticopulmonary septum formation; however, the neural crest cells were unable to elongate and align properly along the midline and remained rounded with limited contact with their neighbors. Interestingly, rotation of the outflow tract was incomplete in these mutants suggesting that alignment of the channels is dependent on N-cadherin-generated cytoskeletal forces. A second cardiac phenotype was observed where loss of N-cadherin in the epicardium led to disruption of heterotypic cell interactions between the epicardium and myocardium resulting in a thinned ventricular myocardium. Thus, we conclude that in addition to its role in myocardial cell adhesion, N-cadherin is required for neural crest cell rearrangements critical for patterning of the cardiac outflow tract and in the maintenance of epicardial-myocardial cell interactions.  相似文献   

2.
Hox genes are instrumental in assigning segmental identity in the developing hindbrain. Auto-, cross- and para-regulatory interactions help establish and maintain their expression. To understand to what extent such regulatory interactions shape neuronal patterning in the hindbrain, we analysed neurogenesis, neuronal differentiation and motoneuron migration in Hoxa1, Hoxb1 and Hoxb2 mutant mice. This comparison revealed that neurogenesis and differentiation of specific neuronal subpopulations in r4 was impaired in a similar fashion in all three mutants, but with different degrees of severity. In the Hoxb1 mutants, neurons derived from the presumptive r4 territory were re-specified towards an r2-like identity. Motoneurons derived from that territory resembled trigeminal motoneurons in both their migration patterns and the expression of molecular markers. Both migrating motoneurons and the resident territory underwent changes consistent with a switch from an r4 to r2 identity. Abnormally migrating motoneurons initially formed ectopic nuclei that were subsequently cleared. Their survival could be prolonged through the introduction of a block in the apoptotic pathway. The Hoxa1 mutant phenotype is consistent with a partial misspecification of the presumptive r4 territory that results from partial Hoxb1 activation. The Hoxb2 mutant phenotype is a hypomorph of the Hoxb1 mutant phenotype, consistent with the overlapping roles of these genes in facial motoneuron specification. Therefore, we have delineated the functional requirements in hindbrain neuronal patterning that follow the establishment of the genetic regulatory hierarchy between Hoxa1, Hoxb1 and Hoxb2.  相似文献   

3.
Mutations affecting embryonic cell migrations in Caenorhabditis elegans   总被引:3,自引:0,他引:3  
Four recessive mutations that affect long-range embryonic migration of the two canal-associated neurons (CANs) in C. elegans were isolated and characterized with the goal of identifying genes involved in control of directed cell movement. Mutant animals were identified initially by their "withered" tails, a phenotype associated with abnormal CAN migration; the mutants were then analyzed for abnormal cell migrations by Nomarski microscopy. Based on genetic complementation tests, the mutations were assigned to four different loci, two new (mig-10 III, mig-11 III) and two previously identified (unc-39 V, vab-8 V). Mutations at all four loci affect CAN migration with high to moderate penetrance (the percentage of mutant animals that exhibit the phenotype). In addition, two other bilaterally symmetric pairs of neurons (ALM and HSN), the mesoblast M, and a pair of coelomocyte mother cells are affected by one or more of the mutations, generally with lower penetrance. With the exceptions of HSN and the right coelomocyte mother cell, which occasionally migrate beyond their normal destinations, the cells affected appear to migrate either incompletely or not at all. All the migration phenotypes show incomplete penetrance and variable expressively, although genetic tests suggest that mutations at mig-10 and vab-8 result in complete or nearly complete loss of gene function. The variability in mutant phenotypes allowed tests for interdependence of several of the affected migrations; all those analyzed appeared independent of one another. The possible nature of the mutant defects and possible roles of these four loci in cell migration are discussed.  相似文献   

4.
The intrinsic neurons of the gut, enteric neurons, have an essential role in gastrointestinal functions. The enteric nervous system is plastic and continues to undergo changes throughout life, as the gut grows and responds to dietary and other environmental changes. Detailed analysis of changes in the ENS during ageing suggests that enteric neurons are more vulnerable to age-related degeneration and cell death than neurons in other parts of the nervous system, although there is considerable variation in the extent and time course of age-related enteric neuronal loss reported in different studies. Specific neuronal subpopulations, particularly cholinergic myenteric neurons, may be more vulnerable than others to age-associated loss or damage. Enteric degeneration and other age-related neuronal changes may contribute to gastrointestinal dysfunction that is common in the elderly population. Evidence suggests that caloric restriction protects against age-associated loss of enteric neurons, but recent advances in the understanding of the effects of the microbiota and the complex interactions between enteric ganglion cells, mucosal immune system and intestinal epithelium indicate that other factors may well influence ageing of enteric neurons. Much remains to be understood about the mechanisms of neuronal loss and damage in the gut, although there is evidence that reactive oxygen species, neurotrophic factor dysregulation and/or activation of a senescence associated phenotype may be involved. To date, there is no evidence for ongoing neurogenesis that might replace dying neurons in the ageing gut, although small local sites of neurogenesis would be difficult to detect. Finally, despite the considerable evidence for enteric neurodegeneration during ageing, and evidence for some physiological changes in animal models, the ageing gut appears to maintain its function remarkably well in animals that exhibit major neuronal loss, indicating that the ENS has considerable functional reserve.  相似文献   

5.
Marc  Robert E.  Cameron  David 《Brain Cell Biology》2001,30(7):593-654
The rasborine cyprinid Danio rerio (the zebrafish) has become a popular model of retinal function and development. Its value depends, in part, on validation of homologies with retinal cell populations of cyprinine cyprinids. This atlas provides raw and interpreted molecular phenotype data derived from computationally classified sets of small molecule signals from different cell types in the zebrafish retina: L-alanine, L-aspartate, L-glutamine, L-glutamate, glutathione, glycine, taurine and γ-aminobutyrate. This basis set yields an 8-dimensional signature for every retinal cell and formally establishes molecular signature homologies with retinal neurons, glia, epithelia and endothelia of other cyprinids. Zebrafish photoreceptor classes have been characterized previously: we now show their metabolic profiles to be identical to those of the corresponding photoreceptors in goldfish. The inner nuclear layer is partitioned into precise horizontal, bipolar and amacrine cell layers. The horizontal cell layer contains at least three and perhaps all four known classes of cyprinine horizontal cells. Homologues of cyprinid glutamatergic ON-center and OFF-center mixed rod-cone bipolar cells are present and it appears likely that all five classes are present in zebrafish. The cone bipolar cells defy simple analysis but comprise the largest fraction of bipolar cells, as in all cyprinids. Signature analysis reveals six molecular phenotypes in the bipolar cell cohort: most are superclasses. The amacrine cell layer is composed of ≈64% GABA+ and 35% glycine+ amacrine cells, with the remainder being sparse dopaminergic interplexiform cells and other rare unidentified neurons. These different amacrine cell types are completely distinct in the dark adapted retina, but light adapted retinas display weak leakage of GABA signals into many glycinergic amacrine cells, suggesting widespread heterocellular coupling. The composition of the zebrafish ganglion cell layer is metabolically indistinguishable from that in other cyprinids, and the signatures of glial and non-neuronal cells display strong homologies with those in mammals. As in most vertebrates, zebrafish Müller cells possess a high glutamine, low glutamate signature and contain the dominant pool of glutathione in the neural retina. The retinal pigmented epithelium shows a general mammalian signature but also has exceptional glutathione content (5–10 mM), perhaps required by the unusually high oxygen tensions of teleost retinas. The optic nerve and the marginal zone of the retina reveal characteristic metabolic specializations. The marginal zone is strongly laminated and its nascent neurons display their characteristic signatures before taking their place in the retina proper.  相似文献   

6.
During early development, the neurogenic genes of Drosophila melanogaster are involved in the control of cell fates in the neurectoderm; almondex (amx) belongs to this category of genes. We have identified the amx locus and rescued the amx embryonic neurogenic phenotype with a 1.5 kb DNA fragment. Using a small deficiency, we generated a new amx mutant background called amx(m), which is a null allele. Besides the characteristic neurogenic maternal effect caused by loss of amx, amx(m) flies display a new imaginal phenotype resembling loss of function of Notch. We describe amx-induced misregulation of the Notch pathway target E(spl) m7 in embryos and genetic interactions between amx and Notch pathway mutants in adult flies. These data show that wildtype amx acts as a novel positive regulator of the Notch pathway and is required at different levels during development.  相似文献   

7.
To investigate the role of brain-derived neurotrophic factor (BDNF) in differentiation of cranial sensory neurons in vivo, we analyzed development of nodose (NG), petrosal (PG), and vestibular (VG) ganglion cells in genetically engineered mice carrying null mutations in the genes encoding BDNF and the proapoptotic Bcl-2 homolog Bax. In bax(-/-) mutants, ganglion cell numbers were increased significantly compared to wild-type animals, indicating that naturally occurring cell death in these ganglia is regulated by Bax signaling. Analysis of bdnf(-/-)bax(-/-) mutants revealed that, although the Bax null mutation completely rescued cell loss in the absence of BDNF, it did not rescue the lethality of the BDNF null phenotype. Moreover, despite rescue of BDNF-dependent neurons by the bax null mutation, sensory target innervation was abnormal in double null mutants. Vagal sensory innervation to baroreceptor regions of the cardiac outflow tract was completely absent, and the density of vestibular sensory innervation to the cristae organs was markedly decreased, compared to wild-type controls. Moreover, vestibular afferents failed to selectively innervate their hair cell targets within the cristae organs in the double mutants. These innervation failures occurred despite successful navigation of sensory fibers to the peripheral field, demonstrating that BDNF is required locally for afferent ingrowth into target tissues. In addition, the bax null mutation failed to rescue expression of the dopaminergic phenotype in a subset of NG and PG neurons. These data demonstrate that BDNF signaling is required not only to support survival of cranial sensory neurons, but also to regulate local growth of afferent fibers into target tissues and, in some cells, transmitter phenotypic expression is required.  相似文献   

8.
To gain insight into the genetic mechanisms of photoreceptor development, we analyzed a collection of zebrafish mutations characterized by early photoreceptor cell loss. The mutant defects impair outer segment formation and are accompanied by an abnormal distribution of visual pigments. Rods and different cone types display defects of similar severity suggesting that genetic pathways common to all photoreceptors are affected. To investigate whether these phenotypes involve cell–cell interaction defects, we analyzed genetically mosaic animals. Interaction of niezerka photoreceptors with wild-type tissues improves the survival of mutant cells and restores their elongated morphology. In contrast, cells carrying mutations in the loci brudas, elipsa, fleer, and oval retain their defective phenotypes in a wild-type environment indicating cell-autonomy. These experiments identify distinct phenotypic categories of photoreceptor mutants and indicate that zebrafish photoreceptor defects involve both cell-autonomous and cell-nonautonomous mechanisms.  相似文献   

9.
Controlled cell death is vital for many physiological processes in plants, such as xylem development, the hypersensitive response (HR), and senescence; however, the pathways governing cell death are incompletely understood. Studies of mutants that display a cell-death phenotype have greatly contributed to our knowledge of how this process is regulated. The maize camouflage1 (cf1) mutant displays the novel phenotype of cell-specific death of bundle sheath (BS) cells in discrete yellow leaf tissues. To investigate the BS cell death in cf1 mutants, we characterized potential underlying factors. Hydrogen peroxide (H(2)O(2)) is known to be involved in many cell-death events in plants, including the HR. However, in vivo staining found no accumulation of H(2)O(2) in cf1 mutant leaves. Additionally, genetic analyses determined that functional chloroplasts are required for cf1 BS cell death. These results demonstrate that cf1 BS cell death occurs via a distinct pathway from that seen in a functionally related maize mutant or in the HR, suggesting that cell death in maize leaves can be caused by multiple mechanisms.  相似文献   

10.
A prominent feature of glial cells is their ability to migrate along axons to finally wrap and insulate them. In the embryonic Drosophila PNS, most glial cells are born in the CNS and have to migrate to reach their final destinations. To understand how migration of the peripheral glia is regulated, we have conducted a genetic screen looking for mutants that disrupt the normal glial pattern. Here we present an analysis of two of these mutants: Notch and numb. Complete loss of Notch function leads to an increase in the number of glial cells. Embryos hemizygous for the weak Notch(B-8X) allele display an irregular migration phenotype and mutant glial cells show an increased formation of filopodia-like structures. A similar phenotype occurs in embryos carrying the Notch(ts1) allele when shifted to the restrictive temperature during the glial cell migration phase, suggesting that Notch must be activated during glial migration. This is corroborated by the fact that cell-specific reduction of Notch activity in glial cells by directed numb expression also results in similar migration phenotypes. Since the glial migration phenotypes of Notch and numb mutants resemble each other, our data support a model where the precise temporal and quantitative regulation of Numb and Notch activity is not only required during fate decisions but also later during glial differentiation and migration.  相似文献   

11.
12.
13.
In a large-scale forward-genetic screen, we discovered that a limited number of genes are required for the regulation of retinal stem cells after embryogenesis in zebrafish. In 18 mutants out of almost 2000 F2 families screened, the eye undergoes normal embryonic development, but fails to continue growth from the ciliary marginal zone (CMZ), the post-embryonic stem-cell niche. Class I-A mutants (5 loci) display lower amounts of proliferation in the CMZ, while nearly all cells in the retina appear differentiated. Class I-B mutants (2 loci) have a reduced CMZ with a concomitant expansion in the retinal pigmented epithelium (RPE), suggesting a common post-embryonic stem cell is the source for these neighboring cell types. Class II encompasses three distinct types of mutants (11 loci) with expanded CMZ, in which the progenitor population is arrested in the cell cycle. We also show that in at least one combination, the reduced CMZ phenotype is genetically epistatic to the expanded CMZ phenotype, suggesting that Class I genes are more likely to affect the stem cells and Class II the progenitor cells. Finally, a comparative mapping analysis demonstrates that the new genes isolated do not correspond to genes previously implicated in stem-cell regulation. Our study suggests that embryonic and post-embryonic stem cells utilize separable genetic programs in the zebrafish retina.  相似文献   

14.
A mutation in the Caenorhabditis elegans bre-1 gene was isolated in a screen for Bacillus thuringiensis toxin-resistant (bre) mutants to the Cry5B crystal toxin made by B. thuringiensis. bre-1 mutant animals are different from the four other cloned bre mutants in that their level of resistance is noticeably lower. bre-1 animals also display a significantly reduced brood size at 25 degrees C. Here we cloned the bre-1 gene and characterized the bre-1 mutant phenotype. bre-1 encodes a protein with significant homology to a GDP-mannose 4,6-dehydratase, which catalyzes the first step in the biosynthesis of GDP-fucose from GDP-mannose. Injection of GDP-fucose but not fucose into C. elegans intestinal cells rescues bre-1 mutant phenotypes. Thus, C. elegans lacks a functional fucose salvage pathway. Furthermore, we demonstrate that bre-1 mutant animals are defective in production of fucosylated glycolipids and that bre-1 mutant animals make quantitatively reduced levels of glycolipid receptors for Cry5B. We finally show that bre-1 mutant animals, although viable, show a lack of fucosylated N- and O-glycans, based on mass spectrometric evidence. Thus, C. elegans can survive with little fucose and can develop resistance to crystal toxin by loss of a monosaccharide biosynthetic pathway.  相似文献   

15.
Using immunocytochemical methods, we have been able to demonstrate serotonin-like immunoreactivity (SLI) in amacrine and bipolar cells of the turtle retina. Inhibition of monoamine oxidase with pargyline drastically increases the amount of 5-hydroxytryptamine within both cell types. The indoleamine 6-hydroxytryptamine is taken up by both cell types and both types are destroyed within 10 days following intraocular injection of 5,7-dihydroxytryptamine. Increasing the external potassium concentration induces release of serotonin in both cell types. Our data support the idea that these neurons use serotonin during neuronal processing. Morphologically, amacrine and bipolar cells with SLI can be subdivided into two and three subclasses, respectively, based on their ramification pattern within the inner plexiform layer. A comparison of the morphological data with those of intracellularly stained amacrine and bipolar cells suggests that all bipolar cells with SLI are center-hyperpolarizing cells and all amacrine cells center-depolarizing cells.  相似文献   

16.
The selective vulnerability of motor neurons to paucity of Survival Motor Neuron (SMN) protein is a defining feature of human spinal muscular atrophy (SMA) and indicative of a unique requirement for adequate levels of the protein in these cells. However, the relative contribution of SMN-depleted motor neurons to the disease process is uncertain and it is possible that their characteristic loss and the overall SMA phenotype is a consequence of low protein in multiple cell types including neighboring spinal neurons and non-neuronal tissue. To explore the tissue-specific requirements for SMN and, especially, the salutary effects of restoring normal levels of the protein to neuronal tissue of affected individuals, we have selectively expressed the protein in neurons of mice that model severe SMA. Expressing SMN pan-neuronally in mutant mice mitigated specific aspects of the disease phenotype. Motor performance of the mice improved and the loss of spinal motor neurons that characterizes the disease was arrested. Proprioceptive synapses on the motor neurons were restored and defects of the neuromuscular junctions mitigated. The improvements at the cellular level were reflected in a four-fold increase in survival. Nevertheless, mutants expressing neuronal SMN did not live beyond three weeks of birth, a relatively poor outcome compared to the effects of ubiquitously restoring SMN. This suggests that although neurons and, in particular, spinal motor neurons constitute critical cellular sites of action of the SMN protein, a truly effective treatment of severe SMA will require restoring the protein to multiple cell types including non-neuronal tissue.  相似文献   

17.
Polaski S  Whitney L  Barker BW  Stronach B 《Genetics》2006,174(2):719-733
Mixed lineage kinases (MLKs) function as Jun-N-terminal kinase (JNK) kinase kinases to transduce extracellular signals during development and homeostasis in adults. slipper (slpr), which encodes the Drosophila homolog of mammalian MLKs, has previously been implicated in activation of the JNK pathway during embryonic dorsal epidermal closure. To further define the specific functions of SLPR, we analyzed the phenotypic consequences of slpr loss and gain of function throughout development, using a semiviable maternal-effect allele and wild-type or dominant-negative transgenes. From these analyses we confirm that failure of dorsal closure is the null phenotype in slpr germline clones. In addition, there is a functional maternal contribution, which can suffice for embryogenesis in the zygotic null mutant, but rarely suffices for pupal metamorphosis, revealing later functions for slpr as the maternal contribution is depleted. Zygotic null mutants that eclose as adults display an array of morphological defects, many of which are shared by hep mutant animals, deficient in the JNK kinase (JNKK/MKK7) substrate for SLPR, suggesting that the defects observed in slpr mutants primarily reflect loss of hep-dependent JNK activation. Consistent with this, the maternal slpr contribution is sensitive to the dosage of positive and negative JNK pathway regulators, which attenuate or potentiate SLPR-dependent signaling in development. Although SLPR and TAK1, another JNKKK family member, are differentially used in dorsal closure and TNF/Eiger-stimulated apoptosis, respectively, a Tak1 mutant shows dominant genetic interactions with slpr, suggesting potential redundant or combinatorial functions. Finally, we demonstrate that SLPR overexpression can induce ectopic JNK signaling and that the SLPR protein is enriched at the epithelial cell cortex.  相似文献   

18.
19.
During development of the nervous system, large numbers of neurons are overproduced and then eliminated by programmed cell death. Puma is a BH3-only protein that is reported to be involved in the initiation of developmental programmed cell death in rodent retinal neurons. The expression and cellular localization of Puma in retinal tissues during development are not, however, well known. Here the authors report the expression pattern of Puma during retinal development in the rat. During the period of programmed cell death in the retina, Puma was expressed in some members of each retinal neuron, including retinal ganglion cells, amacrine cells, bipolar cells, horizontal cells, and photoreceptor cells. Although the developmental programmed cell death of cholinergic amacrine cells is known to be independent of Puma, this protein was expressed in almost all their dendrites and somata of cholinergic amacrine cells at postnatal age 2 to 3 weeks, and it continued to be detected in cholinergic dendrites in the inner plexiform layer for up to 8 weeks after birth. These results suggest that Puma has some significant roles in retinal neurons after eye opening, especially that of cholinergic amacrine cells, in addition to programmed cell death of retinal neurons before eye opening.  相似文献   

20.
Mutants that have been selected for defects in phagocytic recognition, adhesion, and vegetative cell-cell cohesion were found to be larger and more highly multinucleate than their parent strain. This defect is associated with the complex mutant phenotype of these mutants since revertants of the mutants coordinately acquire the wild-type phenotype for all of the defects. The larger size and multinuclearity were due to a high frequency of failure of cytokinesis in cells of wild-type size. This was shown by purifying the small cells in mutant populations and observing their growth and cell division. The mutant phenotype is more penetrant during axenic growth. Most of the mutants are not multinucleate when grown on bacteria. Recently, new mutants have been isolated that are also multinucleate when grown on bacteria by a strong selection procedure for non-adhesion to tissue culture dishes. The pleiotropic mutant phenotype and the greater penetrance of the mutant phenotype in axenic culture can be explained by hypothesizing a deficiency in a membrane component of the actomyosin motor that is involved in all of the processes defective in the mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号