共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Two cDNA clones containing the complete protein-coding sequence of 1,188 nucleotides as well as the 5' and 3' non-coding regions of human prostatic acid phosphatase (PAP) were isolated and sequenced. The size of PAP mRNAs from benign prostate hyperplasia and cancerous prostate was estimated to be 3.2Kb, indicating that the 3' downstream polyadenylation signal was used. Several genomic clones containing parts of the human PAP gene were isolated and the nucleotide sequence of ten exons and their flanking regions was determined. The protein-coding sequence of the human PAP gene was interrupted by nine introns. The positions of all nine introns present in the human PAP gene were homologous to those of the first nine introns in the human lysosomal acid phosphatase (LAP) gene. However, the last (11th) exon of the LAP gene encoding the COOH-terminal domain, which includes a transmembrane segment, was found to be absent in human PAP gene. Southern blot analysis of ten mammalian genomic DNAs gave multiple EcoRI fragments. The data of human genomic DNAs were consistent with the total length of the PAP gene of at least 50 kilobases. 相似文献
6.
The S promoter of hepatitis B virus is regulated by positive and negative elements. 总被引:12,自引:2,他引:10 下载免费PDF全文
The S promoter, one of the major hepatitis B virus (HBV) promoters, directs the synthesis of mRNA for surface antigen. Transient expression studies revealed that this promoter is highly active in the Alexander hepatoma cell line but not in SK-Hep1 and HeLa cells. We found that a distal element of the promoter (-103 to -48) confers this cell-type-specific behavior through a mechanism in which the promoter activity is repressed in HeLa and SK-Hep1 cells but increased in Alexander cells. By using an inhibitor of protein synthesis, we obtained evidence that a labile repressor(s) confers the negative effect in SK-Hep1 cells. We also found an enhancerlike activity associated with a small DNA segment of the S promoter (-27 to + 30). This proximal element was active in HeLa and SK-Hep1 cells only in the absence of the distal negative element. Finally, analysis of S promoter deletion mutants demonstrated that the -27 to -17 region of the S promoter is crucial for its activity. 相似文献
7.
8.
9.
Identification of negative and positive regulatory elements in the human renin gene 总被引:10,自引:0,他引:10
Renin gene expression is tissue-specific and under complex hormonal control. To investigate which DNA elements are involved in the control of human renin gene expression, we performed transient DNA transfer experiments with renin-chloramphenicol acetyltransferase fusions. We have mapped a complex arrangement of positive and negative control sequences in the 5' flanking region of the human renin gene. One positive control element is active in either orientation and defines a renin gene enhancer. The negative element is also active in either orientation and defines a renin gene silencer. Mapping in the same region as the silencer is a cAMP-responsive element, a sequence conserved in mouse, rat, and human renin genes. 相似文献
10.
Lysozyme gene activity in chicken macrophages is controlled by positive and negative regulatory elements. 总被引:16,自引:4,他引:16
The chicken lysozyme gene is constitutively active in macrophages and under the control of steroid hormones in the oviduct. To investigate which DNA elements are involved in the control of its expression in macrophages we performed transient DNA transfer experiments with two different types of plasmids: 5'-deletion mutants of the upstream region of the chicken lysozyme gene and different fragments from this area in front of the thymidine kinase promoter (herpes simplex virus), each placed in front of the CAT (chloramphenicol acetyl transferase) coding sequence. Two enhancers (E-2.7 kb and E-0.2 kb) were characterized. They are active in macrophages, but not in chicken fibroblasts. Furthermore a negative element (N-2.4 kb) was identified, which is active in fibroblasts and promyelocytes, but not in mature macrophages. The combined action of all three elements contributes to the observed lysozyme gene activities: no activity in fibroblasts, moderate activity in promyelocytes and high activity in mature macrophages. 相似文献
11.
Wlodzimierz Ostrowski Elźbieta Dziembor-Gryszkiewicz 《International journal of biological macromolecules》1980,2(4):241-244
Prostatic acid phosphatase (orthophosphoric-monoester phosphohydrolase, acid optimum, EC 3.1.3.2) reacts with potassium ferrate, K2FeO4 a potent oxidizing agent and an analogue of orthophosphate. Treatment of the enzyme with 10?6m ferrate at pH 7.5 0 C leads to the immediate loss of 95% of the activity. Molybdate, the competitive inhibitor of prostatic phosphatase, partially protects the enzyme from inactivation. Ferrate inactivation at pH 7.5 is accompanied by the modification of 2 histidine, 4 lysine and 4 methionine residues. Histidine is protected by molybdate, whereas methionine is not and lysine is partly protected. Partial inactivation with ferrate leads to the retardation of the modified enzyme on Sephadex G-200 column, which is eluted in the position of the active monomeric unit. 相似文献
12.
13.
14.
Luchter-Wasylewska E 《Biochimica et biophysica acta》2001,1548(2):257-264
The steady-state kinetics of hydrolysis reaction catalysed by human prostatic acid phosphatase (PAP) by using 1-naphthyl phosphate, phenyl phosphate and phosphotyrosine as substrates has been studied at pH 5.5. The substrate binding curves were sigmoidal and Hill cooperation coefficient h was higher than 1 for each of the examined compounds. Thus, human prostatic acid phosphatase kinetics exhibits positive cooperativity towards the studied substrates. The extent of cooperativity was found to depend on the substrate used and on enzyme concentration. The highest cooperativity of PAP was observed for 1-naphthyl phosphate and the lowest for phosphotyrosine. When prostatic phosphatase concentration increased, Hill cooperation coefficient (h) and half saturation constant (K(0.5)) both grew, but the catalytic constant (k(cat)) remained constant, for each of the substrates studied. Ligand-induced association-dissociation equilibrium of the active oligomeric species (monomer-dimer-tetramer-oligomers) is suggested. 相似文献
15.
Subunit structure of human prostatic acid phosphatase 总被引:3,自引:0,他引:3
16.
17.
18.
E Luchter-Wasylewska J Dulińska W S Ostrowski V P Torchilin V S Trubetskoy 《Biotechnology and applied biochemistry》1991,13(1):36-47
Human prostatic acid phosphatase (PAP) (EC 3.1.3.2) was covalently linked to chondroitin sulfate A from whale cartilage. In order to bind the protein amino groups with the preactivated carboxyl groups of chondroitin sulfate, 1-ethyl-3-(3'-dimethylaminepropyl)carbodiimide and N-hydroxysulfosuccinimide were used as coupling agents. The product was soluble and enzymatically active. The activity was on average 25% higher than that of the free enzyme. The product was heterogeneous in respect to charge and Mr (50-1500) kDa, as determined by chromatography on Sephacryl S 300 and polyacrylamide gel electrophoresis. The resulting polymers contained covalently bound chondroitin sulfate, as shown by the biotin-avidin test. The modified enzyme is more resistant against various denaturing agents, e.g., urea, ethanol, and heat. Thus covalent modification of PAP by cross-linking to chondroitin sulfate could be the preferred method for stabilization of its biological activity. 相似文献
19.
Human prostatic acid phosphatase (orthophosphoric monoester phosphohydrase, EC 3.1.3.2) is purified to homogeneity by standard procedures which include CM-Sephadex, Con A affinity chromatography and gel filtration. The purified enzyme is antigenically specific and has a M.W. of 100,000 with subunit M.W. of 48,000. However, the enzyme exhibited charge heterogeneity. Two major electrophoretic or chromatographic isozymic forms of PAP were separated by DEAE-Sephadex chromatography and their immunochemical identity was studied by immunodiffusion before and after the neuraminidase digestion. Quantitative precipitin and inhibition experiments showed immunological identity of the two chromatographic isozymes. Immunologic specificity of this enzyme resides on the protein moiety rather than the carbohydrate residue, although the latter group is mostly responsible for the charge group heterogeneity of the enzyme. 相似文献