首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of fatty acids on the growth of Caco-2 cells   总被引:14,自引:0,他引:14  
Epidemiological studies suggest that polyunsaturated fatty acids may protect against colorectal neoplasia. In order to explore this observation, cell proliferation and viability, lipid composition, membrane fluidity, and lipid peroxidation were measured in Caco-2 cells after 48h incubation with various fatty acids. Saturated and monounsaturated fatty acids incorporated less well in the membranes than polyunsaturated fatty acids (PUFAs). All of the PUFAs tested had an inhibitory effect on cell proliferation/viability whereas the saturated and monounsaturated fatty acids did not. Addition of palmitic acid had no significant effect on membrane fluidity whereas unsaturated fatty acids increased membrane fluidity in a dose-dependent manner. PUFAs strongly increased tumor cell lipid peroxidation in a dose-dependent manner. Saturated and monounsaturated fatty acids increased lipid peroxidation in this cell line only at high concentration. Preincubation of Caco-2 cells with vitamin E prevented the inhibition of proliferation/viability, the elevation of the MDA concentration and the increased membrane fluidity induced by PUFAs. Our data indicate that PUFAs are potent inhibitors of the growth of colon cancer cells in vitro.  相似文献   

2.
地球生物圈75%以上的环境温度常年低于5℃,在这种低温环境中栖息着多种适应低温的微生物。在长期进化过程中低温微生物从细胞到分子水平形成一套独特的低温环境适应机制,而通过增加细胞膜膜脂中多不饱和脂肪酸含量来维持低温条件下最佳的细胞膜流动性是其中的一种。从多不饱和脂肪酸对微生物低温生长、细胞膜流动性细胞膜蛋白的组成和表达水平的影响来探讨多不饱和脂肪酸与微生物低温适应性的关系,总结多不饱和脂肪酸低温合成调节机制的研究进展,为相关的基础和应用开发研究提供参考。  相似文献   

3.
多不饱和脂肪酸对细胞膜功能影响的研究进展   总被引:1,自引:0,他引:1  
多不饱和脂肪酸是细胞膜磷脂的重要组成成份,影响细胞膜的稳定性.它具有广泛的生物学功能,包括细胞内信号传导通路、基因表达和细胞凋亡的调控等.主要从细胞膜脂质的组成,细胞膜的流动性及膜脂质过氧化等方面对多不饱和脂肪酸对细胞膜功能的影响进行了综述.  相似文献   

4.
In the rat both hypothyroidism and diabetes decrease heparin-releasable liver lipase activity. This defect may be reversed by feeding a diet rich in polyunsaturated fatty acids. It is suggested that a diet-induced increase of membrane fluidity restores liver lipase activity, which contributes to the hypolipidemic effect of polyunsaturated fatty acids.  相似文献   

5.
6.
Dictyostelium discoideum grown axenically in media containing polyunsaturated fatty acids exhibited normal growth rates but impaired differentiation (Weeks, G. (1976) Biochim. Biophys. Acta 450, 21--32). Since cell-cell contact is vital for differentiation but unnecessary for growth we have examined the isolated plasma membranes of these cells. The lipids of the plasma membranes of cells grown in the presence of polyunsaturated fatty acids contain considerable quantities of these acids, but the total phospholipid and sterol contents of the plasma membrane are close to normal. Electron spin resonance studies using 5-doxyl-stearic acid as the spin probe reveal two things. Firstly, there are no detectable characteristic transition temperatures in the plasma membranes of D. discoideum. Secondly, the plasma membranes of cell grown in the presence of polyunsaturated fatty acids have essentially the same fluidity as that of the control cells. The possible significance of this result to impaired cell-cell interaction is discussed.  相似文献   

7.
Organisms adjust the order, or fluidity, of their cellular membranes in response to changes in their physiochemical environment by adjusting the lipid composition of their membranes. We investigated membrane fluidity using the phospholipid, fatty acid and cholesterol content of red blood cells (RBCs) from multiple sclerosis (MS) patients and correlated this with C-reactive protein (CRP) as well as with the severity of neurological outcome as measured by the Kurtzke Expanded Disability Status Scale (EDSS) and its Functional System Scores. The study group consisted of 31 patients with MS and 30 healthy control subjects. Phospholipids were determined using a colorimetric assay, fatty acids by gas chromatography, cholesterol by an enzymatic assay and CRP by a Beckman nephelometer. Cell membrane fluidity was calculated according to previously established formulae. RBC membrane fluidity as measured by the saturated to polyunsaturated fatty acid ratio was higher in patients than in controls (P = 0.04). The phosphatidylethanolamine saturated to polyunsaturated fatty acid ratio showed highly significant positive correlations with the EDSS and CRP < 5 μg/ml. CRP showed significant inverse correlations with the saturated nature but positive correlations with the ordered-crystalline-phase to liquid-crystalline-phase lipid ratio. In this study we show that membrane fluidity as measured by the relationship between membrane fatty acids, phospholipids and cholesterol is closely interrelated with inflammation and disease outcome in patients with MS. In conclusion, our findings suggest that the membrane lipid composition of patients with MS and, consequently, membrane fluidity are altered, which seems to be influenced by the inflammatory status.  相似文献   

8.
The effect of dietary hydrogenated fat (Indian vanaspati) high in trans fatty acids (6 en%) on lipid composition, fluidity and function of rat intestinal brush border membrane was studied at 2 and 8 en% of linoleic acid. Three groups of weanling rats were fed rice-pulse based diet containing 10% fat over a ten week period: Group I (groundnut oil), Group II (vanaspati), Group III (vanaspati + safflower oil). The functionality of the brush border membrane was assessed by the activity of membrane bound enzymes and transport of D-glucose and L-leucine. The levels of total cholesterol and phospholipids were similar in all groups. The data on fatty acid composition of membrane phospholipids showed that, at 2 en% of linoleic acid in the diet, trans fatty acids lowered arachidonic acid and increased linoleic acid contents indicating altered polyunsaturated fatty acid metabolism. Alkaline phosphatase activity was increased while the activities of sucrase, gamma-glutamyl transpeptidase and transport of D-glucose and L-leucine were not altered by dietary trans fatty acids. However at higher intake of linoleic acid in the diet, trans fatty acids have no effect on polyunsaturated fatty acid composition and alkaline phosphatase activity of intestinal brush border membrane. These data suggest that feeding dietary fat high in trans fatty acids is associated with alteration in intestinal brush border membrane polyunsaturated fatty acid composition and alkaline phosphatase activity only when the dietary linoleic acid is low.  相似文献   

9.
The antifungal mode of action of chitosan has been studied for the last 30 years, but is still little understood. We have found that the plasma membrane forms a barrier to chitosan in chitosan‐resistant but not chitosan‐sensitive fungi. The plasma membranes of chitosan‐sensitive fungi were shown to have more polyunsaturated fatty acids than chitosan‐resistant fungi, suggesting that their permeabilization by chitosan may be dependent on membrane fluidity. A fatty acid desaturase mutant of Neurospora crassa with reduced plasma membrane fluidity exhibited increased resistance to chitosan. Steady‐state fluorescence anisotropy measurements on artificial membranes showed that chitosan binds to negatively charged phospholipids that alter plasma membrane fluidity and induces membrane permeabilization, which was greatest in membranes containing more polyunsaturated lipids. Phylogenetic analysis of fungi with known sensitivity to chitosan suggests that chitosan resistance may have evolved in nematophagous and entomopathogenic fungi, which naturally encounter chitosan during infection of arthropods and nematodes. Our findings provide a method to predict the sensitivity of a fungus to chitosan based on its plasma membrane composition, and suggests a new strategy for antifungal therapy, which involves treatments that increase plasma membrane fluidity to make fungi more sensitive to fungicides such as chitosan.  相似文献   

10.
Tetrahymena cells elongated and desaturated massive supplements of palmitic or lauric acid at nearly twice the rates employed by unfed cells, thereby maintaining constant the physical properties of their membrane lipids. However, when a mixture of the 9- and 10-monomethoxy derivatives of stearic acid was administered, these compounds were incorporated without further metabolism. The marked fluidizing effect of the phospholipid-bound methoxy-fatty acids elicited an immediate reduction in fatty acid desaturase activity, the pattern of change being very similar to that induced by supplements of polyunsaturated fatty acids. The modulation of fatty acid desaturase activity by methoxy-acids clearly seems to be governed by membrane fluidity rather than by some form of end product inhibition of the type which might have been postulated to explain the similar effect caused by polyunsaturated fatty acids.  相似文献   

11.
Nuclear membrane fluidity is measured in rat liver by use of the fluorescence anisotropy of two probes: diphenylhexatriene and its cationic derivative trimethylammonium-diphenylhexatriene. It has been shown that, in 2-month-old rat liver cells, the bilayer surface is less fluid than the hydrophobic core. The fluidity was higher in 6-day-old rat liver nuclei, in which both the amount of cholesterol and the cholesterol/phospholipid ratio decreased. The influence of the single phospholipids, and in particular of phosphatidylcholine, has been studied by increasing the phosphatidylcholine with a choline base exchange reaction in isolated nuclear membranes. After this reaction, the fluorescence anisotropy of the bilayer surface increased, whereas at the hydrophobic core it decreased. Analysis of fatty acid composition shows an increase of phosphatidylcholine unsaturated fatty acids. The results show that the fluidity of nuclear membranes changes in relation to the lipid content and to the fatty acid composition. The role of nuclear membrane fluidity in cell function is discussed. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
Recently, many genes involved in the formation of unsaturated and polyunsaturated fatty acids (PUFAs) were isolated. In most cases, their activities were confirmed by expressing them in the well-studied model organism Saccharomyces cerevisiae because its fatty acid compositions are very simple and it does not contain PUFAs. Taking advantage of its genetic tractability and increasing wealth of accessible data, many groups are attempting to produce various useful fatty acids in the model yeasts, mainly in S. cerevisiae. This review describes typical such examples including a very recent study on the expression of a fatty acid hydroxylase gene in fission yeast Schizosaccharomyces pombe. Furthermore, the impact of the genetically engineered alteration of fatty acid composition on the stress tolerance is presented because unsaturated fatty acids have crucial roles in membrane fluidity and signaling processes. Lastly, recent attempts at increasing lipid content in S. cerevisiae are discussed.  相似文献   

13.
Lipid Peroxides in the Free Radical Pathophysiology of Brain Diseases   总被引:10,自引:0,他引:10  
1. Polyunsaturated fatty acids are essential for normal neural cell membrane functioning because many membrane properties, such as fluidity and permeability, are closely related to the presence of unsaturated and polyunsaturated side chains. Lipid peroxidation results in loss of membrane polyunsaturated fatty acids and oxidized phospholipids as polar species contributing to increased membrane rigidity.2. Polyunsaturated fatty acids are released from membrane phospholipids by a number of enzymic mechanisms involving the receptor-mediated stimulation of phospholipase A2 and phospholipase C/diacylglycerol lipase pathways.3. The overstimulation of excitatory amino acid (EAA) receptors stimulates the activities of lipases and phospholipases, and this stimulation produces changes in membrane phospholipid composition, permeability, and fluidity, thus decreasing the integrity of plasma membranes.4. Alterations in properties of plasma membranes may be responsible for the degeneration of neurons seen in neurodegenerative diseases. Two major processes may be involved in neuronal injury caused by the overstimulation of EAA receptors. One is a large Ca2+ influx and the other is an accumulation of free radicals and lipid peroxides as a result of neural membrane phospholipid degradation. It is suggested that calcium and free radicals act in concert to induce neuronal injury in acute trauma (ischemia and spinal cord injury) and in neurodegenerative diseases.  相似文献   

14.
The role of membrane fatty acids in mammalian hibernation   总被引:1,自引:0,他引:1  
During mammalian hibernation, cellular membranes continue to function at temperatures approaching 0 C. The molecular mechanisms that confer this capacity to the membranes are unknown but may be related to the fluidity of the membrane and to the level of unsaturated fatty acids. The basic tenets of membrane fluidity and the contribution of cholesterol, polar head groups, and fatty acids toward maintaining a fluid membrane in a liquid-crystalline state are examined in this review. It is shown that although unsaturated fatty acids can enhance membrane fluidity at low temperatures, there does not appear to be a consistent trend toward increased levels of unsatruated fatty acids during hibernation in all tissues of hibernators. Consequently, there may be some other role for the alterations in the composition of membrane fatty acids found during the hibernating cycle other than increasing membrane fluidity to permit continued activity at reduced temperatures.  相似文献   

15.
The role of polyunsaturated fatty acids (PUFAs) in inflammatory lesions of the intestines is the subject of increasing research. This review begins with a background discussion of the source, elongation, and desaturation of PUFAs, as well as the role they have played in the human diet through evolution. The available data and hypotheses as to how manipulation of PUFAs might effect the various components of the immune system are then provided. Possible mechanisms by which PUFAs result in immunomodulation include alterations in eicosanoid synthesis, membrane fluidity, signal transduction, intraluminal bacteria, and gene expression. Attention is then turned to the known effects that these polyunsaturated fatty acids have on the various individual components of the immune system including lymphocytes, neutrophils, and antigen presenting cells, as well as the immunoregulatory process of apoptosis. Finally, laboratory data on the role of PUFAs in necrotizing enterocolitis, and to a greater extent inflammatory bowel disease, first as demonstrated in animal models of the disease, and second in human studies are then summarized.  相似文献   

16.
Previous studies using neonatal rat cardiomyocytes have reported antiarrhythmic effects of long-chain polyunsaturated fatty acids (PUFAs). In this study, we examined the effects of the n-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) on the spontaneous contractile activity and membrane fluidity of adult rat ventricular myocytes. Cardiomyocytes were induced to contract spontaneously by continuous superfusion of a solution containing the arrhythmogenic agents isoproterenol (a beta-adrenergic receptor agonist) or lysophosphatidylcholine. The percentage of cardiomyocytes displaying spontaneous contractions induced by isoproterenol when pretreated with the saturated fatty acid docosanoic acid was 48.1 +/- 7.7%; the percentage for cardiomyocytes pretreated with DHA was 7.1 +/- 2.4% (P < 0.01). DHA significantly prevented lysophosphatidylcholine-induced spontaneous contractions (17.7 +/- 6.5%) compared with treatment with the saturated fatty acid stearic acid (78.0 +/- 7.3%, P < 0.01). The membrane fluidizing agent benzyl alcohol also significantly prevented spontaneous contractions in cardiomyocytes. Membrane fluidity was determined by steady-state fluorescence anisotropy (r(ss)) using the fluorescent probe N-((4-(6-phenyl-1,3,5-hexatrienyl)phenyl)propyl) trimethyl-ammonium p-toluene-sulfonate (TMAP-DPH). DHA and benzyl alcohol dose-dependently decreased the r(ss); however, saturated fatty acids were without effect. These results suggest that the antiarrhythmic mechanisms of the n-3 PUFAs such as DHA may involve changes in membrane fluidity.  相似文献   

17.
The effects of long-chain cis-unsaturated fatty acids with different alkyl chain lengths and different numbers of double bonds on aggregation of bovine platelets and membrane fluidity were investigated. All the cis-unsaturated fatty acids tested inhibited aggregation and at the same time increased membrane fluidity in accordance with their inhibitory effects. The saturated fatty acids and trans-unsaturated fatty acid tested for comparison had much lower or no effects on aggregation and membrane fluidity. The inhibitory effects of mono cis-unsaturated fatty acids increased with increase of their alkyl chain length. cis-Unsaturated fatty acids with two or more double bonds had more inhibitory effects than mono-unsaturated fatty acids. The position of the double bonds had less influence than the number of double bonds. We also examined the effects of cis-unsaturated fatty acids on membrane fluidity with diphenylhexatriene and anthroyloxy derivatives of fatty acids as probes and observed increased fluidity to be considerable in the membrane. The alcohol analogs of cis-unsaturated fatty acids also inhibited aggregation and increased membrane perturbation. These results suggest that the inhibition of platelet aggregation by cis-unsaturated compounds is due to perturbation of the lipid layer.  相似文献   

18.
We hypothesized that the polyunsaturated fatty acids of the butterfly were probably derived from the diet and that there might be a great loss of body fat during metamorphosis. To substantiate these hypotheses, we analyzed the fatty acid composition and content of the diet, the larva, and the butterfly Morpho peleides. Both the diet and the tissues of the larva and butterfly had a high concentration of polyunsaturated fatty acids. In the diet, linolenic acid accounted for 19% and linoleic acid for 8% of total fatty acids. In the larva, almost 60% of the total fatty acids were polyunsaturated: linolenic acid predominated at 42% of total fatty acids, and linoleic acid was at 17%. In the butterfly, linolenic acid represented 36% and linoleic acid represented 11% of total fatty acids. The larva had a much higher total fatty acid content than the butterfly (20.2 vs. 6.9 mg). Our data indicate that the transformation from larva to butterfly during metamorphosis drastically decreased the total fatty acid content. There was bioenhancement of polyunsaturated fatty acids from the diet to the larva and butterfly. This polyunsaturation of membranes may have functional importance in providing membrane fluidity useful in flight.  相似文献   

19.
The mitogenic response of human peripheral lymphocytes to lectins can be decreased by brief treatment of the cells with lecithin-cholesterol liposomes. This fact indicates that the temporary increase of membrane fluidity, which occurs within 30 min after addition of mitogenic lectins, is an important early event for the subsequent activation of lymphocytes. This temporary increase of membrane fluidity is accompanied by neither a decrease in cellular cholesterol level nor by particular acceleration of the incorporation of polyunsaturated fatty acids into phospholipids. These facts suggest that this change in membrane fluidity is not due to the alteration of membrane lipid composition, but can be regarded as a result of temporary perturbation of membrane lipid bilayers induced by binding of the lectins to their membrane receptors.  相似文献   

20.
Murine thioglycollate-elicited peritoneal macrophages were cultured in the presence of a variety of fatty acids added as complexes with bovine serum albumin. All fatty acids tested were taken up readily by the cells and both neutral and phospholipid fractions were enriched with the fatty acid provided in the medium. This generated a range of cells enriched in saturated, monounsaturated or polyunsaturated fatty acids, including n-3 acids of fish oil origin. Saturated fatty acid enrichment enhanced macrophage adhesion to both tissue culture plastic and bacterial plastic compared with enrichment with polyunsaturated fatty acids. Macrophages enriched with the saturated fatty acids myristate or palmitate showed decreases of 28% and 21% respectively in their ability to phagocytose unopsonized zymosan particles. Those enriched with polyunsaturated fatty acids showed 25-55% enhancement of phagocytic capacity. The greatest rate of uptake was with arachidonate-enriched cells. Phagocytic rate was highly correlated with the saturated/unsaturated fatty acid ratio, percentage of polyunsaturated fatty acid and index of unsaturation, except for macrophages enriched with fish-oil-derived fatty acids; they showed lower phagocytic activity than expected on the basis of their degree of unsaturation. These results suggest that membrane fluidity is important in determining macrophage adhesion and phagocytic activity. However, in the case of phagocytosis, this effect may be partially overcome if the cells are enriched with fish-oil-derived fatty acids. Thus it may be possible to modulate the activity of cells of the immune system, and so an immune response, by dietary lipid manipulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号