首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sympathoexcitation and increased blood pressure evoked by central networks integrating defensive behavior are fundamental to the acute stress response. A balance between excitatory glutamatergic and inhibitory GABAergic neurotransmission in the dorsal periaqueductal gray (dPAG) results in a tonic level of activity in the alerting system. Neuromodulators such as endocannabinoids have been shown to influence the sympathoexcitatory and pressor components of acute stress in the dPAG, exemplified by the defense response as a model, but the mechanism of integration remains unknown. The present study examines the role of GABA and its interaction with endocannabinoids in modulating sympathetic nerve activity and blood pressure related to the defense response. Microinjection of the broad-spectrum excitatory amino acid dl-homocysteic acid (DLH) identified sites of the defense pathway in the dPAG from which an increase in renal sympathetic nerve activity and blood pressure could be evoked, and subsequent microinjections were made at the same site through a multibarrelled micropipette. Blockade of GABAA receptors or microinjection of the cannabinoid 1 receptor agonist anandamide elicited a renal sympathoexcitation and pressor response. Prior microinjection of the GABAA receptor antagonist gabazine attenuated the sympathoexcitation and pressor response associated with anandamide microinjection. In contrast, the sympathetic response to DLH was enhanced by GABAA receptor blockade. These data demonstrate that sympathoexcitatory neurons in the dPAG are under tonic inhibition by GABA and that endocannabinoids modulate this GABAergic neurotransmission to help regulate components of the defense response.  相似文献   

2.
The neural substrates mediating autonomic components of the behavioral defense response reside in the periaqueductal gray (PAG). The cardiovascular components of the defense response evoked from the dorsal PAG (DPAG) have been well described and are dependent, in part, on the integrity of neurons in the region of the parabrachial nucleus as well as the rostral ventrolateral medulla. Descending pathways mediating the ventilatory response associated with activation of DPAG neurons are unknown. The present study was undertaken to test the hypothesis that parabrachial area neurons are also involved in mediating the respiratory response to DPAG stimulation. In urethane-anesthetized, spontaneously breathing rats, electrical stimulation of the DPAG significantly increased respiratory rate, arterial pressure, and heart rate. Changes in respiratory frequency were associated with significant decreases in inspiratory and expiratory durations. After bilateral inhibition of neurons in the lateral parabrachial nucleus (LPBN) region with 5 mM muscimol (n = 6), DPAG-evoked increases in respiration and heart rate were attenuated by 90 +/- 6 and 72 +/- 13%, respectively. The pressor response evoked by DPAG stimulation, however, was attenuated by only 57 +/- 6%. Bilateral blockade of glutamate receptors with 20 mM kynurenic acid (n = 6) in the LPBN also markedly attenuated DPAG-evoked increases in respiration and heart rate (65 +/- 15 and 53 +/- 9% reduction, respectively) but only modestly changed the DPAG-evoked pressor response (34 +/- 16% reduction). These results demonstrate that LPBN neurons play a significant role in the DPAG-mediated respiratory component of behavioral defense responses. This finding supports previous work demonstrating that the dorsolateral pons plays a significant role in mediating most physiological adjustments associated with activation of the DPAG.  相似文献   

3.
The periaqueductal gray matter is an essential neural substrate for central integration of defense behavior and accompanied autonomic responses. The dorsal half of the periaqueductal gray matter (dPAG) is also involved in mediating emotional responses of anxiety and fear, psychological states that often are associated with changes in ventilation. However, information regarding respiratory modulation elicited from this structure is limited. The present study was undertaken to investigate the relationship between stimulus frequency and magnitude on ventilatory pattern and respiratory muscle activity in urethane-anesthetized, spontaneously breathing rats. Electrical stimulation in the dPAG-recruited abdominal muscle activity increased ventilation and increased respiratory frequency by significantly shortening both inspiratory time and expiratory time. Ventilation increased within the first breath after the onset of stimulation, and the respiratory response increased with increasing stimulus frequency and magnitude. dPAG stimulation also increased baseline EMG activity in the diaphragm and recruited baseline external abdominal oblique EMG activity, normally quiescent during eupneic breathing. Significant changes in cardiorespiratory function were only evoked by stimulus intensities >10 microA and when stimulus frequencies were >10 Hz. Respiratory activity of both the diaphragm and abdominal muscles remained elevated for a minimum of 60 s after cessation of stimulation. These results demonstrate that there is a short-latency respiratory response elicited from the dPAG stimulation, which includes both inspiratory and expiratory muscles. The changes in respiratory timing suggest rapid onset and sustained poststimulus dPAG modulation of the brain stem respiratory network that includes expiratory muscle recruitment.  相似文献   

4.
Activation of the sympathetic nervous system is fundamental to the coordinated response to stress or danger. The midbrain periaqueductal gray (PAG) contains the neural substrate required to recruit the sympathetic nervous system and organize the physiological and behavioral responses required to respond to imposed challenges. Endocannabinoids have been shown to influence associated behavioral responses. The defense response was used in this study as a working model to examine endocannabinoid modulation of the sympathetic response to acute stress in the anesthetized rat. Microinjection of the cannabinoid 1 (CB1) receptor agonist anandamide into the defense pathway of the dorsal PAG could elicit an increase in renal sympathetic nerve activity and blood pressure, twitching of the whiskers, and movement of the limbs. The response was attenuated by prior microinjection of the CB1 receptor antagonist AM-281 at the same site. Electrical stimulation of the hypothalamic defense area could evoke similar sympathoexcitatory and pressor responses, which were significantly attenuated by microinjection of AM-281 into the dorsal PAG. These data indicate that endocannabinoids can modulate the sympathetic and cardiovascular components of the acute stress response via CB1 receptors at the level of the PAG.  相似文献   

5.
The dorsal periaqueductal gray (dPAG) is involved in defensive coping reactions to threatening stimuli. Corticotropin releasing factor (CRF) is substantially implicated as a direct modulator of physiological, endocrine and behavioral responses to a stressor. Previous findings demonstrate a direct role of the central CRF system in dPAG-mediated defensive reactions toward a threatening stimulus. These include anxiogenic behaviors in the elevated plus maze (EPM) in rats and defensive reactions in both the mouse defense test battery (MDTB) and rat exposure test (RET) paradigms in mice. Furthermore, CRF was shown to directly and dose-dependently excite PAG neurons in vitro. The aim of the present series of experiments was to directly evaluate the role of the CRF1 receptor (CRF1) in dPAG-induced defensive behaviors in the MDTB and the RET paradigms. For this purpose, cortagine, a novel CRF1-selective agonist, was directly infused into the dPAG. In the RET the high dose of cortagine (100 ng) significantly affected spatial avoidance measures and robustly increased burying behavior, an established avoidance activity, while having no effects on behaviors in the MDTB. Collectively, these results implicate CRF1 in the dPAG as a mediator of temporally and spatially dependent avoidance in response to controllable and constant stimuli.  相似文献   

6.
Takeda M  Matsumoto S 《Life sciences》2002,71(22):2681-2690
To clarify whether GABAergic or glycinergic transmission alters the activity of inspiratory neurons during spontaneous augmented breaths, we recorded the single unit activity from inspiratory neurons in the dorsal and ventral respiratory groups in the medulla of pentobarbital anesthetized rats and applied GABA(A) and glycine receptor agonists by iontophoresis using multibarrel microelectrodes. The spontaneous augmented breath was divided into two different phases; the first phase (phase I) resembled a normal inspiration but the second phase (phase II) indicated a marked increase in diaphragm electromyogram activity. During application of either muscimol or glycine, the discharge of inspiratory neurons during the phase I of spontaneous augmented breaths was suppressed, but the augmenting discharge of the phase II did not change significantly in any cell type of the neurons (I-augmenting, I-decrementing and I-other). These results suggested that the excitatory inputs to inspiratory neurons during the phase II of augmented breaths may not be significantly influenced by the activation of either GABA(A) receptors or glycine receptors.  相似文献   

7.
Previous studies showed that the cardiac response of the baroreceptor reflex (bradycardia) is inhibited during the defense reaction evoked by direct electrical or chemical stimulation of the periaqueductal gray (dPAG) in the rat. Whether central serotonin and nucleus tractus solitarius (NTS) serotonin(3) (5-HT(3)) receptors might participate in this inhibition was investigated in urethane-anesthetized and atenolol-pretreated rats. Our results showed that both electrical and chemical stimulation of the dPAG produced a drastic reduction of the cardiovagal component of the baroreceptor reflex triggered by either intravenous administration of phenylephrine or aortic nerve stimulation. This inhibitory effect of dPAG stimulation on the baroreflex bradycardia was not observed in rats that had been pretreated with p-chlorophenylalanine (300 mg/kg ip daily for 3 days) to inhibit serotonin synthesis. Subsequent 5-hydroxytryptophan administration (60 mg/kg ip), which was used to restore serotonin synthesis, allowed the inhibitory effect of dPAG stimulation on both aortic and phenylephrine-induced cardiac reflex responses to be recovered in p-chlorophenylalanine-pretreated rats. On the other hand, in nonpretreated rats, the inhibitory effect of dPAG stimulation on the cardiac baroreflex response could be markedly reduced by prior intra-NTS microinjection of granisetron, a 5-HT(3) receptor antagonist, or bicuculline, a GABA(A) receptor antagonist. These results show that serotonin plays a key role in the dPAG stimulation-induced inhibition of the cardiovagal baroreceptor reflex response. Moreover, they support the idea that 5-HT(3) and GABA(A) receptors in the NTS contribute downstream to the inhibition of the baroreflex response caused by dPAG stimulation.  相似文献   

8.
Airway obstruction in animals leads to compensation and avoidance behavior and elicits respiratory mechanosensation. The pattern of respiratory load compensation and neural activation in response to intrinsic, transient, tracheal occlusions (ITTO) via an inflatable tracheal cuff are unknown. We hypothesized that ITTO would cause increased diaphragm activity, decreased breathing frequency, and activation of neurons within the medullary and pontine respiratory centers without changing airway compliance. Obstructions were performed for 2-3 breaths followed by a minimum of 15 unobstructed breaths with an inflatable cuff sutured around the trachea in rats. The obstruction procedure was repeated for 10 min. The brains of obstructed and control animals were removed, fixed, sectioned, and stained for c-Fos. Respiratory pattern was measured from esophageal pressure (P(es)) and diaphragm electromyography (EMG(dia)). The obstructed breaths resulted in a prolonged inspiratory and expiratory time, an increase in EMG(dia) amplitude, and a more negative P(es) compared with control breaths. Neurons labeled with c-Fos were found in brain stem and suprapontine nuclei, with a significant increase in c-Fos expression for the occluded experimental group compared with the control groups in the nucleus ambiguus, nucleus of the solitary tract, lateral parabrachial nucleus, and periaqueductal gray matter. The results of this study demonstrate tracheal occlusion-elicited activation of neurons in brain stem respiratory nuclei and neural areas involved in stress responses and defensive behaviors, suggesting that these neurons mediate the load compensation breathing pattern response and may be part of the neural pathway for respiratory mechanosensation.  相似文献   

9.
It has been suggested that the midbrain periaqueductal gray (PAG) is a neural integrating site for the interaction between the muscle pressor reflex and the arterial baroreceptor reflex. The underlying mechanisms are poorly understood. The purpose of this study was to examine the roles of GABA and nitric oxide (NO) in modulating the PAG integration of both reflexes. To activate muscle afferents, static contraction of the triceps surae muscle was evoked by electrical stimulation of the L7 and S1 ventral roots of 18 anesthetized cats. In the first group of experiments (n = 6), the pressor response to muscle contraction was attenuated by bilateral microinjection of muscimol (a GABA receptor agonist) into the lateral PAG [change in mean arterial pressure (DeltaMAP) = 24 +/- 5 vs. 46 +/- 8 mmHg in control]. Conversely, the pressor response was significantly augmented by 0.1 mM bicuculline, a GABAA receptor antagonist (DeltaMAP = 65 +/- 10 mmHg). In addition, the effect of GABAA receptor blockade on the reflex response was significantly blunted after sinoaortic denervation and vagotomy (n = 4). In the second group of experiments (n = 8), the pressor response to contraction was significantly attenuated by microinjection of L-arginine into the lateral PAG (DeltaMAP = 26 +/- 4 mmHg after L-arginine injection vs. 45 +/- 7 mmHg in control). The effect of NO attenuation was antagonized by bicuculline and was reduced after denervation. These data demonstrate that GABA and NO within the PAG modulate the pressor response to muscle contraction and that NO attenuation of the muscle pressor reflex is mediated via arterial baroreflex-engaged GABA increase. The results suggest that the PAG plays an important role in modulating cardiovascular responses when muscle afferents are activated.  相似文献   

10.
Our purpose was to determine whether endogenously released GABA in the ventrolateral nucleus of the solitary tract (vlNTS) of the rat influences respiration. Experiments were carried out in anesthetized, vagotomized and spontaneously breathing rats, and diaphragm electromyogram activity was measured while drugs affecting GABAergic neurotransmission were microinjected into the vlNTS and medial NTS (mNTS). Bilateral microinjection of nipecotic acid, 5 or 25 nmol, into the vlNTS (but not in the mNTS) produced dose-dependent increases in inspiratory duration (Ti) frequently culminating in apneustic breathing. Neither unilateral microinjection of bicuculline nor CGP-35348 (GABA(B) receptor antagonist) reversed this response; however, a combination of both GABA receptor antagonists effectively reversed apneustic breathing. Bilateral microinjection of either muscimol or baclofen into the vlNTS mimicked the effect of nipecotic acid. Microinjection of the bicuculline produced apnea, whereas microinjection of CGP-35348 produced a decrease in Ti and an increase in expiratory duration. Immunohistochemical analysis of the vlNTS region revealed GABA(A) receptors densely localized to processes, whereas GABA(B) immunoreactivity was localized to cell bodies. Our data indicate that GABA activity in the vlNTS is important for respiratory function.  相似文献   

11.
Cardiovascular failure and apnea in shock   总被引:1,自引:0,他引:1  
A model of shock was developed in anesthetized dogs by limiting venous return with a balloon inflated in the right atrium. The change in ventilation (VE) in response to a sustained decrease in arterial pressure (Pa) to 50-60 Torr was studied by recording transdiaphragmatic pressure (Pdi) and diaphragm (Edi) and parasternal intercostal (Eic) electrical activity. Four dogs died of cardiac arrest after 20-60 min. In 11 dogs, VE, after an initial increase, decreased progressively until apnea occurred after 103 +/- 24 min, after 60% reductions in breathing frequency, Pdi, and Eic and a 30% fall in Edi. No decrease in diaphragm contractility was found in response to artificial phrenic nerve stimulation. The cardiocirculatory function deteriorated during shock until it became irreversible at apneic time. No recovery from apnea occurred without a recovery of Pa. We conclude that the fall in VE and ensuing apnea in this model resulted from a decrease in central respiratory neural output associated with a progressive deterioration of the cardiocirculatory function.  相似文献   

12.
Melatonin (MLT) is a neurohormone with significant involvement in several biological functions, of which antinociception and tonic immobility (TI) may be the key neurobehavioral components to survive in adverse conditions such as a predator attack. TI-induced antinociception can be elicited, facilitated, or increased through opioid and γ-aminobutyric acid (GABA) among other chemical mediators at several levels of the central nervous system, mainly in the periaqueductal gray (PAG). The aim of this study was to assess the effect of the microinjection of MLT into the main PAG regions that are related to different integrated defensive responses, namely dorsal (D) and ventrolateral (VL), on both antinociception through the tail-flick (TF) test and TI duration as single behavioral response and on combined behavioral responses (TF/TI). We found that the microinjection of MLT into the main PAG areas produced antinociception but did not affect the TI duration. The microinjection of MLT into the D-PAG decreased TF latency during TI in the combined trial (TF/TI), which implies that TI-induced antinociception was blocked. The microinjection of MLT into the VL-PAG maintained the antinociceptive capability of the TI without addition or increase in the antinociceptive effects, implying a permissive effect by MLT on the TI-induced antinociception. MLT administration into the D-PAG decreased the TI duration on the TF/TI, whereas MLT administration into the VL-PAG had the opposite effect of significantly increasing TI duration with the TF/TI trial.  相似文献   

13.
Circadian clocks play vital roles in the control of daily rhythms in physiology and behavior of animals. In Drosophila, analysis of the molecular and behavioral rhythm has shown that the master clock neurons are entrained by sensory inputs and are synchronized with other clock neurons. However, little is known about the neuronal circuits of the Drosophila circadian system and the neurotransmitters that act on the clock neurons. Here, we provide evidence for a new neuronal input pathway to the master clock neurons, s-LN(v)s, in Drosophila that utilizes GABA as a slow inhibitory neurotransmitter. We monitored intracellular calcium levels in dissociated larval s-LN(v)s with the calcium-sensitive dye Fura-2. GABA decreased intracellular calcium in the s-LN(v)s and blocked spontaneous oscillations in calcium levels. The duration of this response was dose-dependent between 1 nM and 100 microM. The response to GABA was blocked by a metabotropic GABA(B) receptor (GABA(B)-R) antagonist, CGP54626, but not by an ionotropic receptor antagonist, picrotoxin. The GABA(B)-R agonist, 3-APMPA, produced a response similar to GABA. An antiserum against one of the Drosophila GABA(B)-Rs (GABA(B)-R2) labeled the dendritic regions of the s-LN(v)s in both adults and larvae, as well as the dissociated s-LN(v)s. We found that some GABAergic processes terminate at the dendrites of the LN(v)s, as revealed by GABA immunostaining and a GABA-specific GAL4 line (GAD1-gal4). Our results suggest that the s-LN(v)s receive slow inhibitory GABAergic inputs that decrease intracellular calcium of these clock neurons and block their calcium cycling. This response is mediated by postsynaptic GABA(B) receptors.  相似文献   

14.
We applied graded resistive and elastic loads and total airway occlusions to single inspirations in six full-term healthy infants on days 2-3 of life to investigate the effect on neural and mechanical inspiratory duration (TI). The infants breathed through a face mask and pneumotachograph, and flow, volume, airway pressure, and diaphragm electromyogram (EMG) were recorded. Loads were applied to the inspiratory outlet of a two-way respiratory valve using a manifold system. Application of all loads resulted in inspired volumes decreased from control (P less than 0.001), and changes were progressive with increasing loads. TI measured from the pattern of the diaphragm EMG (TIEMG) was prolonged from control by application of all elastic and resistive loads and by total airway occlusions, resulting in a single curvilinear relationship between inspired volume and TIEMG that was independent of inspired volume trajectory. In contrast, when TI was measured from the pattern of airflow, the effect of loading on the mechanical time constant of the respiratory system resulted in different inspired volume-TI relationships for elastic and resistive loads. Mechanical and neural inspired volume and duration of the following unloaded inspiration were unchanged from control values. These findings indicate that neural inspiratory timing in infants depends on magnitude of phasic volume change during inspiration. They are consistent with the hypothesis that termination of inspiration is accomplished by an "off-switch" mechanism and that inspired volume determines the level of vagally mediated inspiratory inhibition to trigger this mechanism.  相似文献   

15.
The human respiratory neural drive has an automatic component (bulbospinal pathway) and a volitional component (corticospinal pathway). The aim of this study was to assess the effects of a hypercapnia-induced increase in the automatic respiratory drive on the function of the diaphragmatic corticospinal pathway as independently as possible of any other influence. Thirteen healthy volunteers breathed room air and then 5 and 7% hyperoxic CO2. Cervical (cms) and transcranial (tms) magnetic stimulations were performed during early inspiration and expiration. Transdiaphragmatic pressure (Pdi) and surface electromyogram of the diaphragm (DiEMG) and of the abductor pollicis brevis (apbEMG) were recorded in response to cms and tms. During inspiration, Pdi,cms was unaffected by CO2, but Pdi,tms increased significantly with 7% CO2. During expiration, Pdi,cms was significantly reduced by CO2, whereas Pdi,tms was preserved. DiEMG,tms latencies decreased significantly during early inspiration and expiration (air vs. 5% CO2 and air vs. 7% CO2). DiEMG,tms amplitude increased significantly in response to early expiration-tms (air vs. 5% CO2 and air vs. 7% CO2) but not in response to early inspiration-tms. DiEMG,cms latencies and amplitudes were not affected by CO2 whereas 7% CO2 significantly increased the apbEMG,cms latency. The apbEMG,tms vs. apbEMG,cms latency difference was unaffected by CO2. In conclusion, increasing the automatic drive to breathe facilitates the response of the diaphragm to tms, during both inspiration and expiration. This could allow the corticospinal drive to breathe to keep the capacity to modulate respiration in conditions under which the automatic respiratory control is stimulated.  相似文献   

16.
Adenosine is a known inhibitor of respiratory output during early life. In this study we investigated the developmental changes in adenosine A2A-receptor activation on respiratory timing, as well as the relationship between adenosine and GABA. The specific adenosine A2A-receptor agonist CGS-21680 (CGS) or vehicle control was injected into the fourth ventricle of 14-day (n = 9), 21-day (n = 9), and adult (n = 5) urethane-anesthetized rats while diaphragm electromyogram was monitored as an index of respiratory neural output. CGS injection resulted in a decrease in frequency and/or apnea in all 14-day-old rats and in 66% of 21-day-old rats. There was no effect of CGS injection on respiratory timing in adult rats. Prior injection of the GABA(A)-receptor blocker bicuculline at 14 and 21 days eliminated the CGS-induced decrease in frequency and apnea. We conclude from these studies that the inhibitory effect of A2A-receptor activation on respiratory drive is age dependent and is mediated via GABAergic inputs to the inspiratory timing neural circuitry. These findings demonstrate an important mechanism by which xanthine therapy alleviates apnea of prematurity.  相似文献   

17.
Effect of upper airway pressure changes on thoracic inspiratory muscles has been shown to depend on the time of application during the breathing cycle. The present study was designed to investigate the importance of the time of application of upper airway negative pressure pulses on upper airway muscles. The upper airway was functionally isolated into a closed system in 24 anesthetized spontaneously breathing rabbits. Negative pressure pulses were applied in early (within the first 200 ms) and late (greater than or equal to 200 ms) inspiration, while electromyograms (EMG) of the diaphragm (Dia), genioglossus (GG), alae nasi (AN), and/or posterior cricoarytenoid (PCA) muscles were simultaneously monitored. When negative pressure pulse was applied in early inspiration, the increase in GG activity was greater [0.49 +/- 0.37 to 4.24 +/- 3.71 arbitrary units (AU)] than when negative pressure was applied in late inspiration (0.44 +/- 0.29 to 2.64 +/- 3.05 AU). Similarly, increased activation of AN (2.63 +/- 1.01 to 4.26 +/- 1.69 AU) and PCA (3.46 +/- 1.16 to 6.18 +/- 2.93 AU) was also observed with early inspiratory application of negative pressure pulses; minimal effects were seen in these muscles with late application. An inhibitory effect on respiratory timing consisting of a prolongation in inspiration (TI) and a decrease in peak Dia EMG/TI was observed as previously reported. These results indicate that the time of application of negative pressure during the breathing cycle is an important variable in determining the magnitude of the response of upper airway muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The changes in thoracic and abdominal pressure that generate vomiting are produced by coordinated action of the major respiratory muscles. During vomiting, the diaphragm and external intercostal (inspiratory) muscles co-contract with abdominal (expiratory) muscles in a series of bursts of activity that culminates in expulsion. Internal intercostal (expiratory) muscles contract out of phase with these muscles during retching and are inactive during expulsion. The periesophageal portion of the diaphragm relaxes during expulsion, presumably facilitating rostral movement of gastric contents. Recent studies have begun to examine to what extent medullary respiratory neurons are involved in the control of these muscles during vomiting. Bulbospinal expiratory neurons in the ventral respiratory group caudal to the obex discharge at the appropriate time during (fictive) vomiting to activate either abdominal or internal intercostal motoneurons. The pathways that drive phrenic and external intercostal motoneurons during vomiting have yet to be identified. Most bulbospinal inspiratory neurons in the dorsal and ventral respiratory groups do not have the appropriate response pattern to initiate activation of these motoneurons during (fictive) vomiting. Relaxation of the periesophageal diaphragm during vomiting could be brought about, at least in part, by reduced firing of bulbospinal inspiratory neurons.  相似文献   

19.
Adaptations in neurons of the midbrain periaqueductal gray (PAG) induced by chronic morphine treatment mediate expression of many signs of opioid withdrawal. The abnormally elevated action potential rate of opioid-sensitive PAG neurons is a likely cellular mechanism for withdrawal expression. We report here that opioid withdrawal in vitro induced an opioid-sensitive cation current that was mediated by the GABA transporter-1 (GAT-1) and required activation of protein kinase A (PKA) for its expression. Inhibition of GAT-1 or PKA also prevented withdrawal-induced hyperexcitation of PAG neurons. Our findings indicate that GAT-1 currents can directly increase the action potential rates of neurons and that GAT-1 may be a target for therapy to alleviate opioid-withdrawal symptoms.  相似文献   

20.
Cholinergic stimulation of the pontine parabrachial region (PBR) produces behavioral nociceptive suppression in the awake cat. This report shows that electrical stimulation of both PBR sites (verified to be associated with behavioral nociceptive suppression on cholinergic stimulation) and the periaqueductal gray (PAG) excites raphe-spinal neurons which have been implicated in descending nociceptive suppression. Although several lines of evidence have strongly indicated that pathways from the PBR and PAG for nociceptive suppression are anatomically as well as neurochemically distinct, the results of the present study appear to suggest that certain components of the pathways from the PBR may be synergic in function with those from the PAG with regard to the activity of raphe-spinal neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号