首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract In the frame of the European program GenetPig, we localized on the Pig map 105 coding sequences (type I markers) from different origins, using INRA-University of Minnesota porcine Radiation Hybrid Panel (IMpRH, 101 markers) and somatic cell hybrid panel (SCHP, 93 markers, of which only four were not also mapped using IMpRH). Thus, we contributed to the improvement of the porcine high-resolution map, and we complemented the integration between the RH and cytogenetic maps. IMpRH tools allowed us to map 101 new markers relatively to reference markers of the first generation radiation hybrid map. Ninety out of 101 markers are linked to an already mapped marker with a LOD score greater than 4.8. Seventy-eight markers were informative for comparative mapping. Comparison of marker positions on the RH map with those obtained on the cytogenetic map or those expected by Human-Pig comparative map data suggested to us to be cautious with markers linked with a LOD lower than 6. These results allowed us to specify chromosomal fragments well conserved between humans and pigs and also to suggest new correspondences (Sscr1-Hsap3, Sscr9-Hsap9, Sscr13-Hsap11, Sscr15-Hsap6) confirmed by FISH on pig chromosomes. We examined in more detail the comparative map between Hsap12 and Sscr5 considering gene order, which suggests that rearrangements have occurred within the conserved synteny.  相似文献   

2.
3.
Previous mapping between the human and pig genomes suggested extensive conservation of human chromosome 13 (HSA13) to pig chromosome 11 (SSC11). The objectives of this study were comparative gene mapping of pig homologs of HSA13 genes and examining gene order within this conserved synteny group by physical assignment of each locus. A detailed HSA13 to SSC11 comparison was chosen since the comparative gene map is not well developed for these chromosomes and a rearranged gene order within conserved synteny groups was observed from the comparison between HSA13 and bovine chromosome 12 (BTA12). Heterologous primers for PCR were designed and used to amplify pig homologous fragments. The pig fragments were sequenced to confirm the homology. Six pig STSs (FLT1, ESD, RB1, HTR2A, EDNRB, and F10) were physically mapped using a somatic cell hybrid panel to SSC11, and fluorescent in situ hybridization (FISH) mapping was also applied to improve map resolution and determine gene order. Results from this study increase the comparative information available on SSC11 and suggest a conserved gene order on SSC11 and HSA13, in contrast to human:bovine comparisons of this syntenic group.  相似文献   

4.
A comparative map of human chromosome 12 (HSA 12) and pig chromosome 5 (SSC 5) was constructed using ten pig expressed sequence tags (ESTs). These ESTs were isolated from primary granulosa cell cultures by differential display (EST b10b), or from a granulosa cDNA library (VIIIE1, DRIM, N*9, RIIID2 and RVIC1) or from a small intestine cDNA library (ATPSB, ITGB7, MYH9, and STAT2). Also used were two Traced Orthologous Amplified Sequence Tags (TOASTs) (LALBA, TRA1), one microsatellite-associated gene (IGF1) and finally five human YACs selected for their cytogenetic position, with a view to increasing the number of informative markers for the comparison. Large-insert clones were obtained by screening a pig bacterial artificial chromosome (BAC) library with specific primers for each EST and TOAST and for IGF1. These BACs were used as probes for fluorescent in situ hybridisation (FISH) both on porcine and human metaphases. In addition, the human YACs were FISH mapped on pig chromosomes. This allowed us to refine and, in some cases, to correct the previous mapping obtained with a somatic cell hybrid panel. While these data confirm chromosome painting results showing that the distal part of SSC 5p arm is conserved on HSA 22, while the rest of the chromosome corresponds to HSA 12, they also demonstrate gene-order differences between human and pig. In addition, it was also possible to determine the position of the synteny breakpoint.  相似文献   

5.
Cross-species chromosome painting analyses have recently demonstrated the presence of regions of conserved synteny between the human and domestic dog genomes, aiding the search for candidate genes for inherited traits. Concerted efforts to subchromosomally assign substantial numbers of dog gene sequences are now needed in order to refine these comparative data, both in terms of marker density and resolution. We have developed novel PCR markers representing three dog genes (ALB, FOS, HNRPA2B1) for which no sequence or mapping data were previously available, to our knowledge. These, in addition to three gene markers previously described (ALDOA, RPE65, VCAM1), were used to isolate and chromosomally assign corresponding large insert genomic clones by fluorescence in situ hybridization (FISH). Chromosome assignments for these six dog genes are discussed in terms of those of the human orthologues, and correlated with existing comparative mapping information, identifying one apparent exception to existing Zoo-FISH data, and aiding refinement of the boundaries of conserved chromosome segments in both genomes.  相似文献   

6.
PCR protocols incorporating fluorescently labeled multiplexed primer combinations were developed to produce a linkage map for bison. Three hundred fifty eight microsatellite loci spanning all 29 autosomes were genotyped via 83 PCR multiplexes and nine individual amplifications. A total of 292 markers were integrated into an autosomal linkage map for bison. The sex averaged bison map (2,647 cM) was approximately 9% longer than the corresponding USDA MARC map, which covered 2,415 cM. Utilizing weaning, yearling and 17-month weights from two private bison herds, a QTL scan was conducted using the developed linkage map. LOD peaks suggestive of QTL were identified on chromosomes 2, 7, 15, and 24 for weaning weight, chromosomes 4, 14, and 15 for yearling weight and chromosomes 8, 14, and 25 for 17-month weight. Four of the identified chromosomes have conserved synteny with regions harboring growth QTL in cattle.  相似文献   

7.
A large number of significant QTL for economically important traits including average daily gain have been located on SSC1q, which, as shown by chromosome painting, corresponds to four human chromosomes (HSA9, 14, 15 and 18). To provide a comprehensive comparative map for efficient selection of candidate genes, 81 and 34 genes localized on HSA9 and HSA14 respectively were mapped to SSC1q using a porcine 7000-rad radiation hybrid panel (IMpRH). This study, together with the cytogenetic map (http://www2.toulouse.inra.fr/lgc/pig/cyto/genmar/htm/1GM.HTM), demonstrates that SSC1q2.1-q2.13 corresponds to the region ranging from 44.6 to 63.2 Mb on HSA14q21.1-q23.1, the region from 86.5 to 86.8 Mb on HSA15q24-q25, the region from 0.9 to 27.2 Mb on HSA9p24.3-p21, the region from 35.1 to 38.0 Mb on HSA9p13, the region from 70.3 to 79.3 Mb on HSA9q13-q21 and the region from 96.4 to 140.0 Mb on HSA9q22.3-q34. The conserved synteny between HSA9 and SSC1q is interrupted by at least six sites, and the synteny between HSA14 and SSC1q is interrupted by at least one site.  相似文献   

8.
The first quantitative trait locus (QTL) in pigs, FAT1, was found on Chromosome 4 (SSC4) using a Wild Boar intercross. Further mapping has refined the FAT1 QTL to a region with conserved synteny to both human Chromosomes 1 and 8. To both improve the comparative map of the entire SSC4 and to define the specific human chromosome region with conserved synteny to FAT1, we have now mapped 103 loci to pig Chromosome 4 using a combination of radiation hybrid and linkage mapping. The physical data and linkage analysis results are in very good agreement. Comparative analysis revealed that gene order is very well conserved across SSC4 compared to both HSA1 and HSA8. The breakpoint in conserved synteny was refined to an area of about 23 cR on the q arm of SSC4 corresponding to a genetic distance of less than 0.5 cM. Localizations of the centromeres do not seem to have been conserved between the two species. No remnants of the HSA1 centromere were detected on the corresponding region on SSC4 and traces from the centromeric region of SSC4 cannot clearly be revealed on the homologous region on HSA8. This refined SSC4 map and the comparative analysis will be a great aid in the search for the genes underlying the FAT1 locus.  相似文献   

9.
Here we present the results of fluorescent in situ hybridization (FISH) mapping of a set of cattle BAC clones preselected for assignment on cattle chromosome 19 (BTA19). The BAC clones were anchored to human chromosome 17 (HSA17) sequences by BLASTn similarity search of cattle BAC-ends against the human genome sequence (NCBI build 33). Five blocks of homologous synteny were defined in the comparative map of BTA19 and HSA17 built with FISH data and the human genome coordinates. The positions for four evolutionary breakpoints in the bovine and human chromosomes were identified. Comparison of the FISH comparative map with previously published comparative RH, physical, and cytogenetic maps of BTA19 did not reveal major conflicts and allowed for the extension of the boundaries of homology between BTA19 and HSA17. Comparative analysis of HSA17, BTA19, and mouse chromosome 11 (MMU11) demonstrates that most likely mice retain the ancestral organization of the synteny group, and both cattle and human chromosomes underwent several major internal rearrangements after the divergence of Primates, Rodentia, and Cetartiodactyla.  相似文献   

10.
In this study, we present a comprehensive 3,000-rad radiation hybrid (RH) map of bovine chromosome 7 (BTA7) with 108 markers including 54 genes or ESTs. For 52 of them, a human ortholog sequence was found either on HSA1 (one gene), HSA5 (31 genes) or HSA19 (19 genes and one non-annotated sequence) confirming previously described syntenies. Moreover, in order to refine boundaries of blocks of conserved synteny, nine new genes were mapped to the bovine genome on the basis of their localization on the human genome: six on BTA7 and originating from HSA1 (TRIM17), HSA5 (MAN2A1, LMNB1, SIAT8D and FLJ1159) and HSA19 (VAV1), and the three others (AP3B1, APC and CCNG1) on BTA10. The available draft of the human genome sequence allowed us to present a detailed picture of the distribution of conserved synteny segments between man and cattle. Finally, the INRA bovine BAC library was screened for most of the BTA7 markers considered in this study to provide anchors for the bovine physical map.  相似文献   

11.
在猪数量性状位点的定位研究中,标记的使用和图谱的构建是很重要的。本研究从猪的第4、6、7、8和13染色体上选取39个微卫星标记,在来源于约克夏和梅山214头猪组成的资源群中,分析了遗传特征并构建了图谱。研究表明,平均等位基因数、平均观察杂合度(Ho)和平均多态信息含量(PIC)在F1和F2代中分别为:3.2,0.528,0.463和3.2,0.496,0.447。结果表明大多数微卫星标记位点表现为中高度杂合性。在资源群体中,平均有信息减数分裂数是217.4(44-316),而各染色体上两性平均图谱的长度分别是:172.3cM(SSC4),168.7cM(SSC6),191.7cM(SSC7),197.3cM(SSC8),178.3cM(SSC13)。与USDA-MARC的参考图谱相比,标记位点的顺序相同,但长度均较长。雌雄两性图谱相比,第4和第6染色体上雌性图谱长于雄性图谱;而在另外3条染色体上,则雄性图谱长于雌性图谱。结果显示了标记位点在资源猪群的遗传特征和遗传关系,其连锁图谱可用于今后的QTL定位。  相似文献   

12.
To increase the number of Type I markers that are directly informative for comparative mapping, 58 anchorage markers, TOASTs (Traced Orthologous Amplified Sequence Tags), were mapped in pig. With specific consensus primers, 76 TOASTs were tested in pig: 50 were regionally localized in pig on a somatic cell hybrid panel (SCHP), and 51 were mapped on the whole genome, INRA/University of Minnesota porcine Radiation Hybrid panel (IMpRH). Comparison of marker positions on RH and cytogenetic maps indicated general concordance except for two chromosomal regions. For RH mapping, all markers, apart from one, were significantly linked (LOD > 4.8) to a marker of the first-generation radiation hybrid map. Localization of new markers on the initial map is necessary for drawing a framework map as shown for Chromosome Sscr 14. The addition of four TOASTs has enabled us to propose an improved map, using a threshold likelihood ratio of 1000/1. At the whole-genome level, this work significantly increased (by 50%) the number of precisely mapped genes on the porcine RH map and confirmed that the IMpRH panel is a valuable tool for high-resolution gene mapping in pig. Porcine PCR products were sequenced and compared with human sequences to verify their identity. Most of the localizations made it possible to either confirm or refine the previous comparative data between humans and pigs obtained through heterologous chromosomal painting or gene mapping. Moreover, the use of TOASTs in mapping studies appears to be a complement to other strategies using CATS, human ESTs, or heterologous FISH with BACs which had already been applied to improve the gene density of comparative genomic maps for mammals. Received: 15 March 2000 / Accepted: 27 July 2000  相似文献   

13.
Linkage and physical mapping of prolactin to porcine chromosome 7   总被引:2,自引:0,他引:2  
Comparative mapping studies between human and pig have shown that there is conserved synteny between human chromosome 6 and pig chromosomes 1 and 7, but some gene locations are not well established. Prolactin ( PRL ), an anterior pituitary hormone, has been mapped to human chromosome 6, and has tentatively mapped to pig chromosome 7 using Southern-RFLP analysis with a limited number of meioses. To confirm the assignment of prolactin to porcine chromosome 7 by physical and linkage analysis, pig cDNA and human genomic DNA sequences were used to design pig-specific PCR primers. The primers amplified a fragment of ≈2·8 kb. Two polymorphic restriction sites were identified within this fragment with the restriction endonuclease Bst UI. Prolactin was significantly linked to six markers on the published PiGMaP map of pig chromosome 7. Prolactin was physically mapped using a pig × rodent somatic cell hybrid panel. An analysis of these data placed PRL on pig 7p1·1–p1·2 with 100% concordance and was in complete agreement with the linkage data. Both mapping techniques placed PRL in a conserved order with the loci in the syntenic region of human chromosome 6.  相似文献   

14.
15.
Poly(ADP-ribose) polymerase 1 (PARP-1) lies at the basis of a DNA-interacting protein family that maintains genome integrity. Here we describe the genomic organisation of rat PARP-1 gene (Adprt), refine its assignment to rat chromosome (RNO) 13q25-->q26 by FISH and compare its genomic organisation between rat, mouse and human. It appears that in human, mouse and rat Adprt consists of 23 similar-sized exons with well-conserved intron and exon borders. Adprt orthologs map to homologous chromosome regions at the termini of the q-arms of human and mouse chromosomes 1 and rat 13, with gene order being conserved between the rodents. Kimura protein distance comparison with human PARP-1 as reference revealed the bovine protein to be the least conserved with 10.3 substitutions per 100 amino acids, followed by rat (8.6) and mouse (8.4).  相似文献   

16.
The porcine genes encoding interleukin 2, alcohol dehydrogenase (class I) gamma polypeptide, and osteopontin were mapped to chromosome 8 by linkage analysis. Together with previous assignments to this chromosome (the albumin, platelet-derived growth factor receptor A, and fibrinogen genes), an extensive syntenic homology with human chromosome 4 was discovered. Loci from about three-quarters of the q arm of human chromosome 4 are on pig chromosome 8. However, the linear order of the markers is not identical in the two species, and there are several examples of interspecific differences in the recombination fractions between adjacent markers. The conserved synteny between man and the pig gives strong support to a previous suggestion that a synteny group present in the ancestor of mammalian species has been retained on human chromosome 4q. Since loci from this synteny group are found on two cattle chromosomes, the bovine rearrangement must have occurred after the split of Suidae and Bovidae within Artiodactyla.  相似文献   

17.
ZOO-FISH with chromosome-specific DNA libraries (CSLs) from individual flow-sorted human chromosomes was applied on porcine metaphase chromosomes to establish segment homology between the pig and human karyotypes. Forty-seven porcine chromosomal segments corresponding to all human chromosomes except the Y were delineated, resulting in a nearly complete coverage of the porcine karyotype. The syntenic segments detected were further confirmed by the gene mapping information available in the two species. A map demarcating physical boundaries of human homologies on individual pig chromosomes is complemented with a detail survey of the physical and genetic linkage mapping data in the two species. The resultant map, thus, provides a comprehensive and updated comparative status of the human and porcine genomes. Received: 9 September 1995 / Accepted: 4 December 1995  相似文献   

18.
基于元分析的抗玉米丝黑穗病QTL比较定位   总被引:2,自引:0,他引:2  
以玉米遗传连锁图谱IBM2 2005 Neighbors为参考图谱,通过映射整合不同试验中的抗玉米丝黑穗病QTL,构建QTL综合图谱。在国内外种质中,共发现22个抗病QTL,分布在除第7染色体外的9条玉米染色体上。采用元分析技术,获得2个“一致性”抗病QTL,图距分别为8.79 cM和18.92cM。从MaizeGDB网站下载“一致性”QTL区间内基因和标记的原始序列;采用NCBI网站在线软件BLASTx通过同源比对在2个“一致性”QTL区间内初步获得4个抗病位置候选基因。借助比较基因电子定位策略,将69个水稻和玉米抗性基因定位于玉米IBM2图谱上,在2个“一致性”QTL区间内分别发现1个水稻抗性基因,初步推断为抗病位置候选基因。本文结果为抗玉米丝黑穗病QTL精细定位和分子育种提供了基础。  相似文献   

19.
20.
Zoo-FISH and somatic cell hybrid panels have earlier demonstrated extended synteny conservation between human chromosome 3 (HSA3) and pig chromosome 13 (SSC13). In the present study, eight human genes viz., ADCY5, CASR, COL7A1, COL8A1, ITIH1, RHO, SIAT1 and XPC, spread along the length of HSA3, were chosen for expanding the comparative map between the two chromosomes. Using human and rat cDNAs, or human- and porcine-specific PCR products as probes, 8 porcine lambda clones were isolated. After subcloning and partial sequence determination, identity of the clones with regards to the specific genes was established. The eight type 1 markers thus obtained were biotin labeled and FISH mapped to pig metaphase spreads. All lambda clones localized to SSC13. In combination with the hitherto published mapping data of coding sequences on SSC13, a preliminary comparative status depicting the relative organization of this chromosome with respect to HSA3 was developed. The comparative map thus obtained bears significance in searching for candidate genes of economically important traits mapped to SSC13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号