首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Innate immune cells may regulate adaptive immunity by balancing different lineages of T cells and providing negative costimulation. In addition, CD11b(+)Gr-1(+) myeloid-derived suppressor cells have been described in tumor, parasite infection, and severe trauma models. In this study, we observe that splenic CD11b(+) cells markedly increase after experimental autoimmune encephalomyelitis (EAE) immunization, and they suppress T cell proliferation in vitro. Although >80% of CD11b(+) cells express varying levels of Gr-1, only a small population of CD11b(+)Ly-6C(high) inflammatory monocytes (IMC) can efficiently suppress T cell proliferation and induce T cell apoptosis through the production of NO. IFN-gamma produced by activated T cells is essential to induce IMC suppressive function. EAE immunization increases the frequencies of IMC in the bone marrow, spleen, and blood, but not in the lymph nodes. At the peak of EAE, IMC represent approximately 30% of inflammatory cells in the CNS. IMC express F4/80 and CD93 but not CD31, suggesting that they are immature monocytes. Furthermore, IMC have the plasticity to up-regulate NO synthase 2 or arginase 1 expression upon different cytokine treatments. These findings indicate that CD11b(+)Ly-6C(high) IMC induced during EAE priming are powerful suppressors of activated T cells. Further understanding of suppressive monocytes in autoimmune disease models may have important clinical implications for human autoimmune diseases.  相似文献   

2.
Lysosomal acid lipase (LAL) cleaves cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in lysosomes. LAL deficiency causes expansion of CD11b(+)Gr-1(+) immature myeloid cells, loss of T cells, and impairment of T cell function. To test how myeloid cell LAL controls myelopoiesis and lymphopoiesis, a myeloid-specific doxycycline-inducible transgenic system was used to reintroduce human lysosomal acid lipase (hLAL) expression into LAL gene knockout (lal(-/-)) mice. Expression of hLAL in myeloid cells of lal(-/-) mice reversed abnormal myelopoiesis in the bone marrow starting at the granulocyte-monocyte progenitor stage and reduced systemic expansion of myeloid-derived suppressor cells (MDSCs). Myeloid hLAL expression inhibited reactive oxygen species production and arginase expression in CD11b(+)Gr-1(+) cells of lal(-/-) mice. Structural organization of the thymus and spleen was partially restored in association with reduced infiltration of CD11b(+)Gr-1(+) cells in these mice. In the thymus, reconstitution of myeloid cell LAL restored development of thymocytes at the double-negative DN3 stage. Myeloid cell LAL expression improved the proliferation and function of peripheral T cells. In vitro coculture experiments showed that myeloid hLAL expression in lal(-/-) mice reversed CD11b(+)Gr-1(+) myeloid cell suppression of CD4(+) T cell proliferation, T cell signaling activation, and lymphokine secretion. Blocking stat3 and NF-κB p65 signaling by small-molecule inhibitors in MDSCs achieved a similar effect. Injection of anti-Gr-1 Ab into lal(-/-) mice to deplete MDSCs restored T cell proliferation. These studies demonstrate that LAL in myeloid cells plays a critical role in maintaining normal hematopoietic cell development and balancing immunosuppression and inflammation.  相似文献   

3.
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects several million people in Latin America. Myocarditis, observed in the acute and chronic phases of the disease, is characterized by a mononuclear cell inflammatory infiltrate. We previously identified a myeloid cell population in the inflammatory heart infiltrate of infected mice that expressed arginase I. In this study, we purified CD11b(+) myeloid cells from the heart and analyzed their phenotype and function. Those CD11b(+) cells were ~70% Ly6G(-)Ly6C(+) and 25% Ly6G(+)Ly6C(+). Moreover, purified CD11b(+)Ly6G(-) cells, but not Ly6G(+) cells, showed a predominant monocytic phenotype, expressed arginase I and inducible NO synthase, and suppressed anti-CD3/anti-CD28 Ab-induced T cell proliferation in vitro by an NO-dependent mechanism, activity that best defines myeloid-derived suppressor cells (MDSCs). Contrarily, CD11b(+)Ly6G(+) cells, but not CD11b(+)Ly6G(-) cells, expressed S100A8 and S100A9, proteins known to promote recruitment and differentiation of MDSCs. Together, our results suggest that inducible NO synthase/arginase I-expressing CD11b(+)Ly6G(-) myeloid cells in the hearts of T. cruzi-infected mice are MDSCs. Finally, we found plasma l-arginine depletion in the acute phase of infection that was coincident in time with the appearance of MDSCs, suggesting that in vivo arginase I could be contributing to l-arginine depletion and systemic immunosuppression. Notably, l-arginine supplementation decreased heart tissue parasite load, suggesting that sustained arginase expression through the acute infection is detrimental for the host. This is, to our knowledge, the first time that MDSCs have been found in the heart in the context of myocarditis and also in infection by T. cruzi.  相似文献   

4.
Induction of a chronic eczema is a most efficient therapy for alopecia areata (AA). We had noted a reduction in regulatory T cells during AA induction and wondered whether regulatory T cells may become recruited or expanded during repeated skin sensitization or whether additional regulatory cells account for hair regrowth. AA could not be cured by the transfer of CD4(+)CD25(high) lymph node cells from mice repeatedly treated with a contact sensitizer. This obviously is a consequence of a dominance of freshly activated cells as compared with regulatory CD4(+)CD25(+) T cells. Instead, a population of Gr-1(+)CD11b(+) cells was significantly increased in skin and spleen of AA mice repeatedly treated with a contact sensitizer. Gr-1(+)CD11b(+) spleen cells mostly expressed CD31. Expression of several proinflammatory cytokines as well as of the IFN-gamma receptor and the TNF receptor I were increased. Particularly in the skin, Gr-1(+) cells expressed several chemokines and CCR8 at high levels. Gr-1(+)CD11b(+) cells most potently suppressed AA effector cell proliferation in vitro and promoted partial hair regrowth in vivo. When cocultured with CD4(+) or CD8(+) cells from AA mice, the Gr-1(+)CD11b(+) cells secreted high levels of NO. However, possibly due to high level Bcl-2 protein expression in AA T cells, apoptosis induction remained unaltered. Instead, zeta-chain expression was strongly down-regulated, which was accompanied by a decrease in ZAP70 and ERK1/2 phosphorylation. Thus, a chronic eczema supports the expansion and activation of myeloid suppressor cells that, via zeta-chain down-regulation, contribute to autoreactive T cell silencing in vitro and in vivo.  相似文献   

5.
The mechanism of tumor-associated T cell dysfunction remains an unresolved problem of tumor immunology. Development of T cell defects in tumor-bearing hosts are often associated with increased production of immature myeloid cells. In tumor-bearing mice, these immature myeloid cells are represented by a population of Gr-1(+) cells. In this study we investigated an effect of these cells on T cell function. Gr-1(+) cells were isolated from MethA sarcoma or C3 tumor-bearing mice using cell sorting. These Gr-1(+) cells expressed myeloid cell marker CD11b and MHC class I molecules, but they lacked expression of MHC class II molecules. Tumor-induced Gr-1(+) cells did not affect T cell responses to Con A and to a peptide presented by MHC class II. In sharp contrast, Gr-1(+) cells completely blocked T cell response to a peptide presented by MHC class I in vitro and in vivo. Block of the specific MHC class I molecules on the surface of Gr-1(+) cells completely abrogated the observed effects of these cells. Thus, immature myeloid cells specifically inhibited CD8-mediated Ag-specific T cell response, but not CD4-mediated T cell response. Differentiation of Gr-1(+) cells in the presence of growth factors and all-trans retinoic acid completely eliminated inhibitory potential of these cells. This may suggest a new approach to cancer treatment.  相似文献   

6.
A vast majority of thymocytes are eliminated during T cell development by apoptosis. However, apoptotic thymocytes are not usually found in the thymus, indicating that apoptotic thymocytes must be eliminated rapidly by scavengers. Although macrophages and dendritic cells are believed to play such role, little is known about scavengers in the thymus. We found that CD4(+)/CD11b(+)/CD11c(-) cells were present in the thymus and that they expressed costimulatory molecules for T cell selection and possessed Ag-presenting activity. Moreover, these CD4(+)/CD11b(+) cells phagocytosed apoptotic thymocytes much more efficiently than thymic CD4(-)/CD11b(+) cells as well as activated peritoneal macrophages. CD4(+)/CD11b(+) cells became larger along with thymus development, while no such change was observed in CD4(-)/CD11b(+) cells. Finally, engulfed nuclei were frequently found in CD4(+)/CD11b(+) cells. These results strongly suggest that thymic CD4(+)/CD11b(+) cells are major scavengers of apoptotic thymocytes.  相似文献   

7.
During investigating the expression of Gr-1 antigen on various subsets of mouse spleen cells, we found that Gr-1 was expressed on memory-type CD8(+)CD44(high)CD62L(high) T cells in addition to granulocytes. Intraperitoneal administration of anti-Gr-1 mAb caused almost complete elimination of Ly-6C(+) memory-type CD8(+) T cells as well as Ly-6G(+) granulocytes. Anti-Gr-1 mAb-treated mouse spleen cells exhibited greatly reduced IFN-gamma production in response to anti-CD3 mAb both in vitro and in vivo. This reduced cytokine production appeared to be derived from elimination of IFN-gamma-producing Gr-1(+)CD8(+) T cells. Indeed, CD8(+) T cells with IFN-gamma-producing activity and cytotoxicity were generated from isolated Gr-1(+)CD8(+) cells but not from Gr-1(-)CD8(+) T cells. We also demonstrated that therapeutic effect of MBL-2 tumor-immunized spleen cells was greatly reduced by anti-Gr-1 mAb-treatment. Thus, we initially demonstrated that anti-Gr-1 mAb might become a good tool to investigate a precise role for memory-type CD8(+) T cells in vivo.  相似文献   

8.
Promoting complement (C) activation may enhance immunological mechanisms of anti-tumor Abs for tumor destruction. However, C activation components, such as C5a, trigger inflammation, which can promote tumor growth. We addressed the role of C5a on tumor growth by transfecting both human carcinoma and murine lymphoma with mouse C5a. In vitro growth kinetics of C5a, control vector, or parental cells revealed no significant differences. Tumor-bearing mice with C5a-transfected xenografted tumor cells had significantly less tumor burden as compared with control vector tumors. NK cells and macrophages infiltrated C5a-expressing tumors with significantly greater frequency, whereas vascular endothelial growth factor, arginase, and TNF-α production were significantly less. Tumor-bearing mice with high C5a-producing syngeneic lymphoma cells had significantly accelerated tumor progression with more Gr-1(+)CD11b(+) myeloid cells in the spleen and overall decreased CD4(+) and CD8(+) T cells in the tumor, tumor-draining lymph nodes, and the spleen. In contrast, tumor-bearing mice with low C5a-producing lymphoma cells had a significantly reduced tumor burden with increased IFN-γ-producing CD4(+) and CD8(+) T cells in the spleen and tumor-draining lymph nodes. These studies suggest concentration of local C5a within the tumor microenvironment is critical in determining its role in tumor progression.  相似文献   

9.
We described a generalized suppression of CTL anamnestic responses that occurred in mice bearing large tumor nodules or immunized with powerful recombinant viral immunogens. Immune suppression entirely depended on GM-CSF-driven accumulation of CD11b(+)/Gr-1(+) myeloid suppressor cells (MSC) in secondary lymphoid organs. To further investigate the nature and properties of MSC, we immortalized CD11b(+)/Gr-1(+) cells isolated from the spleens of immunosuppressed mice, using a retrovirus encoding the v-myc and v-raf oncogenes. Immortalized cells expressed monocyte/macrophage markers (CD11b, F4/80, CD86, CD11c), but they differed from previously characterized macrophage lines in their capacities to inhibit T lymphocyte activation. Two MSC lines, MSC-1 and MSC-2, were selected based upon their abilities to inhibit Ag-specific proliferative and functional CTL responses. MSC-1 line was constitutively inhibitory, while suppressive functions of MSC-2 line were stimulated by exposure to the cytokine IL-4. Both MSC lines triggered the apoptotic cascade in Ag-activated T lymphocytes by a mechanism requiring cell-cell contact. Some well-known membrane molecules involved in the activation of apoptotic pathways (e.g., TNF-related apoptosis-inducing ligand, Fas ligand, TNF-alpha) were ruled out as candidate effectors for the suppression mechanism. The immortalized myeloid lines represent a novel, useful tool to shed light on the molecules involved in the differentiation of myeloid-related suppressors as well as in the inhibitory pathway they use to control T lymphocyte activation.  相似文献   

10.
Extracellular adenosine and purine nucleotides are elevated in many pathological situations associated with the expansion of CD11b(+)Gr1(+) myeloid-derived suppressor cells (MDSCs). Therefore, we tested whether adenosinergic pathways play a role in MDSC expansion and functions. We found that A(2B) adenosine receptors on hematopoietic cells play an important role in accumulation of intratumoral CD11b(+)Gr1(high) cells in a mouse Lewis lung carcinoma model in vivo and demonstrated that these receptors promote preferential expansion of the granulocytic CD11b(+)Gr1(high) subset of MDSCs in vitro. Flow cytometry analysis of MDSCs generated from mouse hematopoietic progenitor cells revealed that the CD11b(+)Gr-1(high) subset had the highest levels of CD73 (ecto-5'-nucleotidase) expression (Δmean fluorescence intensity [MFI] of 118.5 ± 16.8), followed by CD11b(+)Gr-1(int) (ΔMFI of 57.9 ± 6.8) and CD11b(+)Gr-1(-/low) (ΔMFI of 12.4 ± 1.0) subsets. Even lower levels of CD73 expression were found on Lewis lung carcinoma tumor cells (ΔMFI of 3.2 ± 0.2). The high levels of CD73 expression in granulocytic CD11b(+)Gr-1(high) cells correlated with high levels of ecto-5'-nucleotidase enzymatic activity. We further demonstrated that the ability of granulocytic MDSCs to suppress CD3/CD28-induced T cell proliferation was significantly facilitated in the presence of the ecto-5'-nucleotidase substrate 5'-AMP. We propose that generation of adenosine by CD73 expressed at high levels on granulocytic MDSCs may promote their expansion and facilitate their immunosuppressive activity.  相似文献   

11.
IL-33 administration is associated with facilitation of Th2 responses and cardioprotective properties in rodent models. However, in heart transplantation, the mechanism by which IL-33, signaling through ST2L (the membrane-bound form of ST2), promotes transplant survival is unclear. We report that IL-33 administration, while facilitating Th2 responses, also increases immunoregulatory myeloid cells and CD4(+) Foxp3(+) regulatory T cells (Tregs) in mice. IL-33 expands functional myeloid-derived suppressor cells, CD11b(+) cells that exhibit intermediate (int) levels of Gr-1 and potent T cell suppressive function. Furthermore, IL-33 administration causes an St2-dependent expansion of suppressive CD4(+) Foxp3(+) Tregs, including an ST2L(+) population. IL-33 monotherapy after fully allogeneic mouse heart transplantation resulted in significant graft prolongation associated with increased Th2-type responses and decreased systemic CD8(+) IFN-γ(+) cells. Also, despite reducing overall CD3(+) cell infiltration of the graft, IL-33 administration markedly increased intragraft Foxp3(+) cells. Whereas control graft recipients displayed increases in systemic CD11b(+) Gr-1(hi) cells, IL-33-treated recipients exhibited increased CD11b(+) Gr-1(int) cells. Enhanced ST2 expression was observed in the myocardium and endothelium of rejecting allografts, however the therapeutic effect of IL-33 required recipient St2 expression and was dependent on Tregs. These findings reveal a new immunoregulatory property of IL-33. Specifically, in addition to supporting Th2 responses, IL-33 facilitates regulatory cells, particularly functional CD4(+) Foxp3(+) Tregs that underlie IL-33-mediated cardiac allograft survival.  相似文献   

12.
C5aR is a G protein-coupled receptor for the anaphylatoxin C5a and mediates many proinflammatory reactions. C5aR signaling also has been shown to regulate T cell immunity, but its sites and mechanism of action in this process remain uncertain. In this study, we created a GFP knockin mouse and used GFP as a surrogate marker to examine C5aR expression. GFP was knocked into the 3'-untranslated region of C5ar1 by gene targeting. We show that GFP is expressed highly on Gr-1(+)CD11b(+) cells in the blood, spleen, and bone marrow and moderately on CD11b(+)F4/80(+) circulating leukocytes and elicited peritoneal macrophages. No GFP is detected on resting or activated T lymphocytes or on splenic myeloid or plasmacytoid dendritic cells. In contrast, 5-25% cultured bone marrow-derived dendritic cells expressed GFP. Interestingly, GFP knockin prevented cell surface but not intracellular C5aR expression. We conclude that C5aR is unlikely to play an intrinsic role on murine T cells and primary dendritic cells. Instead, its effect on T cell immunity in vivo may involve CD11b(+)F4/80(+) or other C5aR-expressing leukocytes. Further, our data reveal a surprising role for the 3'-untranslated region of C5aR mRNA in regulating C5aR protein targeting to the plasma membrane.  相似文献   

13.
CD11b(+)Gr-1(+) myeloid suppressor cells (MSC) accumulate in lymphoid organs under conditions of intense immune stress where they inhibit T and B cell function. We recently described the generation of immortalized MSC lines that provide a homogeneous source of suppressor cells for dissecting the mechanism of suppression. In this study we show that the MSC lines potently block in vitro proliferation of T cells stimulated with either mitogen or antigenic peptide, with as few as 3% of MSC cells causing complete suppression. Inhibition of mitogenic and peptide-specific responses is not associated with a loss in IL-2 production or inability to up-modulate the early activation markers, CD69 and CD25, but results in direct impairment of the three IL-2R signaling pathways, as demonstrated by the lack of Janus kinase 3, STAT5, extracellular signal-regulated kinase, and Akt phosphorylation in response to IL-2. Suppression is mediated by and requires NO, which is secreted by MSC in response to signals from activated T cells, including IFN-gamma and a contact-dependent stimulus. Experiments with inducible NO synthase knockout mice demonstrated that the inhibition of T cell proliferation by CD11b(+)Gr-1(+) cells in the spleens of immunosuppressed mice is also dependent upon NO, indicating that the MSC lines accurately represent their normal counterparts. The distinctive capacity of MSC to generate suppressive signals when encountering activated T cells defines a specialized subset of myeloid cells that most likely serve a regulatory function during times of heightened immune activity.  相似文献   

14.
Bone marrow-derived immunomodulatory cytokines impart a critical function in the regulation of innate immune responses and hemopoiesis. However, the source of immunomodulatory cytokines in murine bone marrow and the cellular immune mechanisms that control local cytokine secretion remain poorly defined. Herein, we identified a population of resident murine bone marrow myeloid DEC205(+)CD11c(-)B220(-)Gr1(+)CD8alpha(-)CD11b(+) cells that respond to TLR2, TLR4, TLR7, TLR8, and TLR9 agonists as measured by the secretion of proinflammatory and anti-inflammatory cytokines in vitro. Phenotypic and functional analyses revealed that DEC205(+)CD11b(+)Gr-1(+) bone marrow cells consist of heterogeneous populations of myeloid cells that can be divided into two main cell subsets based on chemokine and TLR gene expression profile. The DEC205(+)CD11b(+)Gr-1(low) cell subset expresses high levels of TLR7 and TLR9 and was the predominant source of IL-6, TNF-alpha, and IL-12 p70 production following stimulation with the TLR7 and TLR9 agonists CpG and R848, respectively. In contrast, the DEC205(+)CD11b(+)Gr-1(high) cell subset did not respond to CpG and R848 stimulation, which correlated with their lack of TLR7 and TLR9 expression. Similarly, a differential chemokine receptor expression profile was observed with higher expression of CCR1 and CXCR2 found in the DEC205(+)CD11(+)Gr-1(high) cell subset. Thus, we identified a previously uncharacterized population of resident bone marrow cells that may be implicated in the regulation of local immune responses in the bone marrow.  相似文献   

15.
Human monocyte subsets, isolated from cultures of mononuclear cells, or freshly obtained from patients with multiple sclerosis, Graves' disease or pemphigus vulgaris, differed in phenotype, apoptotic features, mRNA levels of arginase II (A-II) and the inducible form of nitric oxide synthase (iNOS). Liver-type arginase I mRNA was present in all subsets. Apoptosis was followed by the expression of T cell intracellular antigen (TIA) and the simultaneous detection of DNA stainability by propidium iodine and annexin V binding. Apoptosis was practically absent both in activated CD14(++)CD33(++)DR(++)CD25(++)CD69(++)CD71(++/+) CD16(-) cells, expressing A-II mRNA and having arginase activity, but not iNOS mRNA, and in not fully mature large CD14(++)CD16(+)CD23(+)DR(++) monocytes, expressing simultaneously both mRNAs and having both enzyme activities. However, differentiated small CD14(+/++)CD16(+)CD69(+)CD25(+/-)CD71(++)CD23(+) DR(++) monocytes, expressing high levels of iNOS mRNA, exhibited apoptotic signs. Amounts of NO synthesised by monocytes co-expressing iNOS and arginase changed with the addition of arginine or an iNOS inhibitor; in that case a correlation of NO production and apoptotic features was observed. Data suggest a regulatory role for endogenous NO in apoptosis of stimulated and differentiated monocytes, and also that iNOS and A-II, when simultaneously present, could control the production of NO as a consequence of their competition for arginine.  相似文献   

16.
Tumor growth is often accompanied by the accumulation of myeloid cells in the tumors and lymphoid organs. These cells can suppress T cell immunity, thereby posing an obstacle to T cell-targeted cancer immunotherapy. In this study, we tested the possibility of activating tumor-associated myeloid cells to mediate antitumor effects. Using the peritoneal model of B16 melanoma, we show that peritoneal cells (PEC) in tumor-bearing mice (TBM) had reduced ability to secrete nitric oxide (NO) following in vitro stimulation with interferon gamma and lipopolysaccharide, as compared to PEC from control mice. This reduced function of PEC was accompanied by the influx of CD11b(+) Gr-1(+) myeloid cells to the peritoneal cavity. Nonadherent PEC were responsible for most of the NO production in TBM, whereas in na?ve mice NO was mainly secreted by adherent CD11b(+) F4/80(+) macrophages. Sorted CD11b(+) Gr-1(-) monocytic and CD11b(+) Gr-1(+) granulocytic PEC from TBM had a reduced ability to secrete NO following in vitro stimulation (compared to na?ve PEC), but effectively suppressed proliferation of tumor cells in vitro. In vivo, treatment of mice bearing established peritoneal B16 tumors with anti-CD40 and CpG resulted in activation of tumor-associated PEC, reduction in local tumor burden and prolongation of mouse survival. Inhibition of NO did not abrogate the antitumor effects of stimulated myeloid cells. Taken together, the results indicate that in tumor-bearing hosts, tumor-associated myeloid cells can be activated to mediate antitumor effects.  相似文献   

17.
Understanding the role of CD11b(+)GR-1(+) myeloid suppressor cells in the immune suppression and immunoregulation associated with a variety of diseases may provide therapeutic opportunities. In this article, we show, in a model of helminth infection, that CD11b(+)GR-1(+) myeloid suppressor cells but not CD11b(+)F4/80(high) mature macrophages expanded in the peritoneal cavity of BALB/c mice implanted with Taenia crassiceps. Peritoneal cell populations from early stage-infected animals impaired T cell proliferation by secreting NO. Yet, they lost their ability to secrete NO in the late stage of infection. Concomitantly, their capacity to exert arginase activity and to express mRNAs coding for FIZZ1 (found in inflammatory zone 1), Ym, and macrophage galactose-type C-type lectin increased. Furthermore, cells from early stage-infected mice triggered T cells to secrete IFN-gamma and IL-4, whereas in the late stage of infection, they only induced IL-4 production. These data suggest that CD11b(+)GR-1(+) myeloid suppressor cells displaying an alternative activation phenotype emerged gradually as T. crassiceps infection progressed. Corroborating the alternative activation status in the late stage of infection, the suppressive activity relied on arginase activity, which facilitated the production of reactive oxygen species including H(2)O(2) and superoxide. We also document that the suppressive activity of alternative myeloid suppressor cells depended on 12/15-lipoxygenase activation generating lipid mediators, which triggered peroxisome proliferator-activated receptor-gamma. IL-4 and IL-13 signaling contributed to the expansion of myeloid suppressor cells in the peritoneal cavity of T. crassiceps-infected animals and to their antiproliferative activity by allowing arginase and 12/15-lipoxygenase gene expression.  相似文献   

18.
Suppression of tumor-specific T cell sensitization is a predominant mechanism of tumor escape. To identify tumor-induced suppressor cells, we transferred spleen cells from mice bearing progressive MCA205 sarcoma into sublethally irradiated mice. These mice were then inoculated subdermally with tumor cells to stimulate T cell response in the tumor-draining lymph-node (TDLN). Tumor progression induced splenomegaly with a dramatic increase (22.1%) in CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSC) compared with 2.6% of that in normal mice. Analyses of therapeutic effects by the adoptive immunotherapy revealed that the transfer of spleen cells from tumor-bearing mice severely inhibited the generation of tumor-immune T cells in the TDLN. We further identified MDSC to be the dominant suppressor cells. However, cells of identical phenotype from normal spleens lacked the suppressive effects. The suppression was independent of CD4(+)CD25(+) regulatory T cells. Intracellular IFN-gamma staining revealed that the transfer of MDSC resulted in a decrease in numbers of tumor-specific CD4(+) and CD8(+) T cells. Transfer of MDSC from MCA207 tumor-bearing mice also suppressed the MCA205 immune response indicating a lack of immunologic specificity. Further analyses demonstrated that MDSC inhibited T cell activation that was triggered either by anti-CD3 mAb or by tumor cells. However, MDSC did not suppress the function of immune T cells in vivo at the effector phase. Our data provide the first evidence that the systemic transfer of MDSC inhibited and interfered with the sensitization of tumor-specific T cell responses in the TDLN.  相似文献   

19.
CFA is a strong adjuvant capable of stimulating cellular immune responses. Paradoxically, adjuvant immunotherapy by prior exposure to CFA or live mycobacteria suppresses the severity of experimental autoimmune encephalomyelitis (EAE) and spontaneous diabetes in rodents. In this study, we investigated immune responses during adjuvant immunotherapy of EAE. Induction of EAE in CFA-pretreated mice resulted in a rapid influx into the draining lymph nodes (dLNs) of large numbers of CD11b(+)Gr-1(+) myeloid cells, consisting of immature cells with ring-shaped nuclei, macrophages, and neutrophils. Concurrently, a population of mycobacteria-specific IFN-γ-producing T cells appeared in the dLNs. Immature myeloid cells in dLNs expressed the chemokines CXCL10 and CXCL16 in an IFN-γ-dependent manner. Subsequently, CD4(+) T cells coexpressing the cognate chemokine receptors CXCR3 and CXCR6 and myelin oligodendrocyte glycoprotein (MOG)-specific CD4(+) T cells accumulated within the chemokine-expressing dLNs, rather than within the CNS. Migration of CD4(+) T cells toward dLN cells was abolished by depleting the CD11b(+) cells and was also mediated by the CD11b(+) cells alone. In addition to altering the distribution of MOG-specific T cells, adjuvant treatment suppressed development of MOG-specific IL-17. Thus, adjuvant immunotherapy of EAE requires IFN-γ, which suppresses development of the Th17 response, and diverts autoreactive T cells away from the CNS toward immature myeloid cells expressing CXCL10 and CXCL16 in the lymph nodes.  相似文献   

20.
Analysis of splenic Gr-1int immature myeloid cells in tumor-bearing mice.   总被引:1,自引:0,他引:1  
It is known that the number of ImC, expressing myeloid markers, CD11b and Gr-1, increase with tumor growth and ImC play a role in the escape of tumor cells from immunosurveillance in tumor-bearing mice and cancer patients. However, the mechanisms by which ImC suppress immune responses in tumor-bearing mice have not been completely elucidated. In the present study, we investigated the function of splenic ImC freshly isolated from tumor-bearing mice and splenic ImC differentiated in vitro by GM-CSF. Freshly isolated splenic ImC were divided into two groups depending on Gr-1 expression, Gr-1 high (Gr-1hi) and intermediate (Gr-1int). Freshly isolated splenic Gr-1int ImC, but not Gr-1hi ImC, from tumor-bearing mice reduced production of IFN-gamma in CD8+ T cells, but neither splenic Gr-1int ImC nor Gr-1hi ImC isolated from naive mice did. Both Gr-1int and Gr-1hi ImC differentiated in vitro by GM-CSF inhibited production of IFN-gamma in both CD8+ and CD4+ T cells. In addition, the differentiated Gr-1int ImC, one-third of which were CD11c+F4/80+ cells, and their culture supernatants suppressed proliferative responses of T cells stimulated by CD3 ligation, but the differentiated Gr-1hi ImC and their culture supernatants did not. These results suggest that Gr-1int ImC are altered to immune-suppressive cells in tumor circumstances and that they are differentiated by GM-CSF progressively into CD11c+F4/80+ cells with further suppressive activity against T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号