首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
富含鸟嘌呤序列的RNA结合因子1 (GRSF1)是RNA结合蛋白,属于异质核核糖核酸蛋白(hn RNP)F/H家族,该蛋白家族成员均含有两个以上类RNA识别基序(q RRMs)和至少一个辅助结构域。q RRM(类RNA识别基序)与RRM(RNA识别基序)相似但作用方式不同。在发育、衰老、肿瘤等领域,GRSF1发挥着重要作用。随着生物信息学和测序技术的发展,GRSF1的功能和作用机制被逐渐揭示,但并未得到充分解析。该文对GRSF1结构特点、表达调控和作用机制进行了概述,并总结了其在发育、细胞衰老、肿瘤发生等领域的研究进展,为深入探究GRSF1的作用机制及挖掘其生物功能奠定基础。  相似文献   

2.
一个由HSVⅠ诱导的类SR蛋白新基因的克隆   总被引:2,自引:0,他引:2  
 根据mRNA差异显示分析 ,由单纯疱疹病毒 (HSV)Ⅰ型结合人成纤维细胞膜受体后 2h诱导产生的早期基因cDNA库中 ,分离到一个编码具有SR蛋白结构特征的新基因 ,该基因长 90 4bp .编码产生的蛋白含 12 1个氨基酸残基 ,分子量 14 9kD ,具有RS重复区和PPLP结构域 ,但不具备SR蛋白家族所特有的RNA识别区域 (RRM) .主要分布于细胞质内 ,仅在细胞膜相应受体与HSVⅠ结合后特异产生  相似文献   

3.
真核生物中锌指蛋白的结构与功能   总被引:3,自引:0,他引:3  
真核生物中的许多蛋白质分子包含锌指结构区,这类蛋白称为锌指蛋白.锌指蛋白因其包含特殊的指状结构,在对DNA、蛋白质和RNA的识别和结合中起重要作用.许多锌指蛋白的锌指结构域包含能与DNA特异结合的区域,并与某些效应结构域(如KRAB、SCAN、BTB/POZ、SNAG、SANT和PLAG等)相连,这类锌指蛋白常作为转录因子起作用,可调控靶基因的转录.一些锌指蛋白包含蛋白质识别结构域(如LIM锌指、MYND锌指、PHD锌指和RING锌指等),它们能够特异地介导蛋白质之间的相互作用,因此被称作蛋白适配器.此外,某些锌指蛋白还可以结合RNA,起转录后调控作用.本文就锌指蛋白与DNA、RNA以及蛋白质分子间的相互作用作一综述.  相似文献   

4.
神经退行性疾病是一类导致神经元细胞退化、功能丧失的疾病。随着RNA结合蛋白TDP-43和FUS被发现与神经退行性疾病渐冻人症(amyotrophic lateral sclerosis,ALS)密切相关,人们越来越多地关注RNA结合蛋白与神经退行性疾病的关系。大多数RNA结合蛋白都存在一个类似于prion的结构域,这个结构域使其容易发生积聚,并与神经毒性的产生相关。RNA结合蛋白参与应激颗粒的形成,应激颗粒的形成可能与神经退行性疾病相关,这进一步揭示了RNA结合蛋白在这类疾病中可能发挥作用。  相似文献   

5.
Dicer结构和功能研究进展   总被引:3,自引:0,他引:3  
彭杰军  燕飞  陈海如  陈剑平 《遗传》2008,30(12):1550-1556
摘要: Dicer蛋白是RNA干扰机制的关键组分, 负责siRNA和miRNA的产生。它主要由RNA解旋酶结构域、PAZ结构域、RNaseⅢ结构域和双链RNA结合结构域构成。Dicer的结构特点决定了它所产生的小RNA的结构特点。不同生物体具有不同数量的Dicer, 各Dicer既有功能上各自独立的特点, 同时又有功能的冗余和交叉, 而在进化过程中, Dicer的数量逐渐减少, 功能却逐步整合从而表现出多功能的特点。对Dicer结构和功能进行深入研究, 有助于了解Dicer乃至整个RNAi及相关途径的作用机制, 也有助于揭示它们在进化过程中所表现出的规律和特点。文章对上述Dicer结构及功能特点作简要综述。  相似文献   

6.
BmSQD(Bombyx mori SQUID)是一种具有RRM结构域(RNA recognition motif, RRM)的核内不均一核糖核蛋白(heterogeneous nuclear ribonucleoproteins, hnRNPs)。为探究SQD在家蚕中的表达定位和功能,在生物信息学分析和克隆表达与抗体制备的基础上,本文通过对变态发育和胚胎发育时期部分组织的BmSQD蛋白水平和mRNA水平表达量进行分析,辅以组织细胞定位的免疫组化分析,对SQD蛋白的基本特性和在家蚕Bombyx mori中的表达定位及功能进行了研究。生物信息学分析显示,昆虫中的SQD同源基因相似性高,尤其是SQD蛋白二级结构的α螺旋和β折叠按照β1-α1-β2-β3-α2-β4的空间顺序组合形成的两个RRM结构域在昆虫中高度保守;BmSQD是一种亲水性且具有特定空间结构的hnRNPs蛋白,存在潜在的磷酸化位点;BmSQD在家蚕中的大部分组织中都有表达,尤其在卵巢与精巢等重要组织,且主要在家蚕发育的重要时期如胚胎发育与变态发育时期高表达,主要定位在细胞核内,对基因转录后调节起到剪接调控作用。本文为研究SQ...  相似文献   

7.
锌指蛋白结构及功能研究进展   总被引:7,自引:0,他引:7  
锌指蛋白是一类具有手指状结构域的转录因子,对基因调控起重要的作用。根据其保守结构域的不同,可将锌指蛋白主要分为C2H2型、C4型和C6型。锌指通过与靶分子DNA、RNA、DNA-RNA的序列特异性结合,以及与自身或其他锌指蛋白的结合,在转录和翻译水平上调控基因的表达。我们简要综述了近年来锌指蛋白结构、分类及其与核酸及蛋白质相互作用等方面的研究进展。  相似文献   

8.
双组分系统(TCS)是细菌感应并响应外界复杂环境最为重要的信号传导系统,一般由组氨酸激酶(HK)与应答调控蛋白(RR)构成,激酶与调控蛋白之间通过磷酸化进行信号传递.作为信号传导通路的终端,RR通常由N端高度保守的信号响应结构域(REC)和C端可变的效应结构域组成.RR的效应模块通常为DNA结合结构域.在典型的TCS信号通路中,RR磷酸化后DNA结合能力会显著增强,并形成同源二聚体参与下游靶基因的转录调控.随着研究的深入,发现RR的调控模式其实更为复杂、多样,主要表现在以下3个方面:(ⅰ)含DNA结合结构域的RR存在非典型的调控机制,如磷酸化会使RR的DNA结合能力明显降低或丧失,以及不同RR之间可形成异源二聚体;(ⅱ)RR的效应模块除了是DNA结合结构域,还可能是RNA或蛋白质结合结构域,甚至是酶催化结构域;(ⅲ)有些RR仅含REC结构域.本文对RR介导的不同调控模式进行了系统介绍,以展现TCS在感应外界信号后响应策略的多样性及灵活性.  相似文献   

9.
Tra2β蛋白是与选择性剪接调控有关的核RNA结合蛋白。Tra2β蛋白在不同脊椎动物种属间具有高度保守性,由两端富含精氨酸和丝氨酸的结构域以及中间的RNA结合结构域组成。Tra2β蛋白是小鼠胚胎和中枢神经系统发育中必需的分子,它的表达与人类癌症发生和神经退行性疾病也存在相关性。本文就Tra2β蛋白在哺乳动物中调控选择性剪接的特点及其在神经系统中的功能研究进展作一综述,为更好地了解Tra2β蛋白的功能积累基础理论资料。  相似文献   

10.
一些具有锌指结构域的蛋白质可以识别特定的靶RNA分子并与之结合,在细胞中参与或介导重要的生物学作用,这一发现拓展了人们对锌指蛋白专职转录调控并且高度依赖于特异结合靶DNA序列的认知。ZNF638/NP220及其同源蛋白Matrin3和RBM20是一类在生物进化中相当保守的特殊锌指蛋白,定位于细胞核基质的核斑中,含有特殊的蛋白结构域,可以特定靶向RNA分子,在细胞的转录调控和RNA加工的不同阶段发挥作用,特别是RNA转录和剪接事件的偶联以及改变RNA分子的成熟和稳定性等方面。本文将对近年来有关ZNF638同源蛋白成员的发现、结构、分子机制及其在细胞分化、胚胎发育、病毒的感染等生命过程中调控作用的研究进展进行总结讨论。  相似文献   

11.
Human neuronal Elav-like proteins contain three RNP-type RNA recognition motifs (RRMs). Previous reports demonstrated that a single RRM of the proteins is not sufficient to bind to the uridine-rich stretch in the 3' untranslated region of mRNAs and that the bi-RRM peptide consisting of the first two RRMs is necessary for the binding. The present study was designed to examine the potential contributions of the first two RRMs when binding to a cytokine mRNA. Deletions of the internal or terminal amino acid residues of the first RRM (RRM1) of the HuC/ple21 ELAV-like protein completely abolished RNA binding. However, removal of any region of the second RRM (RRM2) except for the eight amino acid residues, which correspond to the potent fourth beta-sheet structure of RRM2, did not affect RNA binding. Conjugation of the eight amino acid residues to RRM1 enhanced the RNA binding as well as the entire RRM2, indicating that the octapeptide of RRM2 can be compensated for by the binding function of RRM2. The present study also showed that the substitutions of glutamic acid at 42 for aspartic acid and leucine at 44 for phenylalanine in the first potent alpha-helix structure of RRM1, as were seen in another ELAV-like protein Hel-N1, markedly affected the RNA binding.  相似文献   

12.
T-cell intracellular antigen-1 (TIA-1) is a DNA/RNA-binding protein that regulates critical events in cell physiology by the regulation of pre-mRNA splicing and mRNA translation. TIA-1 is composed of three RNA recognition motifs (RRMs) and a glutamine-rich domain and binds to uridine-rich RNA sequences through its C-terminal RRM2 and RRM3 domains. Here, we show that RNA binding mediated by either isolated RRM3 or the RRM23 construct is controlled by slight environmental pH changes due to the protonation/deprotonation of TIA-1 RRM3 histidine residues. The auxiliary role of the C-terminal RRM3 domain in TIA-1 RNA recognition is poorly understood, and this work provides insight into its binding mechanisms.  相似文献   

13.
The human La autoantigen (hLa) protein is a predominantly nuclear phosphoprotein that contains three potential RNA binding domains referred to as the La motif and the RNA recognition motifs RRMs 1 and 2. With this report, we differentiated the contribution of its three RNA binding domains to RNA binding by combining in vitro and in vivo assays. Also, surface plasmon resonance technology was used to generate a model for the sequential contribution of the RNA binding domains to RNA binding. The results indicated that the La motif may contribute to specificity rather than affinity, whereas RRM1 is indispensable for association with pre-tRNA and hY1 RNA. Furthermore, RRM2 was not crucial for the interaction with various RNAs in vivo, although needed for full-affinity binding in vitro. Moreover, earlier studies suggest that RNA binding by hLa may direct its subcellular localization. As shown previously for RRM1, deletion of RNP2 sequence in RRM1 alters nucleolar distribution of hLa, not observed after deletion of the La motif. Here we discuss a model for precursor RNA binding based on a sequential association process mediated by RRM1 and the La motif.  相似文献   

14.
HuC is one of the RNA binding proteins which are suggested to play important roles in neuronal differentiation and maintenance. We cloned and sequenced cDNAs encoding a mouse protein which is homologous to human HuC (hHuC). The longest cDNA encodes a 367 amino acid protein with three RNA recognition motifs (RRMs) and displays 96% identity to hHuC. Northern blot analysis showed that two different mRNAs, of 5.3 and 4.3 kb, for mouse HuC (mHuC) are expressed specifically in brain tissue. Comparison of cDNA sequences with the corresponding genomic sequence revealed that alternative 3' splice site selection generates two closely related mHuC isoforms. Iterative in vitro RNA selection and binding analyses showed that both HuC isoforms can bind with almost identical specificity to sequences similar to the AU-rich element (ARE), which is involved in the regulation of mRNA stability. Functional domain mapping using mHuC deletion mutants showed that the first RRM binds to ARE, that the second RRM has no RNA binding activity by itself, but facilitates ARE binding by the first RRM and that the third RRM has specific binding activity for the poly(A) sequence.  相似文献   

15.
Polypyrimidine tract binding protein (PTB), an RNA binding protein containing four RNA recognition motifs (RRMs), is involved in both pre-mRNA splicing and translation initiation directed by picornaviral internal ribosome entry sites. Sequence comparisons previously indicated that PTB is a non-canonical RRM protein. The solution structure of a PTB fragment containing RRMs 3 and 4 shows that the protein consists of two domains connected by a long, flexible linker. The two domains tumble independently in solution, having no fixed relative orientation. In addition to the betaalphabetabetaalphabeta topology, which is characteristic of RRM domains, the C-terminal extension of PTB RRM-3 incorporates an unanticipated fifth beta-strand, which extends the RNA binding surface. The long, disordered polypeptide connecting beta4 and beta5 in RRM-3 is poised above the RNA binding surface and is likely to contribute to RNA recognition. Mutational analyses show that both RRM-3 and RRM-4 contribute to RNA binding specificity and that, despite its unusual sequence, PTB binds RNA in a manner akin to that of other RRM proteins.  相似文献   

16.
The polypyrimidine tract binding protein (PTB) is an important regulator of alternative splicing that also affects mRNA localization, stabilization, polyadenylation, and translation. NMR structural analysis of the N-terminal half of PTB (residues 55-301) shows a canonical structure for RRM1 but reveals novel extensions to the beta strands and C terminus of RRM2 that significantly modify the beta sheet RNA binding surface. Although PTB contains four RNA recognition motifs (RRMs), it is widely held that only RRMs 3 and 4 are involved in RNA binding and that RRM2 mediates homodimerization. However, we show here not only that the RRMs 1 and 2 contribute substantially to RNA binding but also that full-length PTB is monomeric, with an elongated structure determined by X-ray solution scattering that is consistent with a linear arrangement of the constituent RRMs. These new insights into the structure and RNA binding properties of PTB suggest revised models of its mechanism of action.  相似文献   

17.
Polypyrimidine tract binding protein (PTB) participates in a variety of functions in eukaryotic cells, including alternative splicing, mRNA stabilization, and internal ribosomal entry site-mediated translation initiation. Its mechanism of RNA recognition is determined in part by the novel geometry of its two C-terminal RNA recognition motifs (RRM3 and RRM4), which interact with each other to form a stable complex (PTB1:34). This complex itself is unusual among RRMs, suggesting that it performs a specific function for the protein. In order to understand the advantage it provides to PTB, the fundamental properties of PTB1:34 are examined here as a comparative study of the complex and its two constituent RRMs. Both RRM3 and RRM4 adopt folded structures that NMR data show to be similar to their structure in PRB1:34. The RNA binding properties of the domains differ dramatically. The affinity of each separate RRM for polypyrimidine tracts is far weaker than that of PTB1:34, and simply mixing the two RRMs does not create an equivalent binding platform. 15N NMR relaxation experiments show that PTB1:34 has slow, microsecond motions throughout both RRMs including the interdomain linker. This is in contrast to the individual domains, RRM3 and RRM4, where only a few backbone amides are flexible on this time scale. The slow backbone dynamics of PTB1:34, induced by packing of RRM3 and RRM4, could be essential for high-affinity binding to a flexible polypyrimidine tract RNA and also provide entropic compensation for its own formation.  相似文献   

18.
19.
T-cell intracellular antigen-1 (TIA-1) regulates developmental and stress-responsive pathways through distinct activities at the levels of alternative pre-mRNA splicing and mRNA translation. The TIA-1 polypeptide contains three RNA recognition motifs (RRMs). The central RRM2 and C-terminal RRM3 associate with cellular mRNAs. The N-terminal RRM1 enhances interactions of a C-terminal Q-rich domain of TIA-1 with the U1-C splicing factor, despite linear separation of the domains in the TIA-1 sequence. Given the expanded functional repertoire of the RRM family, it was unknown whether TIA-1 RRM1 contributes to RNA binding as well as documented protein interactions. To address this question, we used isothermal titration calorimetry and small-angle X-ray scattering to dissect the roles of the TIA-1 RRMs in RNA recognition. Notably, the fas RNA exhibited two binding sites with indistinguishable affinities for TIA-1. Analyses of TIA-1 variants established that RRM1 was dispensable for binding AU-rich fas sites, yet all three RRMs were required to bind a polyU RNA with high affinity. Small-angle X-ray scattering analyses demonstrated a "V" shape for a TIA-1 construct comprising the three RRMs and revealed that its dimensions became more compact in the RNA-bound state. The sequence-selective involvement of TIA-1 RRM1 in RNA recognition suggests a possible role for RNA sequences in regulating the distinct functions of TIA-1. Further implications for U1-C recruitment by the adjacent TIA-1 binding sites of the fas pre-mRNA and the bent TIA-1 shape, which organizes the N- and C-termini on the same side of the protein, are discussed.  相似文献   

20.
The C-to-U editing of apolipoprotein-B (apo-B) mRNA is catalyzed by an enzyme complex that recognizes an 11-nt mooring sequence downstream of the editing site. A minimal holoenzyme that edits apo-B mRNA in vitro has been defined. This complex contains apobec-1, the catalytic subunit, and apobec-1 complementation factor (ACF), the RNA-binding subunit that binds to the mooring sequence. Here, we show that ACF binds with high affinity to single-stranded but not double-stranded apo-B mRNA. ACF contains three nonidentical RNA recognition motifs (RRM) and a unique C-terminal auxiliary domain. In many multi-RRM proteins, the RRMs mediate RNA binding and an auxiliary domain functions in protein-protein interactions. Here we show that ACF does not fit this simple model. Based on deletion mutagenesis, the RRMs in ACF are necessary but not sufficient for binding to apo-B mRNA. Amino acids in the pre-RRM region are required for complementing activity and RNA binding, but not for interaction with apobec-1. The C-terminal 196 amino acids are not absolutely essential for function. However, further deletion of an RG-rich region from the auxiliary domain abolished complementing activity, RNA binding, and apobec-1 interaction. The auxiliary domain alone did not bind apobec-1. Although all three RRMs are required for complementing activity and apobec-1 interaction, the individual motifs contribute differently to RNA binding. Point mutations in RRM1 or RRM2 decreased the Kd for apo-B mRNA by two orders of magnitude whereas mutations in RRM3 reduced binding affinity 13-fold. The pairwise expression of RRM1 with RRM2 or RRM3 resulted in moderate affinity binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号