首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Caenorhabditis elegans heterochronic gene lin-28 regulates developmental timing in the nematode trunk. We report the dynamic expression patterns of Lin-28 homologues in mouse and chick embryos. Whole mount in situ hybridization revealed specific and intriguing expression patterns of Lin-28 in the developing mouse and chick limb bud. Mouse Lin-28 expression was detected in both the forelimb and hindlimb at E9.5, but disappeared from the forelimb at E10.5, and finally from the forelimb and hindlimb at E11.5. Chicken Lin-28, which was first detected in the limb primordium at stage 15/16, was also downregulated as the stage proceeded. The amino acid sequences of mouse and chicken Lin-28 genes are highly conserved and the similar expression patterns of Lin-28 during limb development in mouse and chicken suggest that this heterochronic gene is also conserved during vertebrate limb development.  相似文献   

3.
lin-28 is a conserved regulator of cell fate succession in animals. In Caenorhabditis elegans, it is a component of the heterochronic gene pathway that governs larval developmental timing, while its vertebrate homologs promote pluripotency and control differentiation in diverse tissues. The RNA binding protein encoded by lin-28 can directly inhibit let-7 microRNA processing by a novel mechanism that is conserved from worms to humans. We found that C. elegans LIN-28 protein can interact with four distinct let-7 family pre-microRNAs, but in vivo inhibits the premature accumulation of only let-7. Surprisingly, however, lin-28 does not require let-7 or its relatives for its characteristic promotion of second larval stage cell fates. In other words, we find that the premature accumulation of mature let-7 does not account for lin-28's precocious phenotype. To explain let-7's role in lin-28 activity, we provide evidence that lin-28 acts in two steps: first, the let-7-independent positive regulation of hbl-1 through its 3'UTR to control L2 stage-specific cell fates; and second, a let-7-dependent step that controls subsequent fates via repression of lin-41. Our evidence also indicates that let-7 functions one stage earlier in C. elegans development than previously thought. Importantly, lin-28's two-step mechanism resembles that of the heterochronic gene lin-14, and the overlap of their activities suggests a clockwork mechanism for developmental timing. Furthermore, this model explains the previous observation that mammalian Lin28 has two genetically separable activities. Thus, lin-28's two-step mechanism may be an essential feature of its evolutionarily conserved role in cell fate succession.  相似文献   

4.
The gene lin-28 was originally identified through a mutant of the nematode Caenorhabditis elegans displaying defects in developmental timing. It is expressed stage-specifically in tissues throughout the animal and is required for cell fates to be expressed at the appropriate stage of larval development. lin-28 encodes a cytoplasmic protein with a unique pairing of RNA-binding motifs. Diverse animals possess Lin-28 homologues and mouse Lin-28 is expressed in embryos, embryonic stem cells and embryonal carcinoma cells, but not in some differentiated cell types. To assess whether mammalian Lin-28 may function as a developmental timing regulator, we examined adult and embryonic tissues of the mouse for its expression. We observed Lin-28 protein in many diverse tissues of the embryo through the period of organogenesis and that it persists in some tissues in the adult. In addition to an overall down-regulation during embryogenesis, in at least two tissues Lin-28 expression shows temporal regulation, as opposed to cell type or tissue-specific regulation: in the developing bronchial epithelium, where it is present in the developing lung and absent in the adult, and in a subset of cells developing along the crypt-villus axis of the intestine. Interestingly, unlike epithelia, cardiac and skeletal muscle continuously express Lin-28, suggesting an ongoing need for its activity there. We also observed that Lin-28 expression is repressed during the retinoic acid-induced differentiation of mouse P19 cells into neuronal cells, suggesting that down-regulation of Lin-28 in some tissues may occur in response to hormonal signals that govern development.  相似文献   

5.
The microRNA let-7 is a critical regulator of developmental timing events at the larval-to-adult transition in C. elegans. Recently, microRNAs with sequence similarity to let-7 have been identified. We find that doubly mutant animals lacking the let-7 family microRNA genes mir-48 and mir-84 exhibit retarded molting behavior and retarded adult gene expression in the hypodermis. Triply mutant animals lacking mir-48, mir-84, and mir-241 exhibit repetition of L2-stage events in addition to retarded adult-stage events. mir-48, mir-84, and mir-241 function together to control the L2-to-L3 transition, likely by base pairing to complementary sites in the hbl-1 3' UTR and downregulating hbl-1 activity. Genetic analysis indicates that mir-48, mir-84, and mir-241 specify the timing of the L2-to-L3 transition in parallel to the heterochronic genes lin-28 and lin-46. These results indicate that let-7 family microRNAs function in combination to affect both early and late developmental timing decisions.  相似文献   

6.
Morita K  Han M 《The EMBO journal》2006,25(24):5794-5804
The timing of postembryonic developmental programs in Caenorhabditis elegans is regulated by a set of so-called heterochronic genes, including lin-28 that specifies second larval programs. lin-66 mutations described herein cause delays in vulval and seam cell differentiation, indicating a role for lin-66 in timing regulation. A mutation in daf-12/nuclear receptor or alg-1/argonaute dramatically enhances the retarded phenotypes of the lin-66 mutants, and these phenotypes are suppressed by a lin-28 null allele. We further show that the LIN-28 protein level is upregulated in the lin-66 mutants and that this regulation is mediated by the 3'UTR of lin-28. We have also identified a potential daf-12-response element within lin-28 3'UTR and show that two microRNA (miRNA) (lin-4 and let-7)-binding sites mediate redundant inhibitory activities that are likely lin-66-independent. Quantitative PCR data suggest that the lin-28 mRNA level is affected by lin-14 and miRNA regulation, but not by daf-12 and lin-66 regulation. These results suggest that lin-28 expression is regulated by multiple independent mechanisms including LIN-14-mediated upregulation of mRNA level, miRNAs-mediated RNA degradation, LIN-66-mediated translational inhibition and DAF-12-involved translation promotion.  相似文献   

7.
We have molecularly characterized the lin-49 and lin-59 genes in C. elegans, and found their products are related to Drosophila trithorax group (trx-G) proteins and other proteins implicated in chromatin remodelling. LIN-49 is structurally most similar to the human bromodomain protein BR140, and LIN-59 is most similar to the Drosophila trx-G protein ASH1. In C. elegans, lin-49 and lin-59 are required for the normal development of the mating structures of the adult male tail, for the normal morphology and function of hindgut (rectum) cells in both males and hermaphrodites and for the maintenance of structural integrity in the hindgut and egg-laying system in adults. Expression of the Hox genes egl-5 and mab-5 is reduced in lin-49 and lin-59 mutants, suggesting lin-49 and lin-59 regulate HOM-C gene expression in C. elegans as the trx-G genes do in Drosophila. lin-49 and lin-59 transgenes are expressed widely throughout C. elegans animals. Thus, in contrast to the C. elegans Polycomb group (Pc-G)-related genes mes-2 and mes-6 that function primarily in the germline, we propose lin-49 and lin-59 function in somatic development similar to the Drosophila trx-G genes.  相似文献   

8.
lin-4 encodes a small RNA that is complementary to sequences in the 3' untranslated region (UTR) of lin-14 mRNA and that acts to developmentally repress the accumulation of LIN-14 protein. This repression is essential for the proper timing of numerous events of Caenorhabditis elegans larval development. We have investigated the mechanism of lin-4 RNA action by examining the fate of lin-14 mRNA in vivo during the time that lin-4 RNA is expressed. Our results indicate that the rate of synthesis of lin-14 mRNA, its state of polyadenylation, its abundance in the cytoplasmic fraction, and its polysomal sedimentation profile do not change in response to the accumulation of lin-4 RNA. Our results indicate that association of lin-4 RNA with the 3' UTR of lin-14 mRNA permits normal biogenesis of lin-14 mRNA, and normal translational initiation, but inhibits step(s) thereafter, such as translational elongation and/or the release of stable LIN-14 protein.  相似文献   

9.
Drosophila always early (aly) is essential for spermatogenesis, and is related to the LIN-9 protein of Caenorhabditis elegans; lin-9 is a class B Synthetic Multivulva gene (synMuvB) required for gonadal sheath development. Aly/LIN-9 have two conserved regions, called domains 1 and 2, which have been identified in homologous proteins from several multicellular eukaryotes, including the model plant Arabidopsis thaliana. We cloned and sequenced cDNAs of three different A. thaliana ALWAYS EARLY homologs (AtALY1, AtALY2 and AtALY3), analysed the expression pattern of these three genes and show that AtALY1, like Aly, is nuclear localised. We also demonstrate that the plant homologs of aly/lin-9 contain an additional N-terminal myb domain not present in the animal Aly/LIN-9 proteins, and that part of the ALY/LIN-9 conserved domain 1 in the predicted plant proteins is related to the TUDOR domain.  相似文献   

10.
LIN-42, the Caenorhabditis elegans homolog of the Period (Per) family of circadian rhythm proteins, functions as a member of the heterochronic pathway, regulating temporal cell identities. We demonstrate that lin-42 acts broadly, timing developmental events in the gonad, vulva, and sex myoblasts, in addition to its well-established role in timing terminal differentiation of the hypodermis. In the vulva, sex myoblasts, and hypodermis, lin-42 activity prevents stage-specific cell division patterns from occurring too early. This general function of timing stage-appropriate cell division patterns is shared by the majority of heterochronic genes; their mutation temporally alters stage-specific division patterns. In contrast, lin-42 function in timing gonad morphogenesis is unique among the known heterochronic genes: inactivation of lin-42 causes the elongating gonad arms to reflex too early, a phenotype which implicates lin-42 in temporal regulation of cell migration. Three additional isoforms of lin-42 are identified that expand our view of the lin-42 locus and significantly extend the homology between LIN-42 and other PER family members. We show that, similar to PER proteins, LIN-42 has a dynamic expression pattern; its levels oscillate relative to the molts during postembryonic development. Transformation rescue studies indicate lin-42 is bipartite with respect to function. Intriguingly, the hallmark PAS domain is dispensable for LIN-42 function in transgenic animals.  相似文献   

11.
12.
Li J  Greenwald I 《Current biology : CB》2010,20(20):1875-1879
Studies of C. elegans vulval development have illuminated mechanisms underlying cell fate specification and elucidated intercellular signaling pathways [1]. The vulval precursor cells (VPCs) are spatially patterned during the L3 stage by the EGFR-Ras-MAPK-mediated inductive signal and the LIN-12/Notch-mediated lateral signal. The pattern is both precise and robust [2] because of crosstalk between these pathways [3]. Signaling is also regulated temporally, because constitutive activation of the spatial patterning pathways does not alter the timing of VPC fate specification [4, 5]. The heterochronic genes, including the microRNA lin-4 and its target lin-14, constitute a temporal control mechanism used in different contexts [6-8]. We find that lin-4 specifically controls the activity of LIN-12/Notch through lin-14, but not other known targets, and that persistent lin-14 blocks LIN-12 activity without interfering with the key events of LIN-12/Notch signal transduction. In the L2 stage, there is sufficient lin-14 activity to inhibit constitutive lin-12. Our results suggest that lin-4 and lin-14 contribute to spatial patterning through temporal gating of LIN-12. We propose that in the L2 stage, lin-14 sets a high threshold for LIN-12 activation to help prevent premature activation of LIN-12 by ligands expressed in other cells in the vicinity, thereby contributing to the precision and robustness of VPC fate patterning.  相似文献   

13.
14.
15.
16.
Chen J  Li X  Greenwald I 《Genetics》2004,166(1):151-160
Suppressor genetics in C. elegans has identified key components of the LIN-12/Notch signaling pathway. Here, we describe a genetic and molecular characterization of the suppressor gene sel-7. We show that reducing or eliminating sel-7 activity suppresses the effects of constitutive lin-12 activity, enhances the effects of partially reduced lin-12 activity, and causes a synthetic Lin-12(0) phenotype when combined with a null mutation in the sel-12 presenilin gene. These observations suggest that sel-7 is a positive regulator of lin-12 activity. We also show that SEL-7 encodes a novel nuclear protein. Through yeast two-hybrid screening, we identified an apparent interaction partner, K08E3.8, that also interacts with SEL-8, a known component of the nuclear complex that forms upon LIN-12 activation. Our data suggest potential roles for SEL-7 in the assembly or function of this nuclear complex.  相似文献   

17.
18.
19.
The lin-4 gene encodes a small RNA that is required to translationally repress lin-14 toward the end of the first larval stage of Caenorhabditis elegans development. To determine if the timing of LIN-14 protein down-regulation depends on the temporal profile of lin-4 RNA level, we analyzed the stage-specificity of lin-4 RNA expression during wild-type development and examined the phenotypes of transgenic worms that overexpress lin-4 RNA during the first larval stage. We found that lin-4 RNA first becomes detectable at approximately 12 h of wild-type larval development and rapidly accumulates to nearly maximum levels by 16 h. This profile of lin-4 RNA accumulation corresponded to the timing of LIN-14 protein down-regulation. Transgenic strains that express elevated levels of lin-4 RNA prior to 12 h of development display reduced levels of LIN-14 protein and precocious phenotypes consistent with abnormally early loss of lin-14 activity. These results indicate that the temporal profile of lin-4 RNA accumulation specifies the timing of LIN-14 down-regulation and thereby controls the timing of postembryonic developmental events.  相似文献   

20.
LIN-1 is an ETS domain protein. A receptor tyrosine kinase/Ras/mitogen-activated protein kinase signaling pathway regulates LIN-1 in the P6.p cell to induce the primary vulval cell fate during Caenorhabditis elegans development. We identified 23 lin-1 loss-of-function mutations by conducting several genetic screens. We characterized the molecular lesions in these lin-1 alleles and in several previously identified lin-1 alleles. Nine missense mutations and 10 nonsense mutations were identified. All of these lin-1 missense mutations affect highly conserved residues in the ETS domain. These missense mutations can be arranged in an allelic series; the strongest mutations eliminate most or all lin-1 functions, and the weakest mutation partially reduces lin-1 function. An electrophoretic mobility shift assay was used to demonstrate that purified LIN-1 protein has sequence-specific DNA-binding activity that required the core sequence GGAA. LIN-1 mutant proteins containing the missense substitutions had dramatically reduced DNA binding. These experiments identify eight highly conserved residues of the ETS domain that are necessary for DNA binding. The identification of multiple mutations that reduce the function of lin-1 as an inhibitor of the primary vulval cell fate and also reduce DNA binding suggest that DNA binding is essential for LIN-1 function in an animal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号