首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thejass P  Kuttan G 《Life sciences》2007,80(6):515-521
Angiogenesis is a crucial step in the growth and metastasis of cancers. The activation of endothelial cells and their further behaviour are very critical during angiogenesis. We analyzed the effect of diallyl disulfide (DADS) on angiogenesis in in vitro models using human umbilical vein endothelial cells (HUVECs). DADS significantly inhibited endothelial cell migration, invasion and tube formation. (3)H-thymidine proliferation assay clearly showed the inhibitory effect of DADS on the proliferation of HUVECs in vitro. The role of metalloproteinases has been shown to be important in angiogenesis; therefore, zymography was performed to determine whether DADS affected protease activity. Gelatin zymographic analysis showed the inhibitory effect of DADS on the activation of matrix metalloproteinases-MMP-2 and MMP-9. These findings suggest that DADS acts as an angiogenesis inhibitor by inhibiting the activation of matrix metalloproteinases during endothelial morphogenesis.  相似文献   

2.
Over a half century ago, Charles Huggins demonstrated the response of prostate cancer to androgen deprivation therapy. Subsequently, many discoveries and evolving findings continued to support a research rationale focused on the androgen receptor (AR) as a key target for prostate cancer. More recently, preliminary trials have suggested that other targets could also be useful in the treatment of prostate cancer, and the proposed strategies for treatment have ranged from targeted toxins to immunotherapeutic agents. We provide an overview of some of these approaches, with an emphasis on those that employ prostate specific membrane antigen (PSMA) as a target.  相似文献   

3.
Ephestia kuehniella Zeller is a key pest by severe deficiencies on quantity and quality of stored products. Due to concerns made by synthetic insecticides, use of natural products (like botanical insecticides) is of great importance as an alternative pest management. In the current study, the effect of diallyl disulfide was determined on digestive enzymes and those involved in intermediary metabolism of E. kuehniella. Concentration of 0.31% was obtained as LC50 of diallyl disulfide followed by bioassay experiments. Activities of α-amylase, proteases, alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase significantly decreased in the treated larvae, while the adverse effects were observed in case of triacylglyceride-lipase, aspartate aminotransferase, γ-glutamyl transferase, aldolase and acid phosphatase. Results confirmed that diallyl disulfide interrupted larval digestion by lower activities of digestive enzymes indicating significant effect on intermediary metabolism.  相似文献   

4.
Diallyl disulfide (DADS), an oil soluble constituent of garlic (Allium sativum), has been reported to cause antimutagentic and anticarcinogenic effects in vitro and in vivo by modulating phases I and II enzyme activities. In recent years, several studies suggested that the chemopreventive effects of DADS can also be attributed to induction of cell cycle arrest and apoptosis in cancer cells. In the present study, we reported that DADS-induced cell cycle arrest at G2/M and apoptosis in human A549 lung cancer cells in a time- and dose-dependent manner. Additionally, a significant increase of intracellular reactive oxygen species (ROS) was induced in A549 cells less than 0.5 h after DADS treatment, indicating that ROS may be an early event in DADS-modulated apoptosis. Treatment of A549 cells with N-acetyl cysteine (NAC) completely abrogated DADS-induced cell cycle arrest and apoptosis. The result indicated that oxidative stress modulates cell proliferation and cell death induced by DADS.  相似文献   

5.
Prostate cancer is a leading cause of death among the aging men. Surgical or radiotherapy is effective when the cancer is confined to the prostate gland but once the cancer spreads beyond the pelvis even chemotherapy and hormonal ablation therapy fails in curing this disease. Our previous studies have shown that diallyl disulfide (DADS) induces cell cycle arrest and also induces apoptosis in PC-3 cells. And now the present study is focused to see whether there is an activation of caspase cascade pathway. Hence, in the present study the apoptotic effect of DADS is studied by Western blot analysis of caspase-3, -9, -10 and Bcl-2, Bad, and Bax protein. The Apoptotic cells were assessed by Hoechst 33342 staining with 25 and 40 microM concentrations of DADS for 24 h. The results have shown that DADS at 25 and 40 microM concentrations has induced the activation of caspases. There is a significant increase in the expression of caspases (3, 9, and 10). The proapoptotic protein Bax has significantly increased at 40 microM of DADS treatment and there is significant increase of Bad protein at both the concentration. Bcl-2 protein has significantly decreased in DADS treated cells. Therefore, the present investigation serves as evidence that DADS may be a therapeutic drug in the treatment of prostate cancer.  相似文献   

6.
Current treatments including androgen deprivation fail to prevent prostate cancer (PrCa) from progressing to castration‐resistant PrCa (CRPC). Accumulating evidence highlights the relevance of prostate‐specific antigen (PSA) in the development and progression of PrCa. The underlying mechanism whereby PSA functions in PrCa, however, has yet been elucidated. We demonstrated that PSA knockdown attenuated tumorigenesis and metastasis of PrCa C4‐2 cells in vitro and in vivo, whereas promoted the apoptosis in vitro. To illuminate the comprehensive role of PSA in PrCa, we performed an isobaric tag for relative and absolute quantitation (iTRAQ)‐based proteomic analysis to explore the proteomic change induced by PSA knockdown. Among 121 differentially expressed proteins, 67 proteins were up‐regulated, while 54 proteins down‐regulated. Bioinformatics analysis was used to explore the mechanism through which PSA exerts influence on PrCa. Protein‐protein interaction analysis showed that PSA may mediate POTEF, EPHA3, RAD51C, HPGD and MCM4 to promote the initiation and progression of PrCa. We confirmed that PSA knockdown induced the up‐regulation of MCM4 and RAD51C, while it down‐regulated POTEF and EPHA3; meanwhile, MCM4 was higher in PrCa para‐cancerous tissue than in cancerous tissue, suggesting that PSA may facilitate the tumorigenesis by mediating MCM4. Our findings suggest that PSA plays a comprehensive role in the development and progression of PrCa.  相似文献   

7.
During the progression of prostate cancer from androgen-dependence or sensitivity to androgen-independence, the overall expression of prostate specific membrane antigen (PSMA) increases with its appearance in plasma membrane. However, surprisingly some androgen-independent metastatic prostate cancer cell lines do not express this protein. Estradiol (E2) and basic fibroblast growth factor (bFGF) due to their recognized and strong involvement in prostate growth, development, and pathology were selected with the aim of restoring the expression of PSMA in markedly dedifferentiated prostate cancer PC-3 cells and in Du 145. E2 (10(-7)-10(-11)M) and bFGF (10ng/ml) stimulated the expression of mRNAs for PSMA (2- to 4-fold increase) that apparently were further translated and processed to its membrane form in LNCaP, PC-3, and Du 145 cells. The values of interaction force between the same anti-PSMA antibodies and all studied cells were almost identical (45-64pN), indicating antigenic similarity of the membrane form of PSMA expressed in LNCaP, PC-3, and Du 145 cells.  相似文献   

8.
Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) is considered to be a novel anticancer therapy. To date, in most cases, single-chain variable fragments (scFvs) of murine origin have been used in CARs. However, this structure has limitations relating to the potential immunogenicity of mouse antigens in humans and the relatively large size of scFvs. For the first time, we used camelid nanobody (VHH) to construct CAR T cells against prostate specific membrane antigen (PSMA). The nanobody against PSMA (NBP) was used to show the feasibility of CAR T cells against prostate cancer cells. T cells were transfected, and then the surface expression of the CAR T cells was confirmed. Then, the functions of VHH-CAR T cell were evaluated upon coculture with prostate cancer cells. At the end, the cytotoxicity potential of NBPII-CAR in T cells was approximated by determining the cell surface expression of CD107a after encountering PSMA. Our data show the specificity of VHH-CAR T cells against PSMA+ cells (LNCaP), not only by increasing the interleukin 2 (IL-2) cytokine (about 400 pg/mL), but also the expression of CD69 by almost 38%. In addition, VHH-CAR T cells were proliferated by nearly 60% when cocultured with LNCaP, as compared with PSMA negative prostate cancer cell (DU-145), which led to the upregulation of CD107a in T cells upto 31%. These results clearly show the possibility of using VHH-based CAR T cells for targeted immunotherapy, which may be developed to target virtually any tumor-associated antigen for adoptive T-cell immunotherapy of solid tumors.  相似文献   

9.
Caffeic acid and its naturally occurring derivative caffeic acid phenethyl ester (CAPE) have antiproliferative and cytotoxic properties in a variety of cancer cell lines without displaying significant toxicity toward healthy cells, and are considered to be potential anticancer agents. However, little is known about their effects on prostate cancer cells. We synthesized and evaluated the effects of caffeic acid, CAPE (2) and 18 synthetic derivatives on cell viability and androgen-dependent cell proliferation, subcellular localisation and expression of androgen receptor (AR) and secretion of prostate-specific antigen (PSA) in LNCaP human hormone-dependent prostate cancer cells. Several synthetic derivatives of CAPE were strong, concentration-dependent cytotoxic agents in LNCaP cells with IC50 values in the 6.8–26.6 μM range, potencies that were up to five-fold greater than that of CAPE (33.7 ± 4.0 μM). A number of caffeic acid derivatives were inhibitors of androgen-stimulated LNCaP cell proliferation with concomitant inhibition of DHT-stimulated PSA secretion. Compound 24 was the most cytotoxic and antiproliferative caffeic acid derivative (IC50 values of 6.8 ± 0.3 and 2.4 ± 0.8 μM, respectively) inhibiting DHT-stimulated cell proliferation and PSA secretion statistically significantly at concentrations as low as 0.3 μM. Exposure to DHT increased cytoplasmic and nuclear AR levels and co-treatment with increasing concentrations of compound 24 or CAPE (2), notably, further increased these levels. In conclusion, a number of synthetic derivatives of caffeic acid are potent inhibitors of androgen-dependent prostate cancer cell proliferation and viability, acting, at least in part, via an antiandrogenic mechanism that involves increased nuclear accumulation of (presumably inactive) AR.  相似文献   

10.
Bone metastases from prostate cancer cause abnormal new bone formation, however, the factors involved and the pathways leading to the response are incompletely defined. We investigated the mechanisms of osteoblast stimulatory effects of LNCaP prostate carcinoma cell conditioned media (CM). MC3T3-E1 osteoblastic cells were cultured with CM from confluent LNCaP cells. LNCaP CM stimulated MAP kinase, cell proliferation (3H-thymidine incorporation), and protein synthesis (14C-proline incorporation) in the MC3T3-E1 cells. The increases in cell proliferation and protein synthesis were prevented by inhibition of the MAP kinase pathway. IGF-I mimicked the effects of the CM on the MC3T3-E1 cells and inhibition of IGF-I action decreased the LNCaP CM stimulation of 3H-thymidine and 14C-proline incorporation and MAP kinase activity. The findings indicate that IGF-I is an important factor for the stimulatory effects of LNCaP cell CM on cell proliferation and protein synthesis in osteoblastic cells, and that MAP kinase is a component of the signaling pathway for these effects.  相似文献   

11.
Prostate specific membrane antigen (PSMA), is a unique membrane bound glycoprotein, which is overexpressed manifold on prostate cancer as well as neovasculature of most of the solid tumors, but not in the vasculature of the normal tissues. This unique expression of PSMA makes it an important marker as well as a large extracellular target of imaging agents. PSMA can serve as target for delivery of therapeutic agents such as cytotoxins or radionuclides. PSMA has two unique enzymatic functions, folate hydrolase and NAALADase and found to be recycled like other membrane bound receptors through clathrin coated pits. The internalization property of PSMA leads one to consider the potential existence of a natural ligand for PSMA. In this review we have discussed the regulation of PSMA expression within the cells, and significance of its expression in prostate cancer and metastasis.  相似文献   

12.
Lixia Zhao  Dan Wang  Gen Shi  Ling Lin 《Luminescence》2017,32(8):1547-1553
The specificity for early diagnostic of prostate‐specific antigen (PSA) is low because the current technology mostly allows the detection of only one biomarker at one time. In this work, a dual‐labeled chemiluminescence enzyme immunoassay (CLEIA) for simultaneous measurement of total PSA (TPSA) and free PSA (FPSA) was proposed. Anti‐PSA McAb (Mab1) was immobilized on a microplate as the solid phase, horseradish peroxidase (HRP)‐labeled anti‐TPSA monoclonal antibody (McAb2) and alkaline phosphatase (ALP)‐labeled anti‐FPSA McAb3 were used as detection antibodies. Two chemiluminescence reactions of HRP with luminol and ALP with 4‐methoxy‐4‐(3‐phosphate‐phenyl)‐spiro‐(1,2‐dioxetane‐3,2′‐adamantane) (AMPPD) were used as the signal detecting system. Based on a sandwich model, the amount of FPSA and TPSA could be determined simultaneously. The effects of several physico‐chemical parameters were studied and optimized. Cross‐reactivities of six common tumor markers in serum were studied. The proposed method presented the sensitivity of 0.03 ng ml?1 and 0.05 ng ml?1 for FPSA and TPSA respectively, with low cross‐reactivities. Compared with the results from commercial chemiluminescent kits there was good correlation, indicating that this established method could be used to simultaneously to measure the concentrations of FPSA and TPSA in one serum sample and also could greatly facilitate the early diagnosis for PCa in clinical practice.  相似文献   

13.
14.
Androgens regulate the expression of both human prostatic acid phosphatase (PAcP) and prostate-specific antigen (PSA), two major prostate epithelium-specific differentiation antigens. Due to the important role of these two enzymes as prostate epithelium differentiation markers, we investigated their regulation of expression at the mRNA level in LNCaP human prostate carcinoma cells. Interestingly, phenol red, a pH indicator in the culture medium, promoted cell growth. To eliminate this non-specific effect, a phenol red-free, steroid-reduced medium was utilized. When high-density cells were grown in that medium, 5alpha-dihydrotestosterone (DHT) suppressed PAcP but stimulated PSA. However, tumor promoter phorbol ester 12-o-tetradecanoyl phorbol-13-acetate (TPA) functioned as a potent inhibitor of both PAcP and PSA expression. Prolonged treatment with DHT as well as TPA resulted in a similar down-regulation of protein kinase C and cellular PAcP activities. Thus, the levels of PAcP and PSA mRNA are differentially regulated by androgens in LNCaP cells.  相似文献   

15.
16.
The effect of PectaSol on Dox (Doxorubicin) cytotoxicity in terms of apoptosis and cell cycle changes in PCa (prostate cancer) cell lines (DU‐145 and LNCaP) has been investigated. Combination of PectaSol and Dox resulted in a viability of 29.4 and 32.6% (P<0.001) in DU‐145 and LNCaP cells. The IC50 values decreased 1.5‐fold and 1.3‐fold in the DU‐145 and LNCaP cells respectively. In the DU‐145 cells, combination of PectaSol and Dox resulted in a reduction in p27 gene and protein expression (P<0.001). In LNCaP cells, this combination increased p53, p27 and Bcl‐2 expression. Treatment with both drugs in DU‐145 cells led to an increase in sub‐G1 arrest (54.6% compared with 12.2% in Dox). In LNCaP cells, combination of the drugs led to an increased in G2/M arrest (61.7% compared with 53.6% in Dox). Based on these findings, progressive cytotoxicity effect of Dox and PectaSol together rapidly induce cell death in DU‐145 through apoptosis and in LNCaP cells through cell cycle arrest (G2/M arrest).  相似文献   

17.
18.
Abnormal genome hypermethylation participates in the tumorigenesis and development of prostate cancer. Prostate cancer cells highly express DNA methyltransferase 3 (DMNT3) family genes, essential for maintaining genome methylation. In the present study, multi-target siRNA, based on the homologous region of the DNMT3 family, was designed for the in vitro investigation of its effects on the proliferation, migration, and invasion of TSU-PR1 prostate cancer cells. The consequential cell-cycle derangement, through DNMT3A/B or only DNMT3B silencing, was partially efficient, without affecting apoptosis. DNMT3A silencing had absolutely no effect on changing TSU-PR1 cell biological behavior. Hence, DNMT3B alone apparently plays a key role in maintaining the unfavorable behavior of prostate-cancer cells, thereby implying its potential significance as a promising therapeutic target, with DNMT3A simply in the role of helper.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号