首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coat protein complex I (COPI) vesicles play a central role in the recycling of proteins in the early secretory pathway and transport of proteins within the Golgi stack. Vesicle formation is initiated by the exchange of GDP for GTP on ARF1 (ADP-ribosylation factor 1), which, in turn, recruits the coat protein coatomer to the membrane for selection of cargo and membrane deformation. ARFGAP1 (ARF1 GTPase-activating protein 1) regulates the dynamic cycling of ARF1 on the membrane that results in both cargo concentration and uncoating for the generation of a fusion-competent vesicle. Two human orthologues of the yeast ARFGAP Glo3p, termed ARFGAP2 and ARFGAP3, have been demonstrated to be present on COPI vesicles generated in vitro in the presence of guanosine 5′-3-O-(thio)triphosphate. Here, we investigate the function of these two proteins in living cells and compare it with that of ARFGAP1. We find that ARFGAP2 and ARFGAP3 follow the dynamic behavior of coatomer upon stimulation of vesicle budding in vivo more closely than does ARFGAP1. Electron microscopy of ARFGAP2 and ARFGAP3 knockdowns indicated Golgi unstacking and cisternal shortening similarly to conditions where vesicle uncoating was blocked. Furthermore, the knockdown of both ARFGAP2 and ARFGAP3 prevents proper assembly of the COPI coat lattice for which ARFGAP1 does not seem to play a major role. This suggests that ARFGAP2 and ARFGAP3 are key components of the COPI coat lattice and are necessary for proper vesicle formation.  相似文献   

2.
Yeast phosphatidylinositol transfer protein (Sec14p) coordinates lipid metabolism with protein-trafficking events. This essential Sec14p requirement for Golgi function is bypassed by mutations in any one of seven genes that control phosphatidylcholine or phosphoinositide metabolism. In addition to these "bypass Sec14p" mutations, Sec14p-independent Golgi function requires phospholipase D activity. The identities of lipids that mediate Sec14p-dependent Golgi function, and the identity of the proteins that respond to Sec14p-mediated regulation of lipid metabolism, remain elusive. We now report genetic evidence to suggest that two ADP ribosylation factor-GTPase-activating proteins (ARFGAPs), Gcs1p and Age2p, may represent these lipid-responsive elements, and that Gcs1p/Age2p act downstream of Sec14p and phospholipase D in both Sec14p-dependent and Sec14p-independent pathways for yeast Golgi function. In support, biochemical data indicate that Gcs1p and Age2p ARFGAP activities are both modulated by lipids implicated in regulation of Sec14p pathway function. These results suggest ARFGAPs are stimulatory factors required for regulation of Golgi function by the Sec14p pathway, and that Sec14p-mediated regulation of lipid metabolism interfaces with the activity of proteins involved in control of the ARF cycle.  相似文献   

3.
Eugster A  Frigerio G  Dale M  Duden R 《The EMBO journal》2000,19(15):3905-3917
We performed a systematic mapping of interaction domains on COP I subunits to gain novel insights into the architecture of coatomer. Using the two-hybrid system, we characterize the domain structure of the alpha-, beta'-, epsilon-COP and beta-, gamma-, delta-, zeta-COP coatomer subcomplexes and identify links between them that contribute to coatomer integrity. Our results demonstrate that the domain organization of the beta-, gamma-, delta-, zeta-COP subcomplex and AP adaptor complexes is related. Through in vivo analysis of alpha-COP truncation mutants, we characterize distinct functional domains on alpha-COP. Its N-terminal WD40 domain is dispensable for yeast cell viability and overall coatomer function, but is required for KKXX-dependent trafficking. The last approximately 170 amino acids of alpha-COP are also non-essential for cell viability, but required for epsilon-COP incorporation into coatomer and maintainance of normal epsilon-COP levels. Further, we demonstrate novel direct interactions of coatomer subunits with regulatory proteins: beta'- and gamma-COP interact with the ARF-GTP-activating protein (GAP) Glo3p, but not Gcs1p, and beta- and epsilon-COP interact with ARF-GTP. Glo3p also interacts with intact coatomer in vitro.  相似文献   

4.
The small GTPase Arf and coatomer (COPI) are required for the generation of retrograde transport vesicles. Arf activity is regulated by guanine exchange factors (ArfGEF) and GTPase-activating proteins (ArfGAPs). The ArfGAPs Gcs1 and Glo3 provide essential overlapping function for retrograde vesicular transport from the Golgi to the endoplasmic reticulum. We have identified Glo3 as a component of COPI vesicles. Furthermore, we find that a mutant version of the Glo3 protein exerts a negative effect on retrograde transport, even in the presence of the ArfGAP Gcs1. Finally, we present evidence supporting a role for ArfGAP protein in the generation of COPI retrograde transport vesicles.  相似文献   

5.
A kinetic proof-reading mechanism for protein sorting   总被引:1,自引:0,他引:1  
Resident proteins of the exocytic pathway are maintained at various levels through coatomer protein I (COPI)-mediated recycling. Sorting of cargo by COPI requires GTP hydrolysis by ADP-ribosylation factor 1 (ARF-1). This small GTPase recruits coatomer onto Golgi membranes and upon hydrolysis, is thought to release coatomer back into the cytosol. This step requires the activating protein, ARFGAP1. By coupling sorting to a cargo-induced sequestering of ARFGAP1, we have formulated a kinetic proof-reading model that explains how a GTP hydrolysis-driven coat release can yield an active sorting event. The sorting scheme predicts a dependency on the amount of ARFGAP1 and explains the recent experimental findings that ARF-1 and COPI detach with different time constants from the Golgi membrane in vivo .  相似文献   

6.
The ArfGAP Glo3 is required for coat protein I vesicle generation in the Golgi–endoplasmic reticulum (ER) shuttle. The best-understood role of Glo3 is the stimulation of the GTPase activity of Arf1. In this study, we characterized functional domains of the ArfGAP Glo3 and identified an interaction interface for coatomer, SNAREs and cargo in the central region of Glo3 (BoCCS region). The GAP domain together with the BoCCS region is necessary and sufficient for all vital Glo3 functions. Expression of a truncated Glo3 lacking the GAP domain results in a dominant negative growth phenotype in glo3 Δ cells at 37°C. This phenotype was alleviated by mutating either the BoCCS region or the Glo3 regulatory motif (GRM), or by overexpression of ER–Golgi SNAREs or the ArfGAP Gcs1. The GRM is not essential for Glo3 function; it may act as an intrinsic sensor coupling GAP activity to SNARE binding to avoid dead-end complex formation at the Golgi membrane. Our data suggest that membrane-interaction modules and cargo-sensing regions have evolved independently in ArfGAP1s versus ArfGAP2/3s.  相似文献   

7.
COPI-coated vesicles mediate retrograde transport from the Golgi back to the ER and intra-Golgi transport. The cytosolic precursor of the COPI coat, the heptameric coatomer complex, can be thought of as composed of two subcomplexes. The first consists of the β-, γ-, δ- and ζ-COP subunits which are distantly homologous to AP clathrin adaptor subunits. The second consists of the α-, β'- and ε-COP subunits. Here, we present the structure of the appendage domain of γ-COP and show that it has a similar overall fold as the α-appendage of AP2. Again, like the α-appendage the γ-COP appendage possesses a single protein/protein interaction site on its platform subdomain. We show that in yeast this site binds to the ARFGAP Glo3p, and in mammalian γ-COP this site binds to a Glo3p orthologue, ARFGAP2. On the basis of mutations in the yeast homologue of γ-COP, Sec21p, a second binding site is proposed to exist on the γ-COP appendage that interacts with the α,β',ε COPI subcomplex.  相似文献   

8.
ARF proteins, which mediate vesicular transport, have little or no intrinsic GTPase activity. They rely on the actions of GTPase-activating proteins (GAPs) for their function. The in vitro GTPase activity of the Saccharomyces cerevisiae ARF proteins Arf1 and Arf2 is stimulated by the yeast Gcs1 protein, and in vivo genetic interactions between arf and gcs1 mutations implicate Gcs1 in vesicular transport. However, the Gcs1 protein is dispensable, indicating that additional ARF GAP proteins exist. We show that the structurally related protein Glo3, which is also dispensable, also exhibits ARF GAP activity. Genetic and in vitro approaches reveal that Glo3 and Gcs1 have an overlapping essential function at the endoplasmic reticulum (ER)-Golgi stage of vesicular transport. Mutant cells deficient for both ARF GAPs cannot proliferate, undergo a dramatic accumulation of ER and are defective for protein transport between ER and Golgi. The glo3Delta and gcs1Delta single mutations each interact with a sec21 mutation that affects a component of COPI, which mediates vesicular transport within the ER-Golgi shuttle, while increased dosage of the BET1, BOS1 and SEC22 genes encoding members of a v-SNARE family that functions within the ER-Golgi alleviates the effects of a glo3Delta mutation. An in vitro assay indicates that efficient retrieval from the Golgi to the ER requires these two proteins. These findings suggest that Glo3 and Gcs1 ARF GAPs mediate retrograde vesicular transport from the Golgi to the ER.  相似文献   

9.
GTPase-activating proteins of ADP-ribosylation factors (ARFGAPs) play key cellular roles in vesicle production and trafficking, adhesion, migration, and development. Dysfunctional regulation of ARFGAPs has been implicated in various diseases, including cancer, Alzheimer disease, and autism. Unfortunately, there are few mechanistic details describing how ARFGAPs contribute to disease states. In this regard, it would be extremely helpful to have a set of small molecules that selectively and directly modulate specific ARFGAPs as probes to dissect ARFGAP-regulated cell signaling under various conditions. Currently, such probes are lacking, and their identification is hampered by the lack of a suitable high-throughput assay to monitor ARFGAP activity. Here, the authors describe and validate a robust high-throughput assay using fluorescence polarization to monitor the ability of diverse ARFGAPs to enhance the capacity of ARF1 to hydrolyze guanosine triphosphate.  相似文献   

10.
The small GTPase ADP-ribosylation factor-1 (Arf1) plays a key role in the formation of coat protein I (COP I)-coated vesicles. Upon recruitment to the donor Golgi membrane by interaction with dimeric p24 proteins, Arf1's GDP is exchanged for GTP. Arf1-GTP then dissociates from p24, and together with other Golgi membrane proteins, it recruits coatomer, the heptameric coat protein complex of COP I vesicles, from the cytosol. In this process, Arf1 was shown to specifically interact with the coatomer beta and gamma-COP subunits through its switch I region, and with epsilon-COP. Here, we mapped the interaction of the Arf1-GTP switch I region to the trunk domains of beta and gamma-COP. Site-directed photolabeling at position 167 in the C-terminal helix of Arf1 revealed a novel interaction with coatomer via a putative longin domain of delta-COP. Thus, coatomer is linked to the Golgi through multiple interfaces with membrane-bound Arf1-GTP. These interactions are located within the core, adaptor-like domain of coatomer, indicating an organizational similarity between the COP I coat and clathrin adaptor complexes.  相似文献   

11.
Coat protein (COP)-coated vesicles have been shown to mediate protein transport through early steps of the secretory pathway in yeast and mammalian cells. Here, we attempt to elucidate their role in vesicular trafficking of plant cells, using a combined biochemical and ultrastructural approach. Immunogold labeling of cryosections revealed that COPI proteins are localized to microvesicles surrounding or budding from the Golgi apparatus. COPI-coated buds primarily reside on the cis-face of the Golgi stack. In addition, COPI and Arf1p show predominant labeling of the cis-Golgi stack, gradually diminishing toward the trans-Golgi stack. In vitro COPI-coated vesicle induction experiments demonstrated that Arf1p as well as coatomer could be recruited from cauliflower cytosol onto mixed endoplasmic reticulum (ER)/Golgi membranes. Binding of Arf1p and coatomer is inhibited by brefeldin A, underlining the specificity of the recruitment mechanism. In vitro vesicle budding was confirmed by identification of COPI-coated vesicles through immunogold negative staining in a fraction purified from isopycnic sucrose gradient centrifugation. Similar in vitro induction experiments with tobacco ER/Golgi membranes prepared from transgenic plants overproducing barley alpha-amylase-HDEL yielded a COPI-coated vesicle fraction that contained alpha-amylase as well as calreticulin.  相似文献   

12.
ADP-ribosylation factor (ARF) and ARF-like (ARL) proteins are members of the ARF family, which are critical components of several different vesicular trafficking pathways. ARFs have little or no detectable GTPase activity without the assistance of a GTPase-activating protein (GAP). Here, we demonstrate that yeast Gcs1p exhibits GAP activity toward Arl1p and Arf1p in vitro, and Arl1p can interact with Gcs1p in a GTP-dependent manner. Arl1p was observed both on trans-Golgi and in cytosol and was recruited from cytosol to membranes in a GTP-dependent manner. In gcs1 mutant cells, the fraction of Arl1p in cytosol relative to trans-Golgi was less than it was in wild-type cells. Increasing Gcs1p levels returned the distribution toward that of wild-type cells. Both Arl1p and Gcs1p influenced the distribution of Imh1p, an Arl1p effector. Our data are consistent with the conclusion that Arl1p moves in a dynamic equilibrium between trans-Golgi and cytosol, and the release of Arl1p from membranes in cells requires the hydrolysis of bound GTP, which is accelerated by Gcs1p.  相似文献   

13.
Retrograde transport of proteins from the Golgi to the endoplasmic reticulum (ER) has been the subject of some interest in the recent past. Here a new thermosensitive yeast mutant defective in retrieval of dilysine-tagged proteins from the Golgi back to the endoplasmic reticulum was characterized. The ret4-1 mutant also exhibited a selective defect in forward ER-to-Golgi transport of some secreted proteins at the non-permissive temperature. The corresponding RET4 gene was found to encode Glo3p, a GTPase-activating protein (GAP) specific for ADP-ribosylation factor (ARF). In vitro, the Glo3 thermosensitive mutant showed a reduced ARF1-GAP activity. The Glo3 protein belongs to a family of zinc finger proteins that may include additional ARF-GAPs. Gene deletion experiments of other family members showed that only GLO3 deletion resulted in impaired retrieval of dilysine-tagged proteins back to the ER. These results demonstrate that Glo3p is the main ARF-GAP specifically involved in ER retrieval.  相似文献   

14.
We reported that an inhibitor of sphingolipid biosynthesis, D, L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), blocks brefeldin A (BFA)-induced retrograde membrane transport from the Golgi complex to the endoplasmic reticulum (ER) (Kok et al., 1998, J. Cell Biol. 142, 25-38). We now show that PDMP partially blocks the BFA-induced ADP-ribosylation of the cytosolic protein BARS-50. Moreover, PDMP does not interfere with the BFA-induced inhibition of the binding of ADP-ribosylation factor (ARF) and the coatomer component beta-coat protein to Golgi membranes. These results are consistent with a role of ADP-ribosylation in the action of BFA and with the involvement of BARS-50 in the regulation of membrane trafficking.  相似文献   

15.
COPI (coat protein I) and the clathrin-AP-2 (adaptor protein 2) complex are well-characterized coat proteins, but a component that is common to these two coats has not been identified. The GTPase-activating protein (GAP) for ADP-ribosylation factor 1 (ARF1), ARFGAP1, is a known component of the COPI complex. Here, we show that distinct regions of ARFGAP1 interact with AP-2 and coatomer (components of the COPI complex). Selectively disrupting the interaction of ARFGAP1 with either of these two coat proteins leads to selective inhibition in the corresponding transport pathway. The role of ARFGAP1 in AP-2-regulated endocytosis has mechanistic parallels with its roles in COPI transport, as both its GAP activity and coat function contribute to promoting AP-2 transport.  相似文献   

16.
The interaction of the coatomer coat complex with the Golgi membrane is initiated by the active, GTP-bound state of the small GTPase ADP-ribosylation factor 1 (ARF1), whereas GTP hydrolysis triggers coatomer dissociation. The hydrolysis of GTP on ARF1 depends on the action of members of a family of ARF1-directed GTPase-activating proteins (GAPs). Previous studies in well defined systems indicated that the activity of a mammalian Golgi membrane-localized ARF GAP (GAP1) might be subjected to regulation by membrane lipids as well as by the coatomer complex. Coatomer was found to strongly stimulate GAP-dependent GTP hydrolysis on a membrane-independent mutant of ARF1, whereas we reported that GTP hydrolysis on wild type, myristoylated ARF1 loaded with GTP in the presence of phospholipid vesicles was coatomer-independent. To investigate the regulation of ARF1 GAPs under more physiological conditions, we studied GTP hydrolysis on Golgi membrane-associated ARF1. The activities at the Golgi of recombinant GAP1 as well as coatomer-depleted fractions from rat brain cytosol resembled those observed in the presence of liposomes; however, unlike in liposomes, GAP activities on Golgi membranes were approximately doubled upon addition of coatomer. By contrast, endogenous GAP activity in Golgi membrane preparations was unaffected by coatomer. Cytosolic GAP activity was partially reduced following immunodepletion of GAP1, indicating that GAP1 plays a significant although not exclusive role in the regulation of GTP hydrolysis at the Golgi. Unlike the activities of the mammalian proteins, the Saccharomyces cerevisiae Glo3 ARF GAP displayed activity at the Golgi that was highly dependent on coatomer. We conclude that ARF GAPs in themselves can efficiently stimulate GTP hydrolysis on ARF1 at the Golgi, and that coatomer may play an auxiliary role in this reaction, which would lead to an increased cycling rate of ARF1 in COPI-coated regions of the Golgi membrane.  相似文献   

17.
Spatiotemporal dynamics of the COPI vesicle machinery   总被引:4,自引:0,他引:4       下载免费PDF全文
Assembly of the coat protein I (COPI) vesicle coat is controlled by the small GTPase ADP ribosylation factor 1 (ARF1) and its GTPase-activating protein, ARFGAP1. Here, we investigate the diffusional behaviours of coatomer, the main component of the coat, and also those of ARF1 and ARFGAP1. Using fluorescence-correlation spectroscopy, we found that most ARF1 and ARFGAP1 molecules are highly mobile in the cytosol (diffusion constant D ≈ 15 μm2 s−1), whereas coatomer diffuses 5–10 times more slowly than expected (D ≈ 1 μm2 s−1). This slow diffusion causes diffusion-limited binding kinetics to Golgi membranes, which, in FRAP (fluorescence recovery after photobleaching) experiments, translates into a twofold slower binding rate. The addition of aluminium fluoride locks coatomer onto Golgi membranes and also decreases the binding kinetics of both ARF1 and ARFGAP1, suggesting that these proteins function in concert to mediate sorting and vesicle formation.  相似文献   

18.
Song XF  Yang CY  Liu J  Yang WC 《Plant physiology》2006,141(3):966-976
The polar growth of plant cells depends on the secretion of a large amount of membrane and cell wall materials at the growing tip to sustain rapid growth. Small GTP-binding proteins, such as Rho-related GTPases from plants and ADP-ribosylation factors (ARFs), have been shown to play important roles in polar growth via regulating intracellular membrane trafficking. To investigate the role of membrane trafficking in plant development, a Dissociation insertion line that disrupted a putative ARF GTPase-activating protein (ARFGAP) gene, AT2G35210, was identified in Arabidopsis (Arabidopsis thaliana). Phenotypic analysis showed that the mutant seedlings developed isotropically expanded, short, and branched root hairs. Pollen germination in vitro indicated that the pollen tube growth rate was slightly affected in the mutant. AT2G35210 is specifically expressed in roots, pollen grains, and pollen tubes; therefore, it is designated as ROOT AND POLLEN ARFGAP (RPA). RPA encodes a protein with an N-terminal ARFGAP domain. Subcellular localization experiments showed that RPA is localized at the Golgi complexes via its 79 C-terminal amino acids. We further showed that RPA possesses ARF GTPase-activating activity and specifically activates Arabidopsis ARF1 and ARF1-like protein U5 in vitro. Furthermore, RPA complemented Saccharomyces cerevisiae glo3Delta gcs1Delta double mutant, which suggested that RPA functions as an ARFGAP during vesicle transport between the Golgi and the endoplasmic reticulum. Together, we demonstrated that RPA plays a role in root hair and pollen tube growth, most likely through the regulation of Arabidopsis ARF1 and ARF1-like protein U5 activity.  相似文献   

19.
Small monomeric G proteins regulated in part by GTPase-activating proteins (GAPs) are molecular switches for several aspects of vesicular transport. The yeast Gcs1 protein is a dual-specificity GAP for ADP-ribosylation factor (Arf) and Arf-like (Arl)1 G proteins, and also has GAP-independent activities. The absence of Gcs1 imposes cold sensitivity for growth and endosomal transport; here we present evidence that dysregulated Arl1 may cause these impairments. We show that gene deletions affecting the Arl1 or Ypt6 vesicle-tethering pathways prevent Arl1 activation and membrane localization, and restore growth and trafficking in the absence of Gcs1. A mutant version of Gcs1 deficient for both ArfGAP and Arl1GAP activity in vitro still allows growth and endosomal transport, suggesting that the function of Gcs1 that is required for these processes is independent of GAP activity. We propose that, in the absence of this GAP-independent regulation by Gcs1, the resulting dysregulated Arl1 prevents growth and impairs endosomal transport at low temperatures. In cells with dysregulated Arl1, an increased abundance of the Arl1 effector Imh1 restores growth and trafficking, and does so through Arl1 binding. Protein sequestration at the trans-Golgi membrane by dysregulated, active Arl1 may therefore be the mechanism of inhibition.  相似文献   

20.
C. Harter 《Protoplasma》1999,207(3-4):125-132
Summary COPI-coated vesicles are involved in intracellular trafficking between the endoplasmic reticulum and the Golgi complex. In the current model for COPI assembly the small GTP-binding protein ADP-ribosylation factor 1 is recruited from the cytoplasm to the Golgi membrane followed by binding of the hetero-oligomeric protein complex coatomer. However, the mechanism of subsequent vesicle budding is discussed controversially. This review summarizes the available experimental data on the COPI coat and discusses a model of how the major coat protein, coatomer, might act in vesicle budding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号