首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular contents of protein-bound and nonprotein sulfhydry (—SH) and disulfide (—SS—) groups were measured in both asynchronous and synchronous HeLa S3 cultures. About 90% of these groups are associated with proteins, the majority in the —SH form. The content of protein-bound groups, and hence the total content of —SH and —SS— groups (28 × 10-15 moles/cell, or 1.1 × 10-6 moles/g protein on average), changes in parallel with the protein content (which varies between 2 and 4 × 10-10 g/cell) as asynchronous populations pass from the lag through the exponential to the stationary phase of growth. The concentration of nonprotein —SH groups, in contrast, increases 10-fold during lag phase and decreases in stationary phase; it follows the protein concentration closely during the exponential phase, at a level of about 2.8 × 10-15 moles/cell. In synchronous cultures the protein content doubles during the cell cycle, possibly in an exponential fashion. The total —SH and —SS— content also doubles, but the rate of increase appears to fluctuate. The concentrations of the protein-bound groups show 2- to 3-fold fluctuations per unit protein: protein-bound —SH groups and mixed —SS— linkages rise to maxima while protein-bound —SS— groups fall to a minimum at the G1/S transition, and fluctuations in these groups occur again during G2. In addition, the protein-bound —SH concentration falls continuously during the S phase. The nonprotein —SH concentration undergoes the largest (relative) fluctuations, dropping from 4 × 10-15moles/cell in early G1 to about 0.4 × 10-15 moles/cell (of standard protein content) at the end of G1, and then rising to 30 times this value by the end of S.  相似文献   

2.
DANIEL  V.; GAFF  D. F. 《Annals of botany》1980,45(2):163-171
Significant changes in sulphydryl (‘SH’) and disulphide(‘SS’) levels during air-drying in leaves of ‘resurrection’plants (whose protoplasm survives dehydration) stemmed mainlyfrom protein turnover effects. No significant changes were foundin the SH, SS levels in leaves of the desiccation sensitivespecies Sporobolus pyramidalis following air-drying. The three tolerant species studied differed in the directionof change. Some data were consistent with Levitt's SH, SS hypothesis:increases in protein-SS levels in Sporobolus stapfianus (desiccationtolerant) were consistent with a stabilization of new proteinby SS bonds; lower reactivity of protein-SH in the tolerantspecies Talbotia elegans (which on the other hand has decreasedprotein-SS) is consistent with a second mechanism of decreasingprotein denaturation proposed in Levitt's hypothesis. Evidence of some conversion of SH to SS in the soluble proteinsof Xerophyta viscosa (a tolerant species) would on Levitt'shypothesis indicate an injurious process. Some degree of proteindenaturation might be indicated by partial inactivation of thesoluble enzyme ribulose bisphosphate carboxylase in this species,and loss of some soluble isoenzymes (peroxidase and alkalinephosphatase). An apparent lack of SH conversion to SS in thesensitive species Sporobolus pyramidalis was not consistentwith the SH, SS hypothesis. Resurrection plants, Sporobolus pyramidalis, Sporobolus stapfianus, Talbotia elegans, Xerophyta viscosa, drought resistance, desiccation tolerance, protein turnover, sulphydryl groups  相似文献   

3.
A system, designed by Snow and Tingey (1985) for ‘subjectingplants to reproducible water stress levels for extended periodsof time’, is considered. Modifications are also outlinedwhich enable water table heights to be maintained without theneed for complex float chambers. Sunflower plants (Helianthus annuus L. cv. Frankasol) were grownusing the system and these were either ‘well-watered’or subjected to water deficits. The temporal development ofwater deficits was closely monitored by regular psychrometricmeasurements of leaf water potential. Diurnal stomatal behaviour,mid-day abaxial stomatal conductance, and photosynthetic assimilationrates were also determined throughout the experiment, with growthanalysis at the end. A reduction in stomatal conductance occurred within 2–4d after the onset of a restriction in water supply. Data fromboth viscous flow and diffusion porometry suggested that stomatalclosure apparently began without a fall in bulk leaf water potential.Leaf water potentials of plants with a restricted supply ofwater did, however, subsequently decline during the early partof the experiment reaching values as low as –0.99±0.07 MPa after 14 d. No further reduction in bulk water potentialwas observed after a further 5 d, suggesting that a steady-statehad been reached. Corresponding values of leaf water potentialfor well-watered plants were about –0.60 ± 0.04MPa. Biomass determinations indicated the potential for quantifyingthe effects of water deficits, of controlled magnitudes, onrates of leaf production and expansion. However, the possibilityof physical limitations of root development—imposed bothby the plant container and also by the imposition of restrictedwater supplies—must be carefully considered when planningexperiments with this system.  相似文献   

4.
To investigate the effect of water stress on carbon metabolism in growing potato tubers (Solanum tuberosum L.), freshly cut and washed discs were incubated in a range of mannitol concentrations corresponding to external water potential between 0 and −1.2 MPa. (i) Incorporation of [14C]glucose into starch was inhibited in water-stressed discs, and labeling of sucrose was increased. High glucose overrode the changes at low water stress (up to −0.5 MPa) but not at high water stress. (ii) Although [14C]sucrose uptake increased in water-stressed discs, less of the absorbed [14C]sucrose was metabolised. (iii) Analysis of the sucrose content of the discs confirmed that increasing water deficit leads to a switch, from net sucrose degradation to net sucrose synthesis. (iv) In parallel incubations containing identical concentrations of sugars but differing in which sugar was labeled, degradation of [14C]sucrose and labeling of sucrose from [14C]glucose and fructose was found at each mannitol concentration. This shows that there is a cycle of sucrose degradation and resynthesis in these tuber discs. Increasing the extent of water stress changed the relation between sucrose breakdown and sucrose synthesis, in favour of synthesis. (v) Analysis of metabolites showed a biphasic response to increasing water deficit. Moderate water stress (0–200 mM mannitol) led to a decrease of the phosphorylated intermediates, especially 3-phosphoglycerate (3PGA). The decrease of metabolites at moderate water stress was not seen when high concentrations of glucose were supplied to the discs. More extreme water stress (300–500 mM mannitol) was accompanied by an accumulation of metabolites at low and high glucose. (vi) Moderate water stress led to an activation of sucrose phosphate synthase (SPS) in discs, and in intact tubers. The stimulation involved a change in the kinetic properties of SPS, and was blocked␣by protein phosphatase inhibitors. (vii) The amount of ADP-glucose (ADPGlc) decreased when discs were incubated on 100 or 200 mM mannitol. There was a strong correlation between the in vivo levels of ADPGlc and 3PGA when discs were subjected to moderate water stress, and when the sugar supply was varied. (viii) The level of ADPGlc increased and starch synthesis was further inhibited when discs were incubated in 300–500 mM mannitol. (ix) It is proposed that moderate water stress leads to an activation of SPS and stimulates sucrose synthesis. The resulting decline of 3PGA leads to a partial inhibition of ADP-glucose pyrophosphorylase and starch synthesis. More-extreme water stress leads to a further alteration of partitioning, because it inhibits the activities of one or more of the enzymes involved in the terminal reactions of starch synthesis. Received: 26 August 1996 / Accepted: 5 November 1996  相似文献   

5.
To investigate damaging mechanisms of chilling and salt stress to peanut (Arachis hypogaea L.) leaves, LuHua 14 was used in the present work upon exposure to chilling temperature (4°C) accompanied by high irradiance (1,200 μmol m−2 s−1) (CH), salt stress accompanied by high irradiance (1,200 μmol m−2 s−1) (SH), and high-irradiance stress (1,200 μmol m−2 s−1) at room temperature (25°C) (NH), respectively. Additionally, plants under low irradiance (100 μmol m−2 s−1) at room temperature (25°C) were used as control plants (CK). Relative to CK and NH treatments, both the maximal photochemical efficiency of PSII (Fv/Fm) and the absorbance at 820 nm decreased greatly in peanut leaves under CH and SH stress, which indicated that severe photoinhibition occurred in peanut leaves under such conditions. Initial fluorescence (Fo), 1 − qP and nonphotochemical quenching (NPQ) in peanut leaves significantly increased under CH- and SH stress. Additionally, the activity of superoxide dismutase (SOD), one of the key enzymes of water-water cycle, decreased greatly, the accumulation of malondialdehyde (MDA) and membrane permeability increased. These results suggested that damages to peanut photosystems might be related to the accumulation of reactive oxygen species (ROS) induced by excess energy, and the water-water cycle could not dissipate energy efficiently under the stress of CH and SH, which caused the accumulation of ROS greatly. CH and SH had similar damaging effects on peanut photosystems, except that CH has more severe effects. All the results showed that CH- and SH stress has similar damaging site and mechanisms in peanut leaves.  相似文献   

6.
Sucrose Metabolism in Bean Plants Under Water Deficit   总被引:10,自引:3,他引:7  
The effects of water stress on sucrose metabolism were evaluatedin bean plants of Tacarigua variety grown for 25 d. Decreasingwater potential and relative water content were observed. Waterstress effects resulted in a decrease of sucrose phosphate synthase(SPS) in both total (substrate saturating conditions) and Pi-insensitive(substrate limiting conditions plus inorganic phosphate) activities.The SPS Pi-insensitive activity was lower than the total SPSactivity, but the decrease in activity induced by water deficitwas relatively lower in the Pi-insensitive; however the activationstate increased during the water deficit period. An increasein sucrose synthase activity increased the activities of bothneutral and acid invertases at moderate water stress (–0·8MPa) and decreased activities at severe water stress(–1·45 MPa). The activity values of neutral invertasewere lower than those for the acid invertase. The starch/sucroseratio decreased and the ratio of total glucose/total fructoseincreased. These results indicate a relevant physiological roleof SPS in bean plants under water stress. Key words: Acid invertase, sucrose phosphate synthase, sucrose synthase  相似文献   

7.
A 42-day experiment was conducted to compare the effects of various levels of sodium selenite (SS) and Se-enriched yeast (SY) on chicken productivity, carcass traits, and breast Se concentration. Six hundred 1-day-old Cobb 500 broiler chicks were placed on 1 of 6 experimental treatments. The treatments consisted of feeding a diet without Se supplementation (basal diet) or basal diet with 0.6 mg/kg supplemented Se supplied by SS, SY, or a mix of the two (0.45 SS + 0.15 SY; 0.3 SS + 0.3 SY; 0.15 SS + 0.45 SY). Chicks in all Se-supplemented treatments had significantly higher final body weight and eviscerated weight than those on the basal diet (P < 0,05) and no significant differences were observed among selenium source (P < 0.05). Also, chicks in all Se-supplemented treatments had significantly higher Se contents in breast tissue than the control group (P < 0.05). Replacing SS by SY in the broiler diets resulted in increased concentrations of Se in the breast (P < 0.01). Strong correlations were found between breast Se concentrations and the level of SY supplementation of the broiler diet (r = 0.992). The results from this experiment indicate that SY is a superior source of selenium for the production of selenized meat, and can be used, without any detrimental effect on chicken performance, for adding nutritional value to broiler meat and thus safely improving human selenium intake.  相似文献   

8.
Porpoising is the popular name for the high-speed surface piercingmotion of dolphins and other species, in which long, ballisticjumps are alternated with sections of swimming close to thesurface. The first analysis of this behavior (Au and Weihs,1980) showed that above a certain "crossover" speed this behavioris energetically advantageous, as the reduction in drag dueto movement in the air becomes greater than the added cost ofleaping. Since that publication several studies documented porpoisingbehavior at high speeds. The observations indicated that thebehavior was more complex than previously assumed. The leapswere interspersed with relatively long swimming bouts, of abouttwice the leap length. In the present paper, the possibilityof dolphins using a combination of leaping and burst and coastswimming is examined. A three-phase model is proposed, in whichthe dolphin leaps out of the water at a speed Uf, which is thefinal speed obtained at the end of the burst phase of burstand coast swimming. The leap is at constant speed and so theanimal returns to the water at Uf, goes to a shallow depth andstarts horizontal coasting while losing speed, till it reachesUi. At that point it starts active swimming, accelerating toUf. It then starts the next leap. Ranges of speeds for whichthis three-stage swimming is advantageous are calculated asa function of animal and physical parameters. Notation C—Constant defined in equation (12) CD—Coasting drag coefficient D—Drag g—Gravitational acceleration H—Height of jump J—Energy required for jump k—Ratio of swim length to jump length l—Distance L—Total distance (eq. 28) m—Added mass M—Animal mass M1—Total mass r—Coefficient defined in eq. (22) R—Ratio of energies, for three-phase swimming R2—Ratio of energies, for burst and coast swimming t—Time T—Thrust U—Speed V—Body volume W—Weight  相似文献   

9.
The results of a systematic attempt to relate the growth-stimulatingfunction of compounds analogous to ethylene-bis-nitrourethaneto their chemical structure and properties showed that, withthe exception of a series of nitraminocarboxylic acids, NO2NH(CH2)COOH,activity was confined to compounds of the form R—N(NO2)—X—N(NO2)—R,where X is an alkylene or substituted alkylene chain. It issuggested that active compounds are converted to dinitramines(R = H) in the plant, and that the acidic nature of the —NHNO2groups is of importance. The oil/water partition coefficientsand the geometrical structure of the molecules are also shownto influence their growth-stimulating activity.  相似文献   

10.
In Datura ferox seeds, the far-red absorbing form of phytochrome(Pfr) induces endosperm softening, larger embryo growthpotential,and germination. We investigated the effect of exposing theseeds to a range of water potentials in the presence of Pfronits induction of these responses. In addition, the escape timeto far-red-light (FR) reversal of the three responses wasdetermined. Low water potential inhibited Pfr action on endosperm softeningand germination in a similar way. In both cases, a 50% reductionin the response to a saturating red-light (R) irradiation wasobserved at a water potential of c. —0·5 MPa andtherewas very good correlation between the percentage numberof seeds with softened endosperm at 45 h after R and germinationat 72 h after R (R2=0·95). In contrast, the effect ofdecreasing the external water potential on Pfr induction ofa larger embryogrowth potential was more complex. Moderate decreasesin water potential (—0·3 to —0·5 MPa)enhanced Pfr action and thegrowth potential of the embryos waslarger (20—25%) than the water controls; water potentialsbelow —0·7 MPa inhibited the Pfr stimulus. The escape time to FR reversal of the R effect was shorter forthe increase in embryo growth potential than for endospermsoftening.Twenty-four h after R, the embryo response had escaped in morethan 80% of the population whereas endospermsoftening and germinationwere susceptible to FR inhibition in 100% of the seeds. These results indicate that in D. ferox seeds the increase inembryo growth potential is not sufficient for germination andthatendosperm softening is a necessary condition. Key words: Germination, dormancy, phytochrome, endosperm softening, water potential  相似文献   

11.
Alien species’ resistance and adjustment to water stress and plant competition might largely determine the success of invasions in Mediterranean ecosystems because water availability is often limiting biomass production. Two outdoor pot experiments were conducted to test the hypotheses that at the recruitment stage the invader perennial tussock grass Cortaderia selloana is a superior competitor, and that it is more resistant to water stress than the two coexisting native species of the same functional group, Festuca arundinacea and Brachypodium phoenicoides. C. selloana reduced aboveground biomass of target native species, but not more than target native species on each other. Moreover, C. selloana did not resist interspecific competition more than target native species. Under control conditions, C. selloana did not have larger specific leaf area (SLA) and root–shoot ratio (R/S) ratio than target native species, contradicting the general statement that these traits are associated to invasiveness. F. arundinacea was the species which performed best but also the one most affected by water stress. Both C. selloana and B. phoenicoides performed in a similar way under water stress conditions. However, the alien species’ capacity to adjust to water stress, indicated by the increase in the root–shoot ratio under moderate and severe water stress, was slightly better than that of B. phoenicoides. Overall, at early recruitment stages, C. selloana is not a better competitor than the coexisting native species. However, it seems to be more resistant to water stress because as water becomes scarce C. selloana maximizes water uptake and minimizes water losses more than the native species.  相似文献   

12.
Continuous and simultaneous measurements of CO2 exchange andtranspiration rates of whole soybean plants were made undercontrasting, controlled environmental conditions when waterstress was imposed by withholding water. Daytime temperaturesand vapour pressure deficits were 27.5 ° C/12 mbar; 27.5° C/5 mbar; 22.5 ° C/12 mbar, and 22.5 ° C/5 mbar.The experimental conditions were virtually the same as the conditionsunder which the plants had been grown. Under all four treatments photosynthesis and transpiration rateswere closely correlated as water stress increased, but in viewof the evidence for a significant mesophyll resistance to photosynthesisin- both stressed and unstressed plants it is not consideredthat this is due to total stomatal control. At — 0.4 bar soil water potential (soll) the rates oftranspiration and photosynthesis became independent of the atmosphericconditions and were very similar under all treatments. Thisis attributed to slow movement of water into the root zone fromthe surrounding soil with associated stomatal closure limitingthe rates of water uptake and transpiration. With decreasing soll, relative water content of the leaf (RWC)fell more rapidly and to lower levels under 27.5 ° C/12mbar conditions than under the other treatments. The least reductionin RWC was under the 22.5 ° C/5 mbar treatment. Increasingsoil water stress had the greatest relative effect on ratesof gaseous exchange under 27.5 ° C/12mbar conditions andleast under 22.5 ° C/5mbar conditions.  相似文献   

13.
Vascular endothelial cells are directly and continuously exposed to fluid shear stress generated by blood flow. Shear stress regulates endothelial structure and function by controlling expression of mechanosensitive genes and production of vasoactive factors such as nitric oxide (NO). Though it is well known that shear stress stimulates NO production from endothelial nitric oxide synthase (eNOS), the underlying molecular mechanisms remain unclear and controversial. Shear-induced production of NO involves Ca2+/calmodulin-independent mechanisms, including phosphorylation of eNOS at several sites and its interaction with other proteins, including caveolin and heat shock protein-90. There have been conflicting results as to which protein kinases—protein kinase A, protein kinase B (Akt), other Ser/Thr protein kinases, or tyrosine kinases—are responsible for shear-dependent eNOS regulation. The functional significance of each phosphorylation site is still unclear. We have attempted to summarize the current status of understanding in shear-dependent eNOS regulation. shear stress; nitric oxide; endothelial cells; protein kinases  相似文献   

14.
The changes in leaf extension, plant dryweight, leaf area, netassimilation rate (E), relative growth-rate (RW), and relativeleaf growth-rate (RL), have been studied for four species grownfor 2 weeks in solutions of polyethylene glycol 4000 of controlledosmotic potentials. All aspects of growth were decreased bydecreasing the osmotic potential (sol) of the root medium andthe leaf water potential (), and ceased when / was greater than— 10 bars in bean, cotton, maize. These plants were moresusceptible than ryegrass to water stress. Growth of bean stoppedat equal to about —6 bars, but even at —10 barsryegrass was capable of some growth. Slight decrease in fromthe values in the control plants decreased growth during thefirst week but partial recovery was apparent during the secondweek's growth in solution culture, when leaf extension, E, RLand RW increased in plants subjected to stress. Examinationof the water balance, water potential, osmotic potential andturgor of the leaf in relation to relative water content suggeststhat recovery was related to increased turgor and that the abilityof the plants to grow at reduced values of the osmotic potentialof the root medium and of the leaf water potential depend onthe maintenance of turgor.  相似文献   

15.
Pereira, J. S., Tenhunen, J. D. and Lange, O. L. 1987. Stomatalcontrol of photosynthesis of Eucalyptus globulus Labill. treesunder field conditions in Portugal.—J. exp. Bot. 38: 1678–1688. Stomatal behaviour of adult leaves of Eucalyptus globulus treeswas studied under field conditions in Portugal. In the absenceof severe plant water stress stomata were open when the summedtotal of photosynthetically active photon flux density incidenton both leaf surfaces was above 100 µmol m2s1 and leafconductance to water vapour reached 245 mmol m 2 s1 on a total(both epidermes) leaf area basis. The stomata of both leaf epidermesresponded similarly to changes in solar radiation and waterstress. Water stress resulted in decreasing daily maxima inleaf conductance as predawn leaf water potential decreased.Maximal leaf conductance decreased to less than 50 mmol m 2s 1 when predawn leaf water potential decreased below —1·0MPa. At similar values of predawn leaf water potential stomatawere more closed as the leaf to air water vapour partial pressuredifference increased. The effect of increasing air dryness onstomata was greatest at high predawn leaf water potential. Dailymaxima in photosynthetic rates and in leaf conductance werelinearly related to one another in spring and summer. Both decreasedwith increase in leaf water stress. In autumn and winter, increasesin leaf conductance occurring under natural conditions duringthe course of the day were not necessarily accompanied by increasesin net photosynthesis. Stomata were more closed in the afternoonthan in the morning at the same rates of net photosynthesis,temperature or leaf to air water vapour partial pressure difference. Key words: Eucalyptus globulus,, photosynthesis, stomata, water stress.  相似文献   

16.
Relative competition among various plant parts for N during water stress,i.e. nitrogen distribution index (NDI) was determined in relation to specific nitrogenase activity (SNA) and nodule and soil nitrogen in both indeterminate (H-77-216) and determinate (ICPL-151) types of pigeonpea (Cajanus cajan L.) under greenhouse conditions. Two levels of water stress,i.e. moderate (soil Ψw) -0.77 MPa) and severe (soilΨw -1.34 MPa) were created by witholding the irrigation at vegetative (40 DAS) and flowering (70 DAS) stages. At vegetative stage under moderate stress the highest NDI was in nodules of cv. H-77-216 and in leaf of cv. ICPL-151. Under severe stress both the cultivars showed negative values of NDI, with maximum loss of N from root and nodules. Cultivar ICPL-151 behaved differently at flowering and vegetative stages. Very high loss of N from different plant parts was seen at flowering under severe stress. All the plant parts showed gain in N during rehydration. Loss and gain in N at both the stages under stress and rehydration respectively, correlated with available N in soil. Specific nitrogenase activity (SNA) and nodule N were maximum at moderate stress and related with NDI values of leaf and nodules.  相似文献   

17.
Mechanisms by which cupric glutamate, a novel algicide, extinguishes Alexandrium sp. LC3 are shown in this study. We show that cupric glutamate not only stimulated the production of malonaldehyde (MDA) and dramatically promoted cell plasma membrane permeability (p < 0.01) but also remarkably reduced sulfhydryl (SH) group content (p < 0.01). Analysis of protein expression profiles by two-dimensional electrophoresis (2-DE) indicated that only 47 protein spots were detected in both control and cupric glutamate treated cells. Three reliable spots were identified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) as ribulose-bisphosphate carboxylase large subunit precursor, RNA polymerase beta chain, and hypothetical protein, which can be well correlated with cupric glutamate stress. Based on above results, we hypothesize that the extinguishing mechanisms include (1) the cell membrane being damaged by cupric glutamate; (2) cupric glutamate probably induced denaturation and disintegration of intracellular protein, which led to inhibition of cell growth.  相似文献   

18.
The ability of two species of desert truffle, Terfezia claveryi strain TcS2 and Picoa lefebvrei strain OL2, to tolerate water stress in pure culture has been investigated. Both T. claveryi and P. lefebvrei strains exhibited a mycelium growth pattern characteristic of drought tolerant species. However, they were only tolerant to moderate water stress, below −1.07 MPa, with the P. lefebvrei isolate being slightly more drought tolerant than the T. claveryi isolate. The increased alkaline phosphatase (ALP) activity observed in both fungi at moderate water stress with respect to the control indicated the functional adaptation of these mycelia to these drought conditions. ALP activity can be used as an indicator of the metabolic activity of these fungi. Slight water stress (−0.45 MPa) could improve mycelial inoculum production of these desert truffles. Moreover, P. lefebvrei could be a good candidate for further desert truffle mycorrhizal plant cultivation programmes in semiarid Mediterranean areas.  相似文献   

19.
The tritiated 1 antagonist prazosin [3H]PRZ binds specifically and with high affinity to postsynaptic adrenoceptors in membrane preparations from cerebral cortex. Since adrenoceptors are of protein nature, it was of interest of investigate the possible role of disulfide (—SS—) and sulfhydril (—SH) groups in the binding of [3H]PRZ. Pretreatment of the membranes with the disulfide and sulfhydryl reactivesdl0Dithiothreitol,l-Dithiothreitol, Dithioerythritol or 5,5-Dithiobis-(2-nitrobenzoic acid) (DTNB), alone or in combination with the alkylating agent N-Methylmaleimide (NMM), decreased specific [3HPRZ binding, with minor changes in the non-specific counts. Saturation experiments revealed that all these reagents reduced the affinity of the binding site for [3H]PRZ, as judged by theK d 25°C, but only the alkylating agent NMM and the oxydizing reagent DTNB produced in addition to the increase inK d, a decrease of the maximum binding capacity (B max). The present results provide evidence for a participation of—SS—and/or—SH groups in the recognition site of the 1-adrenoceptor of cerebral cortex.  相似文献   

20.
Freezing avoidance mechanism of primordial shoots of conifer buds   总被引:2,自引:0,他引:2  
Sakai  Akira 《Plant & cell physiology》1979,20(7):1381-1390
Excised winter buds of very hardy fir supercooled to —30or — 35?C, though primordial shoots excised from thesewinter buds (freezing point: about —5.5?C) supercooledonly to —12 to — 14?C. Also, excised primordialshoots did not tolerate freezing, but were rather resistantto desiccation. Differential thermal analysis (DTA) of primordialshoots revealed that the capability of supercooling increasedwith decreasing water content and that no exotherm could bedetected in the primordial shoots with a water content belowabout 20%. When excised whole buds were cooled very slowly,the exotherm temperature shifted markedly to a lower value andthe exotherm became much smaller. Also, masses of needle icewere observed, mainly beneath the crown of the primordial shoot.From these results, it may be concluded that most of the waterin primordial shoots gradually migrates out through the crownand freezes as the temperature decreases (extraorgan freezing),which enables primordial shoots to survive at very low temperatures.Winter buds of Abies balsamea held at — 20?C for 30 daysand then slowly cooled down to —50 or —60?C remainedalive. Thus, there seems to be no low temperature limit to thisfrost avoidance mechanism, if the primordial shoots can resistintensive freeze-dehydration. Low temperature exotherms wereobserved in all genera which belong to Abietoideae and Laricoideaeof Pinaceae, all of which have a crown in the primordial shoots,but not in other conifers. 1 Contribution No. 2037 from the Institute of Low TemperatureScience. (Received June 25, 1979; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号