首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
SOCS regulation of the JAK/STAT signalling pathway   总被引:1,自引:0,他引:1  
The suppressor of cytokine signalling (SOCS) proteins were, as their name suggests, first described as inhibitors of cytokine signalling. While their actions clearly now extend to other intracellular pathways, they remain key negative regulators of cytokine and growth factor signalling. In this review we focus on the mechanics of SOCS action and the complexities of the mouse models that have underpinned our current understanding of SOCS biology.  相似文献   

6.
Control mechanism of JAK/STAT signal transduction pathway   总被引:7,自引:0,他引:7  
Yamada S  Shiono S  Joo A  Yoshimura A 《FEBS letters》2003,534(1-3):190-196
  相似文献   

7.
The JAK/STAT pathway and Drosophila development.   总被引:1,自引:0,他引:1  
The JAK/STAT signal transduction pathway plays a critical role in mammalian cells, particularly in hematopoiesis and immune responses. Several components of this pathway have been identified and characterized in Drosophila. Mutational analyses of these components have revealed a number of interesting developmental roles, and provide a mechanism to identify other interacting molecules and pathways. Hence, the JAK/STAT pathway in Drosophila serves as an attractive model for in vivo functional analyses of JAK/STAT signaling.  相似文献   

8.
9.
Activation of the JAK/STAT pathway in vascular smooth muscle by serotonin   总被引:4,自引:0,他引:4  
Serotonin (5-hydroxytryptamine, 5-HT) is a vasoconstrictor and mitogen whose levels are elevated in diabetes. Previous studies have shown the presence of 5-HT2A, 5-HT2B, and 5-HT1B receptors in vascular smooth muscle cells (VSMCs). There are currently no data regarding 5-HT2B and 5-HT1B receptor activation of the JAK/STAT pathway in VSMCs and resultant potential alterations in 5-HT signaling in diabetes. Therefore, we tested the hypothesis that 5-HT differentially activates the JAK/STAT pathway in VSMCs under conditions of normal (5 mM) and high (25 mM) glucose. Treatment of rat VSMCs with 5-HT (10–6 M) resulted in time-dependent activation (2-fold) of JAK2, JAK1, and STAT1, but not STAT3 (maximal at 5 min, returned to baseline by 30 min). The 5-HT2B receptor agonist BW723C86 and the 5-HT1B receptor agonist CGS12066A (10–9–10–5 M, 5-min stimulation) did not activate the JAK/STAT pathway. Treatment with the 5-HT2A receptor antagonist ketanserin (10 nM) inhibited JAK2 activation by 5-HT. Treatment of streptozotocin-induced diabetic rats with ketanserin (5 mg·kg–1·day–1) reduced activation of JAK2 and STAT1 but not STAT3 in endothelium-denuded thoracic aorta in vivo. 5-HT (10–6 M) treatment resulted in increased cell proliferation and increased DNA synthesis, which were inhibited by the JAK2 inhibitor AG490. Further studies with apocynin, diphenyleneiodonium chloride, catalase, and virally transfected superoxide dismutase had no effect at either glucose concentration on activation of the JAK/STAT pathway by 5-HT. Therefore, we conclude that 5-HT activates JAK2, JAK1, and STAT1 via the 5-HT2A receptors in a reactive oxygen species-independent manner under both normal and high glucose conditions. reactive oxygen species; 5-hydroxytryptamine  相似文献   

10.
11.
12.

Background  

Appropriately formulated quantitative computational models can support researchers in understanding the dynamic behaviour of biological pathways and support hypothesis formulation and selection by "in silico" experimentation. An obstacle to widespread adoption of this approach is the requirement to formulate a biological pathway as machine executable computer code. We have recently proposed a novel, biologically intuitive, narrative-style modelling language for biologists to formulate the pathway which is then automatically translated into an executable format and is, thus, usable for analysis via existing simulation techniques.  相似文献   

13.
14.
Transmembrane receptors interact with extracellular ligands to transduce intracellular signaling cascades, modulate target gene expression, and regulate processes such as proliferation, apoptosis, differentiation, and homeostasis. As a consequence, aberrant signaling events often underlie human disease. Whereas the vertebrate JAK/STAT signaling cascade is transduced via multiple receptor combinations, the Drosophila pathway has only one full-length signaling receptor, Domeless (Dome), and a single negatively acting receptor, Eye Transformer/Latran (Et/Lat). Here we investigate the molecular mechanisms underlying Et/Lat activity. We demonstrate that Et/Lat negatively regulates the JAK/STAT pathway activity and can bind to Dome, thus reducing Dome:Dome homodimerization by creating signaling-incompetent Dome:Et/Lat heterodimers. Surprisingly, we find that Et/Lat is able to bind to both JAK and STAT92E but, despite the presence of putative cytokine-binding motifs, does not detectably interact with pathway ligands. We find that Et/Lat is trafficked through the endocytic machinery for lysosomal degradation but at a much slower rate than Dome, a difference that may enhance its ability to sequester Dome into signaling-incompetent complexes. Our data offer new insights into the molecular mechanism and regulation of Et/Lat in Drosophila that may inform our understanding of how short receptors function in other organisms.  相似文献   

15.
The characterisation of ligands that activate the JAK/STAT pathway has the potential to throw light onto a comparatively poorly understood aspect of this important signal transduction cascade. Here, we describe our analysis of the only invertebrate JAK/STAT pathway ligands identified to date, the Drosophila unpaired-like family. We show that upd2 is expressed in a pattern essentially identical to that of upd and demonstrate that the proteins encoded by this region activate JAK/STAT pathway signalling. Mutational analysis demonstrates a mutual semi-redundancy that can be visualised in multiple tissues known to require JAK/STAT signalling. In order to better characterise the in vivo function of these ligands, we developed a reporter based on a natural JAK/STAT pathway responsive enhancer and show that ectopic upd2 expression can effectively activate the JAK/STAT pathway. While both Upd and Upd2 are secreted JAK/STAT pathway agonists, tissue culture assays show that the signal-sequences of Upd and Upd2 confer distinct properties, with Upd associated primarily with the extracellular matrix and Upd2 secreted into the media. The differing biophysical characteristics identified for Upd-like molecules have implications for their function in vivo and adds another aspect to our understanding of cytokine signalling in Drosophila.  相似文献   

16.
17.
18.
19.
Background: Prostate cancer (PC) is the most frequently diagnosed solid tumor in U.S. men. Genome-wide association studies (GWAS) have identified over 40 risk-associated single nucleotide polymorphisms (SNPs), including variants in androgen pathway genes (e.g., KLK3 and AR). Androgens are important in PC and genes involved in this pathway are therefore candidates for conferring susceptibility to PC. Methods: In this hypothesis-testing study, we evaluated PC risk in association with SNPs in 22 candidate genes involved in androgen metabolism or interactions with the androgen receptor (AR). A total of 187 SNPs were genotyped in 1458 cases and 1351 age-matched controls from a population-based study. PC risk was estimated using adjusted unconditional logistic regression and multinomial regression models. Results: Single SNP analyses showed evidence (p < 0.05) for associations with 14 SNPs in 9 genes: NKX3.1, HSD17B3, AKR1C3, SULT2A1, CYP17A1, KLK3, JAK2, NCOA4 and STAT3. The most significant result was observed for rs2253502 in HSD17B3 (odds ratio, OR = 0.57, 95% CI: 0.39–0.84). In addition, five SNPs in four genes (CYP17A1, HSD17B4, NCOA4, and SULT2A1) were associated with more aggressive disease (p < 0.01). Conclusions: Our results replicate previously reported associations for SNPs in CYP17A1, HSD17B3, ARK1C3, NKX3.1, NCOA4 and KLK3. In addition, novel associations were observed for SNPs in JAK2, HSD17B4, and SULT2A1. These results will require replication in larger studies.  相似文献   

20.
Spontaneous tumor regression can be observed in many tumors, however, studies related to the altered expression of lncRNA in spontaneous glioma regression are limited, and the potential contributions of lncRNAs to spontaneous glioma regression remain unknown. To investigate the biological roles of lncRNA-135528 in spontaneous glioma regression. The cDNA fragment of lncRNA-135528 was obtained by rapid-amplification of cDNA ends (RACE) technology and cloned into the plvx-mcmv-zsgreen-puro vector. Additionally, we stably silenced or overexpressed lncRNA-135528 in G422 cells by transfecting with siRNA against lncRNA-135528 or lncRNA-135528 overexpression plasmid. Then, we examined lncRNA-135528 overexpressing and lncRNA-135528 silencing on glioma cells and its effects on CXCL10 and JAK/STAT pathways. The main findings indicated that lncRNA-135528 promoted glioma cell apoptosis, inhibited cell proliferation and arrested cell cycle progression; the up-regulation of lncRNA135528 led to significantly increased CXCL10 levels and the differential expression of mRNA associated with JAK/STAT pathway in glioma cells. lncRNA-135528 can inhibit tumor progression by up-regulating CXCL10 through the JAK/STAT pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号