首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aerobically grown Rhodobacter sphaeroides synthesizes a respiratory chain similar to that of eukaryotes. We describe the purification of the aa3-type cytochrome c oxidase of Rb. sphaeroides as a highly active (Vmax > or = 1800 s-1), three-subunit enzyme from isolated, washed cytoplasmic membranes by hydroxylapatite chromatography and anion exchange fast protein liquid chromatography. The purified oxidase exhibits biphasic kinetics of oxidation of mammalian cytochrome c, similar to mitochondrial oxidases, and pumps protons efficiently (H+/e- = 0.7) following reconstitution into phospholipid vesicles. A membrane-bound cytochrome c is associated with the aa3-type oxidase in situ, but is removed during purification. The EPR spectra of the Rb. sphaeroides enzyme suggest the presence of a strong hydrogen bond to one or both of the histidine ligands of heme a. In other respects, optical, EPR, and resonance Raman analyses of the metal centers and their protein environments demonstrate a close correspondence between the bacterial enzyme and the structurally more complex bovine cytochrome c oxidase. The results establish this bacterial oxidase as an excellent model system for the mammalian enzyme and provide the basis for site-directed mutational analysis of its energy transducing function.  相似文献   

2.
1. In the absence of cytochrome c, ferrocyanide or ferrous sulphate reduces cytochrome c oxidase (EC 1.9.3.1), but no continuous oxygen uptake ensues, as it does with N,N,N',N'-tetramethyl-p-phenylenediamine or reduced phenazine methosulphate as reductants, unless a substoichiometric amount of cytochrome c or an excess of clupein is present. Cytochrome c cannot be replaced by porphyrin cytochrome c. 2. Cytochrome c, porphyrin cytochrome c and clupein all stimulate the reduction of cytochrome aa3 by ferrocyanide. 3. A model is proposed to explain these findings in which a high-affinity site for cytochrome c on the oxidase regulates the access of hydrophilic electron donors to a low-affinity site, and reduction via the high-affinity site is required for continuous oxygen uptake. 4. Furthermore, it is shown that upon reaction of oxidase with ferrocyanide, cyano-oxidase is formed.  相似文献   

3.
The aa(3)-type cytochrome c oxidase of Rhodobacter sphaeroides, a proteobacterium of the alpha subgroup, is structurally similar to the core subunits of the terminal oxidase in the mitochondrial electron transport chain. Subunit I, the product of the coxI gene, normally binds two heme A molecules. A deletion of cox10, the gene for the farnesyltransferase required for heme A synthesis, did not prevent high level accumulation of subunit I in the cytoplasmic membrane. Thus, subunit I can be expressed and stably inserted into the cytoplasmic membrane in the absence of heme A. Aposubunit I was purified via affinity chromatography to a polyhistidine tag. Copurification of subunits II and III with aposubunit I indicated that assembly of the core oxidase complex occurred without the binding of heme A. In addition to formation of the apooxidase containing all three large structural proteins, CoxI-II and CoxI-III heterodimers were isolated from cox10 deletion strains harboring expression plasmids with coxI and coxII or with coxI and coxIII, respectively. This demonstrated that subunit assembly of the apoenzyme was not an inherently ordered or sequential process. Thus, multiple paths must be considered for understanding the assembly of this integral membrane metalloprotein complex.  相似文献   

4.
Han D  Morgan JE  Gennis RB 《Biochemistry》2005,44(38):12767-12774
Cytochrome c oxidase uses the free energy of oxygen reduction to establish a transmembrane proton gradient. The proton-conducting D-channel in this enzyme is the major input pathway for protons which go to the binuclear center for water formation ("chemical protons") and likely the only input pathway for protons that get translocated across the lipid membrane ("pumped protons"). The D-channel starts at an acidic residue near the protein surface (D132, Rhodobacter sphaeroides numbering) and leads to another acidic residue near the binuclear center. Recent studies have shown that mutants that introduce an additional acidic residue in the channel (N139D) have the remarkable effect of accelerating steady-state oxidase activity but completely eliminating proton pumping. In this work, an aspartic acid was introduced at the position of glycine 204, G204D, which is also within the D-channel, and the effects were examined. In contrast to N139D, the G204D mutation results in a dramatic decrease of the steady-state oxygen reductase activity (<2% of wild type) [Aagaard, A., and Brzezinski, P. (2001) FEBS Lett. 494, 157-160]. The residual activity is not coupled to the proton pump, and furthermore, in reconstituted vesicles the mutant enzyme exhibits a reverse respiration control ratio; i.e., the mutant oxidase activity is stimulated rather than inhibited when working against a protonmotive force. Hence, the mutant behaves very much like the D132N, which blocks proton uptake through the D-channel. Single-turnover experiments show that the rate-limiting step in the reaction of O2 with the fully reduced G204D mutant is the F --> O transition, similar to the D132N mutant. The block of the D-channel in the D132N mutant can be partly bypassed by biochemically removing subunit III from the enzyme, indicating that removal of the subunit reveals an alternate entrance for protons to the channel. However, this is not observed with the G204D mutant. This suggests that the cryptic entrance to the D-channel that is revealed by the removal of subunit III is between the levels of G204 and D132.  相似文献   

5.
6.
The reaction between cytochrome c (Cc) and Rhodobacter sphaeroides cytochrome c oxidase (CcO) was studied using a cytochrome c derivative labeled with ruthenium trisbipyridine at lysine 55 (Ru-55-Cc). Flash photolysis of a 1:1 complex between Ru-55-Cc and CcO at low ionic strength results in electron transfer from photoreduced heme c to Cu(A) with an intracomplex rate constant of k(a) = 4 x 10(4) s(-1), followed by electron transfer from Cu(A) to heme a with a rate constant of k(b) = 9 x 10(4) s(-1). The effects of CcO surface mutations on the kinetics follow the order D214N > E157Q > E148Q > D195N > D151N/E152Q approximately D188N/E189Q approximately wild type, indicating that the acidic residues Asp(214), Glu(157), Glu(148), and Asp(195) on subunit II interact electrostatically with the lysines surrounding the heme crevice of Cc. Mutating the highly conserved tryptophan residue, Trp(143), to Phe or Ala decreased the intracomplex electron transfer rate constant k(a) by 450- and 1200-fold, respectively, without affecting the dissociation constant K(D). It therefore appears that the indole ring of Trp(143) mediates electron transfer from the heme group of Cc to Cu(A). These results are consistent with steady-state kinetic results (Zhen, Y., Hoganson, C. W., Babcock, G. T., and Ferguson-Miller, S. (1999) J. Biol. Chem. 274, 38032-38041) and a computational docking analysis (Roberts, V. A., and Pique, M. E. (1999) J. Biol. Chem. 274, 38051-38060).  相似文献   

7.
8.
《BBA》1985,810(2):174-183
Cytochrome c oxidase of Nitrosomonas europaea has been called cytochrome a1 by Erickson et al. (Erickson, R.H., Hooper, A.B. and Terry, K.R. (1972) Biochim. Biophys. Acta 283, 155–166) because the reduced form of their preparation had the α peak at 595 nm. In the present studies, the enzyme was purified to an electrophoretically almost homogeneous state and some of its properties were studied. The enzyme much resembled cytochrome aa3-type oxidase although its reduced form showed the α peak at 597 nm. (1) The absorption spectra of the CO compound of the reduced enzyme and CN compounds of the oxidized and reduced enzyme were similar to those of the respective compounds of cytochrome aa3, as well as the absorption spectrum of the intact enzyme resembled that of the cytochrome. (2) The enzyme possessed two molecules of haem a and 1–2 atoms of copper in the molecule. (3) The enzyme molecule was composed of two kinds of subunits of Mr 50000 and 33000, respectively, as are other bacterial cytochromes aa3. Although the enzyme resembled other bacterial cytochromes aa3 in many properties, it differed greatly in two properties; its CO compound was easily dissociated into the oxidized enzyme and CO in air, and 50% inhibition of its activity by CN required approx. 100 μM of the reagent. The enzyme oxidized 0.57, 1.6 and 1.8 mol horse, Candida krusei and N. europaea ferrocytochromes c per s per mol haem a, respectively, in 10 mM phosphate buffer, pH 6.0. The turnover numbers with eukaryotic ferrocytochromes c were increased to 32 and 14, respectively, by addition of cardiolipin (14 μ · ml−1).  相似文献   

9.
10.
Mitochondrial protein synthesis was analyzed in the yeast mit? mutants of Saccharomycescerevisiae which specifically lack cytochrome c oxidase. [3H]leucine labeled polypeptides synthesized in yeast OXI 3 mutant were analyzed by means of immunoprecipitation and SDS-polyacrylamide gel electrophoresis (SDS-PAGE). When compared to control, subunit I was not detectable. This result was substantiated by growing OXI 3 mutant in the presence of cycloheximide, an inhibitor of cytoplasmic protein synthesis. Under such conditions SDS-PAGE analysis of [3H]leucine labeled immunoprecipitate shows the absence of subunit I. These data show that the OXI 3 locus contains the structural gene for cytochrome c oxidase subunit I.  相似文献   

11.
We investigated the interaction between cytochrome c oxidase and its substrate cytochrome c by catalyzing the covalent linkage of the two proteins to yield 1 : 1 covalent enzyme-substrate complexes under conditions of low ionic strength. In addition to the 'traditional' oxidized complex formed between oxidized cytochrome c and the oxidized enzyme we prepared complexes under steady-state reducing conditions. Whereas for the 'oxidized' complex cytochrome c became bound exclusively to subunit II of the enzyme, for the 'steady-state' complex cytochrome c became bound to subunit II and two low molecular mass subunits, most likely VIb and IV. For both complexes we investigated: (a) the ability of the covalently bound cytochrome c to relay electrons into the enzyme, and (b) the ability of the covalently bound enzyme to catalyze the oxidation of unbound (exogenous) ferrocytochrome c. Steady-state spectral analysis (400-630 nm) combined with stopped-flow studies, confirmed that the bound cytochrome c mediated the efficient transfer of electrons from the reducing agent ascorbate to the enzyme. In the case of the latter, the half life for the ascorbate reduction of the bound cytochrome c and that for the subsequent transfer of electrons to haem a were both < 5 ms. In contrast the covalent complexes, when reduced, were found to be totally unreactive towards oxidized cytochrome c oxidase confirming that the previously observed reduction of haem a within the complexes occurred via intramolecular rather than intermolecular electron transfer. Additionally, stopped-flow analysis at 550 nm showed that haem a within both covalent complexes catalyzed the oxidation of exogenous ferrocytochrome c: The second order rate constant for the traditional complex was 0.55x10(6) m(-1) x s(-1) while that for the steady-state was 0.27x10(6) m(-1) x s(-1). These values were approximately 25-50% of those observed for 1 : 1 electrostatic complexes of similar concentrations. These results combined with those of the ascorbate and the electrophoresis studies suggest that electrons are able to enter cytochrome c oxidase via two independent pathways. We propose that during enzyme turnover the enzyme cycles between two conformers, one with a substrate binding site at subunit II and the other along the interface of subunits II, IV and VIb. Structural analysis suggests that Glu112, Glu113, Glu114 and Asp125 of subunit IV and Glu40, Glu54, Glu78, Asp35, Asp49, Asp73 and Asp74 of subunit VIb are residues that might possibly be involved.  相似文献   

12.
The gene for yeast cytochrome c oxidase subunit V, COX5, has been isolated from a Saccharomyces cerevisiae DNA library by complementation of a cytochrome c oxidase subunit V mutant, JM28. One complementing plasmid, YEp13-511, with a DNA insert of 4.8 kilobase pairs, has been characterized in detail. This plasmid restores respiratory competency in JM28, results in increased cytochrome c oxidase activity and a new form of subunit V in JM28 mitochondria, and is capable of selecting mRNA for subunit V. These results indicate that YEp13-511 carries the COX5 gene and that the subunit V encoded by this plasmid gene is capable of entering the mitochondrion and assembling into a functional holocytochrome c oxidase.  相似文献   

13.
To determine the interaction site for cytochrome c (Cc) on cytochrome c oxidase (CcO), a number of conserved carboxyl residues in subunit II of Rhodobacter sphaeroides CcO were mutated to neutral forms. A highly conserved tryptophan, Trp(143), was also mutated to phenylalanine and alanine. Spectroscopic and metal analyses of the surface carboxyl mutants revealed no overall structural changes. The double mutants D188Q/E189N and D151Q/E152N exhibit similar steady-state kinetic behavior as wild-type oxidase with horse Cc and R. sphaeroides Cc(2), showing that these residues are not involved in Cc binding. The single mutants E148Q, E157Q, D195N, and D214N have decreased activities and increased K(m) values, indicating they contribute to the Cc:CcO interface. However, their reactions with horse and R. sphaeroides Cc are different, as expected from the different distribution of surface lysines on these cytochromes c. Mutations at Trp(143) severely inhibit activity without changing the K(m) for Cc or disturbing the adjacent Cu(A) center. From these data, we identify a Cc binding area on CcO with Trp(143) and Asp(214) close to the site of electron transfer and Glu(148), Glu(157), and Asp(195) providing electrostatic guidance. The results are completely consistent with time-resolved kinetic measurements (Wang, K., Zhen, Y., Sadoski, R., Grinnell, S., Geren, L., Ferguson-Miller, S., Durham, B., and Millett, F. (1999) J. Biol. Chem. 274, 38042-38050) and computational docking analysis (Roberts, V. A., and Pique, M. E. (1999) J. Biol. Chem. 274, 38051-38060).  相似文献   

14.
Both the aa(3)-type cytochrome c oxidase from Rhodobacter sphaeroides (RsCcO(aa3)) and the closely related bo(3)-type ubiquinol oxidase from Escherichia coli (EcQO(bo3)) possess a proton-conducting D-channel that terminates at a glutamic acid, E286, which is critical for controlling proton transfer to the active site for oxygen chemistry and to a proton loading site for proton pumping. E286 mutations in each enzyme block proton flux and, therefore, inhibit oxidase function. In the current work, resonance Raman spectroscopy was used to show that the E286A and E286C mutations in RsCcO(aa3) result in long range conformational changes that influence the protein interactions with both heme a and heme a(3). Therefore, the severe reduction of the steady-state activity of the E286 mutants in RsCcO(aa3) to ~0.05% is not simply a result of the direct blockage of the D-channel, but it is also a consequence of the conformational changes induced by the mutations to heme a and to the heme a(3)-Cu(B) active site. In contrast, the E286C mutation of EcQO(bo3) exhibits no evidence of conformational changes at the two heme sites, indicating that its reduced activity (3%) is exclusively a result of the inhibition of proton transfer from the D-channel. We propose that in RsCcO(aa3), the E286 mutations severely perturb the active site through a close interaction with F282, which lies between E286 and the heme-copper active site. The local structure around E286 in EcQO(bo3) is different, providing a rationale for the very different effects of E286 mutations in the two enzymes. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.  相似文献   

15.
Myat T. Lin  Robert B. Gennis 《BBA》2012,1817(10):1894-1900
Cytochrome c oxidase (CcO) catalyzes the reduction of molecular oxygen to water using ferrocytochrome c (cyt c2 +) as the electron donor. In this study, the oxidation of horse cyt c2 + by CcO from Rhodobacter sphaeroides, was monitored using stopped-flow spectrophotometry. A novel analytic procedure was applied in which the spectra were deconvoluted into the reduced and oxidized forms of cyt c by a least-squares fitting method, yielding the reaction rates at various concentrations of cyt c2 + and cyt c3 +. This allowed an analysis of the effects of cyt c3 + on the steady-state kinetics between CcO and cyt c2 +. The results show that cyt c3 + exhibits product inhibition by two mechanisms: competition with cyt c2 + at the catalytic site and, in addition, an interaction at a second site which further modulates the reaction of cyt c2 + at the catalytic site. These results are generally consistent with previous reports, indicating the reliability of the new procedure. We also find that a 6 × His-tag at the C-terminus of the subunit II of CcO affects the binding of cyt c at both sites. The approach presented here should be generally useful in spectrophotometric studies of complex enzyme kinetics. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

16.
The cbb(3) cytochrome c oxidase of Rhodobacter sphaeroides consists of four nonidentical subunits. Three subunits (CcoN, CcoO, and CcoP) comprise the catalytic "core" complex required for the reduction of O(2) and the oxidation of a c-type cytochrome. On the other hand, the functional role of subunit IV (CcoQ) of the cbb(3) oxidase was not obvious, although we previously suggested that it is involved in the signal transduction pathway controlling photosynthesis gene expression (Oh, J. I., and Kaplan, S. (1999) Biochemistry 38, 2688-2696). Here we go on to demonstrate that subunit IV protects the core complex, in the presence of O(2), from proteolytic degradation by a serine metalloprotease. In the absence of CcoQ, we suggest that the presence of O(2) leads to the loss of heme from the core complex, which destabilizes the cbb(3) oxidase into a "degradable" form, perhaps by altering its conformation. Under aerobic conditions the absence of CcoQ appears to affect the CcoP subunit most severely. It was further demonstrated, using a series of COOH-terminal deletion derivatives of CcoQ, that the minimum length of CcoQ required for stabilization of the core complex under aerobic conditions is the amino-terminal approximately 48-50 amino acids.  相似文献   

17.
We have recently established that the facultative phototrophic bacterium Rhodobacter sphaeroides, like the closely related Rhodobacter capsulatus species, contains both the previously characterized mobile electron carrier cytochrome c2 (cyt c2) and the more recently discovered membrane-anchored cyt cy. However, R. sphaeroides cyt cy, unlike that of R. capsulatus, is unable to function as an efficient electron carrier between the photochemical reaction center and the cyt bc1 complex during photosynthetic growth. Nonetheless, R. sphaeroides cyt cy can act at least in R. capsulatus as an electron carrier between the cyt bc1 complex and the cbb3-type cyt c oxidase (cbb3-Cox) to support respiratory growth. Since R. sphaeroides harbors both a cbb3-Cox and an aa3-type cyt c oxidase (aa3-Cox), we examined whether R. sphaeroides cyt cy can act as an electron carrier to either or both of these respiratory terminal oxidases. R. sphaeroides mutants which lacked either cyt c2 or cyt cy and either the aa3-Cox or the cbb3-Cox were obtained. These double mutants contained linear respiratory electron transport pathways between the cyt bc1 complex and the cyt c oxidases. They were characterized with respect to growth phenotypes, contents of a-, b-, and c-type cytochromes, cyt c oxidase activities, and kinetics of electron transfer mediated by cyt c2 or cyt cy. The findings demonstrated that both cyt c2 and cyt cy are able to carry electrons efficiently from the cyt bc1 complex to either the cbb3-Cox or the aa3-Cox. Thus, no dedicated electron carrier for either of the cyt c oxidases is present in R. sphaeroides. However, under semiaerobic growth conditions, a larger portion of the electron flow out of the cyt bc1 complex appears to be mediated via the cyt c2-to-cbb3-Cox and cyt cy-to-cbb3-Cox subbranches. The presence of multiple electron carriers and cyt c oxidases with different properties that can operate concurrently reveals that the respiratory electron transport pathways of R. sphaeroides are more complex than those of R. capsulatus.  相似文献   

18.
Genetic manipulation of the aa(3)-type cytochrome c oxidase of Rhodobacter sphaeroides was used to determine the minimal structural subunit associations required for the assembly of the heme A and copper centers of subunit I. In the absence of the genes for subunits II and III, expression of the gene for subunit I in Rb. sphaeroides allowed purification of a form of free subunit I (subunit I(a)()) that contained a single heme A. No copper was present in this protein, indicating that the heme a(3)-Cu(B) active site was not assembled. In cells expressing the genes for subunits I and II, but not subunit III, two oxidase forms were synthesized that were copurified by histidine affinity chromatography and separated by anion-exchange chromatography. One form was a highly active subunit I-II oxidase containing a full complement of structurally normal metal centers. This shows that association of subunit II with subunit I is required for stable formation of the active site in subunit I. In contrast, subunit III is not required for the formation of any of the metal centers or for the production of an oxidase with wild-type activity. The second product of the cells lacking subunit III was a large amount of a free form of subunit I that appeared identical to subunit I(a)(). Since significant amounts of subunit I(a)() were also isolated from wild-type cells, it is likely that subunit I(a)() will be present in any preparation of the aa(3)-type oxidase isolated via an affinity tag on subunit I.  相似文献   

19.
Krithika Ganesan  Robert B. Gennis 《BBA》2010,1797(6-7):619-624
The K-pathway is one of the two proton-input channels required for function of cytochrome c oxidase. In the Rhodobacter sphaeroides cytochrome c oxidase, the K-channel starts at Glu101 in subunit II, which is at the surface of the protein exposed to the cytoplasm, and runs to Tyr288 at the heme a3/CuB active site. Mutations of conserved, polar residues within the K-channel block or inhibit steady state oxidase activity. A large body of research has demonstrated that the K-channel is required to fully reduce the heme/Cu binuclear center, prior to the reaction with O2, presumably by providing protons to stabilize the reduced metals (ferrous heme a3 and cuprous CuB). However, there are conflicting reports which raise questions about whether blocking the K-channel blocks both electrons or only one electron from reaching the heme/Cu center. In the current work, the rate and extent of the anaerobic reduction of the heme/Cu center were monitored by optical and EPR spectroscopies, comparing the wild type and mutants that block the K-channel. The new data show that when the K-channel is blocked, one electron will still readily enter the binuclear center. The one-electron reduction of the resting oxidized (“O”) heme/Cu center of the K362M mutant, results in a partially reduced binuclear center in which the electron is distributed about evenly between heme a3 and CuB in the R. sphaeroides oxidase. Complete reduction of the heme/Cu center requires the uptake of two protons which must be delivered through the K-channel.  相似文献   

20.
The aspartate-132 in subunit I (D(I-132)) of cytochrome c oxidase from Rhodobacter sphaeroides is located on the cytoplasmic surface of the protein at the entry point of a proton-transfer pathway used for both substrate and pumped protons (D-pathway). Replacement of D(I-132) by its nonprotonatable analogue asparagine (DN(I-132)) has been shown to result in a reduced overall activity of the enzyme and impaired proton pumping. The results from this study show that during oxidation of the fully reduced enzyme the reaction was inhibited after formation of the oxo-ferryl (F) intermediate (tau congruent with 120 microseconds). In contrast to the wild-type enzyme, in the mutant enzyme formation of this intermediate was not associated with proton uptake from solution, which is the reason the DN(I-132) enzyme does not pump protons. The proton needed to form F was presumably taken from a protonatable group in the D-pathway (e.g., E(I-286)), which indicates that in the wild-type enzyme the proton transfer during F formation takes place in two steps: proton transfer from the group in the pathway is followed by faster reprotonation from the bulk solution, through D(I-132). Unlike the wild-type enzyme, in which F formation is coupled to internal electron transfer from CuA to heme a, in the DN(I-132) enzyme this electron transfer was uncoupled from formation of the F intermediate, which presumably is due to the impaired charge-compensating proton uptake from solution. In the presence of arachidonic acid which has been shown to stimulate the turnover activity of the DN(I-132) enzyme (Fetter et al. (1996) FEBS Lett. 393, 155), proton uptake with a time constant of approximately 2 ms was observed. However, no proton uptake associated with formation of F (tau congruent with 120 micros) was observed, which indicates that arachidonic acid can replace the role of D(I-132), but it cannot transfer protons as fast as the Asp. The results from this study show that D(I-132) is crucial for efficient transfer of protons into the enzyme and that in the DN(I-132) mutant enzyme there is a "kinetic barrier" for proton transfer into the D-pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号