首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Cheng Y  Li X  Jiang H  Ma W  Miao W  Yamada T  Zhang M 《The FEBS journal》2012,279(13):2431-2443
Nucleotide-binding site (NBS) disease resistance genes play an integral role in defending plants from a range of pathogens and insect pests. Consequently, a number of recent studies have focused on NBS-encoding genes in molecular disease resistance breeding programmes for several important plant species. Little information, however, has been reported with an emphasis on systematic analysis and a comparison of NBS-encoding genes in maize. In the present study, 109 NBS-encoding genes were identified based on the complete genome sequence of maize (Zea mays cv. B73), classified as four different subgroups, and then characterized according to chromosomal locations, gene duplications, structural diversity and conserved protein motifs. Subsequent phylogenetic comparisons indicated that several maize NBS-encoding genes possessed high similarity to function-known NBS-encoding genes, and revealed the evolutionary relationships of NBS-encoding genes in maize comparede to those in other model plants. Analyses of the physical locations and duplications of NBS-encoding genes showed that gene duplication events of disease resistance genes were lower in maize than in other model plants, which may have led to an increase in the functional diversity of the maize NBS-encoding genes. Various expression patterns of maize NBS-encoding genes in different tissues were observed using an expressed-sequence tags database and, alternatively, after southern leaf blight infection or the application of exogenous salicylic acid. The results reported in the present study contribute to an improved understanding of the NBS-encoding gene family in maize.  相似文献   

2.
具有核苷酸结合位点(nucleotide binding site,NBS)的抗病基因在植物抵抗各种病原菌侵染中起关键作用。对玉米全基因组中具有NBS结构的基因进行鉴定和分析,并结合水稻、高粱、拟南芥、百脉根、苜蓿和杨树的NBS类基因比较其在数量、复制、染色体定位和亲缘关系上的进化差异。发现玉米NBS类基因数量、复制数和成簇基因数均明显少于其他植物。低复制频率可能导致玉米NBS类基因较少,并推测可能导致其功能具有多样性。在基因染色体定位上,除高梁外,玉米与其他五种植物相似,呈不均衡分布。此外,进化树分析表明玉米NBS类基因与高粱的亲缘关系最近,与拟南芥的最远,在物种间表现出较高的保守性。结果对掲示玉米NBS基因的进化特点与发掘有益的NBS类抗病基因提供了重要的理论依据。  相似文献   

3.
Smith SM  Pryor AJ  Hulbert SH 《Genetics》2004,167(4):1939-1947
The maize Rp1 rust resistance locus is a complex consisting of a family of closely related resistance genes. The number of Rp1 paralogs in different maize lines (haplotypes) varied from a single gene in some stocks of the inbred A188 to >50 genes in haplotypes carrying the Rp1-A and Rp1-H specificities. The sequences of paralogs in unrelated haplotypes differ, indicating that the genetic diversity of Rp1-related genes is extremely broad in maize. Two unrelated haplotypes with five or nine paralogs had identical resistance phenotypes (Rp1-D) encoded in genes that differed by three nucleotides resulting in a single amino acid substitution. Genes in some haplotypes are more similar to each other than to any of the genes in other haplotypes indicating that they are evolving in a concerted fashion.  相似文献   

4.
Zhang L  Peek AS  Dunams D  Gaut BS 《Genetics》2002,162(2):851-860
Plant defense genes are subject to nonneutral evolutionary dynamics. Here we investigate the evolutionary dynamics of the duplicated defense genes hm1 and hm2 in maize and its wild ancestor Zea mays ssp. parviglumis. Both genes have been shown to confer resistance to the fungal pathogen Cochliobolus carbonum race 1, but the effectiveness of resistance differs between loci. The genes also display different population histories. The hm1 locus has the highest nucleotide diversity of any gene yet sampled in the wild ancestor of maize, and it contains a large number of indel polymorphisms. There is no evidence, however, that high diversity in hm1 is a product of nonneutral evolution. In contrast, hm2 has very low nucleotide diversity in the wild ancestor of maize. The distribution of hm2 polymorphic sites is consistent with nonneutral evolution, as indicated by Tajima's D and other neutrality tests. In addition, one hm2 haplotype is more frequent than expected under the equilibrium neutral model, suggesting hitchhiking selection. Both defense genes retain >80% of the level of genetic variation in maize relative to the wild ancestor, and this level is similar to other maize genes that were not subject to artificial selection during domestication.  相似文献   

5.
Isolates of Ustilago maydis (D.C.) Cda are known to differ in the degree to which they can parasitise maize and, as no differential reaction occurs between pathogen and host, these differences must be differences in aggressiveness. Inoculation of juvenile maize plants induced morphological changes which provided a means of assessing and distinguishing U. maydis isolates in respect of their aggressiveness. Thus it was possible to carry out a survey of the genetic architecture of aggressiveness in natural populations of the pathogen. The distribution of aggressiveness within a single gall suggested that selection had taken place over a number of generations in favour of genes or gene systems tending to increase aggressiveness. Diallele analyses of isolates from two natural populations revealed that aggressiveness had a low heritability and was determined by genes exhibiting mainly non-allelic interaction. It has been proposed that horizontal resistance in host cultivars would have a more long lasting protective effect against disease. However, the genetic architecture of aggressiveness in U. maydis should enable the pathogen to respond rapidly to changes in host resistance and the skewed distribution found within a single gall tends to support this. Therefore, the use of higher levels of host resistance should rapidly select for higher aggressiveness in the pathogen.  相似文献   

6.
Rice diseases (bacterial, fungal, or viral) threaten food productivity. Host resistance is the most efficient, environmentally friendly method to cope with such diverse pathogens. Quantitative resistance conferred by quantitative trait loci (QTLs) is a valuable resource for rice disease resistance improvement. Although QTLs confer partial but durable resistance to many pathogen species in different crop plants, the molecular mechanisms of quantitative disease resistance remain mostly unknown. Quantitative resistance and non-host resistance are types of broad-spectrum resistance, which are mediated by resistance (R) genes. Because R genes activate different resistance pathways, investigating the genetic spectrum of resistance may lead to minimal losses from harmful diseases. Genome studies can reveal interactions between different genes and their pathways and provide insight into gene functions. Protein–protein interaction (proteomics) studies using molecular and bioinformatics tools may further enlighten our understanding of resistance phenomena.  相似文献   

7.
The focus of many fungal endophyte studies has been how plants benefit from endophyte infection. Few studies have investigated the role of the host plant as an environment in shaping endophyte community diversity and composition. The effects that different attributes of the host plant, that is, host genetic variation, host variation in resistance to the fungal pathogen Ustilago maydis and U. maydis infection, have on the fungal endophyte communities in maize (Zea mays) was examined. The internal transcribed spacer (ITS) region of the rDNA was sequenced to identify fungi and the endophyte communities were compared in six maize lines that varied in their resistance to U. maydis. It was found that host genetic variation, as determined by maize line, had significant effects on species richness, while the interactions between line and U. maydis infection and line and field plot had significant effects on endophyte community composition. However, the effects of maize line were not dependent on whether lines were resistant or susceptible to U. maydis. Almost 3000 clones obtained from 58 plants were sequenced to characterize the maize endophyte community. These results suggest that the endophyte community is shaped by complex interactions and factors, such as inoculum pool and microclimate, may be important.  相似文献   

8.
Nematode resistance in plants: the battle underground   总被引:1,自引:0,他引:1  
Parasitic nematodes infect thousands of plant species, but some plants harbor specific resistance genes that defend against these pests. Several nematode resistance genes have been cloned in plants, and most resemble other plant resistance genes. Nematode resistance is generally characterized by host plant cell death near or at the feeding site of the endoparasitic worm. The timing and localization of the resistance response varies with the particular resistance gene and nematode interaction. Although there is genetic evidence that single genes in the nematode can determine whether a plant mounts a resistance response, cognate nematode effectors corresponding to a plant resistance gene have not been identified. However, recent progress in genetics and genomics of both plants and nematodes, and developments in RNA silencing strategies are improving our understanding of the molecular players in this complex interaction. In this article, we review the nature and mechanisms of plant-nematode interactions with respect to resistance in plants.  相似文献   

9.
In order to acquire a better understanding of the spatial and temporal variations of genetic diversity of Burkholderia cepacia populations in the rhizosphere of Zea mays , 161 strains were isolated from three portions of the maize root system at different soil depths and at three distinct plant growth stages. The genetic diversity among B. cepacia isolates was analysed by means of the random amplified polymorphic DNA (RAPD) technique. A number of diversity indices (richness, Shannon diversity, evenness and mean genetic distance) were calculated for each bacterial population isolated from the different root system portions. Moreover, the analysis of molecular variance ( amova ) method was applied to estimate the genetic differences among the various bacterial populations. Our results showed that, in young plants, B. cepacia colonized preferentially the upper part of the root system, whereas in mature plants, B. cepacia was mostly recovered from the terminal part of the root system. This uneven distribution of B. cepacia cells among different root system portions partially reflected marked genetic differences among the B. cepacia populations isolated along maize roots on three distinct sampling occasions. In fact, all the diversity indices calculated indicated that genetic diversity increased during plant development and that the highest diversity values were found in mature maize plants, in particular in the middle and terminal portions of the root system. Moreover, the analysis of RAPD patterns by means of the amova method revealed highly significant divergences in the degree of genetic polymorphism among the various B. cepacia populations.  相似文献   

10.
11.
镰刀菌是植物的重要病原真菌,其入侵植物体可引起镰刀菌病害,给农作物和其它植物的生产带来极大的危害。植物是抗性基因的重要来源之一,随着分子生物学技术的飞速发展,大量的镰刀菌相关抗性基因和抗性候选基因从不同的植物中被分离和鉴定,并应用于抗镰刀菌基因工程育种。对植物来源的镰刀菌抗性基因的种类及其作用机理、抗病候选基因、拟南芥-镰刀菌互作机制及基因调控进行了概述。  相似文献   

12.
Reduction–oxidation-sensitive green fluorescent proteins (roGFPs) have been demonstrated to be valuable tools in sensing cellular redox changes in mammalian cells and model plants, yet have not been applied in crops such as maize. Here we report the characteristics of roGFP1 in transiently transformed maize mesophyll protoplasts in response to environmental stimuli and knocked-down expression of ROS-scavenging genes. We demonstrated that roGFP1 in maize cells ratiometrically responds to cellular redox changes caused by H2O2 and DTT, as it does in mammalian cells and model plants. Moreover, we found that roGFP1 is sensitive enough to cellular redox changes caused by genetic perturbation of single ROS genes, as exemplified by knocked-down expression of individual ZmAPXs, in maize protoplasts under controlled culture conditions and under stress conditions imposed by H2O2 addition. These data provide evidence that roGFP1 functions in maize cells as a biosensor for cellular redox changes triggered by genetic lesion of single ROS genes even under stress conditions, and suggest a potential application of roGFP1 in large-scale screening for maize mutants of ROS signaling involved in development and stress resistance.  相似文献   

13.
Cell-autonomous genes have been used to monitor the excision of both endogenous transposons in maize andAntirrhinum, and transposons introduced into transgenic plants. In tobacco andArabidopsis, the streptomycin phosphotransferase (SPT) gene reveals somatic excision of the maize transposonActivator (Ac) as green sectors on a white background in cotyledons of seedlings germinated in the presence of streptomycin. Cotyledons of tomato seedlings germinated on streptomycin-containing medium do not bleach, suggesting that a different assay for transposon excision in tomato is desirable. We have tested the use of the spectinomycin resistance (SPEC) gene (aadA) and a Basta resistance (BAR) gene (phosphinothricin acetyltransferase, or PAT) for monitoring somatic excision ofAc in tobacco and tomato. Both genetic and molecular studies demonstrate that genotypically variegated individuals that carry clones of cells from whichAc orDs have excised from either SPEC or BAR genes, can be phenotypically completely resistant to the corresponding antibiotic. This demonstrates that these genes act non-cell-autonomously, in contrast to the SPT gene in tobacco. Possible reasons for this difference are discussed.  相似文献   

14.
Magnaporthe oryzae is a major pathogen of rice (Oryza sativa L.) but is also able to infect other grasses, including barley (Hordeum vulgare L.). Here, we report a study using Magnaporthe isolates collected from other host plant species to evaluate their capacity to infect barley. A nonhost type of resistance was detected in barley against isolates derived from genera Pennisetum (fontaingrass) or Digitaria (crabgrass), but no resistance occurred in response to isolates from rice, genus Eleusine (goosegrass), wheat (Triticum aestivum L.), or maize (Zea mays L.), respectively. Restriction of pathogen growth in the nonhost interaction was investigated microscopically and compared with compatible interactions. Real-time polymerase chain reaction was used to quantify fungal biomass in both types of interaction. The phylogenetic relationship among the Magnaporthe isolates used in this study was investigated by inferring gene trees for fragments of three genes, actin, calmodulin, and beta-tubulin. Based on phylogenetic analysis, we could distinguish different species that were strictly correlated with the ability of the isolates to infect barley. We demonstrated that investigating specific host interaction phenotypes for a range of pathogen isolates can accurately highlight genetic diversity within a pathogen population.  相似文献   

15.
Maize rough dwarf disease (MRDD) is a destructive viral disease in China, which results in 20–30% of the maize yield losses in affected areas and even as high as 100% in severely infected fields. Understanding the genetic basis of resistance will provide important insights for maize breeding program. In this study, a diverse maize population comprising of 527 inbred lines was evaluated in four environments and a genome-wide association study (GWAS) was undertaken with over 556000 SNP markers. Fifteen candidate genes associated with MRDD resistance were identified, including ten genes with annotated protein encoding functions. The homologous of nine candidate genes were predicted to relate to plant defense in different species based on published results. Significant correlation (R2 = 0.79) between the MRDD severity and the number of resistance alleles was observed. Consequently, we have broadened the resistant germplasm to MRDD and identified a number of resistance alleles by GWAS. The results in present study also imply the candidate genes in defense pathway play an important role in resistance to MRDD in maize.  相似文献   

16.
Plant defense responses are mediated by elementary regulatory proteins that affect expression of thousands of genes. Over the last decade, microarray technology has played a key role in deciphering the underlying networks of gene regulation in plants that lead to a wide variety of defence responses. Microarray is an important tool to quantify and profile the expression of thousands of genes simultaneously, with two main aims: (1) gene discovery and (2) global expression profiling. Several microarray technologies are currently in use; most include a glass slide platform with spotted cDNA or oligonucleotides. Till date, microarray technology has been used in the identification of regulatory genes, end-point defence genes, to understand the signal transduction processes underlying disease resistance and its intimate links to other physiological pathways. Microarray technology can be used for in-depth, simultaneous profiling of host/pathogen genes as the disease progresses from infection to resistance/susceptibility at different developmental stages of the host, which can be done in different environments, for clearer understanding of the processes involved. A thorough knowledge of plant disease resistance using successful combination of microarray and other high throughput techniques, as well as biochemical, genetic, and cell biological experiments is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to microarray technology, followed by the basics of plant–pathogen interaction, the use of DNA microarrays over the last decade to unravel the mysteries of plant–pathogen interaction, and ends with the future prospects of this technology.  相似文献   

17.
18.
Coevolution between hosts and pathogens is thought to occur between interacting molecules of both species. This results in the maintenance of genetic diversity at pathogen antigens (or so-called effectors) and host resistance genes such as the major histocompatibility complex (MHC) in mammals or resistance (R) genes in plants. In plant-pathogen interactions, the current paradigm posits that a specific defense response is activated upon recognition of pathogen effectors via interaction with their corresponding R proteins. According to the "Guard-Hypothesis," R proteins (the "guards") can sense modification of target molecules in the host (the "guardees") by pathogen effectors and subsequently trigger the defense response. Multiple studies have reported high genetic diversity at R genes maintained by balancing selection. In contrast, little is known about the evolutionary mechanisms shaping the guardee, which may be subject to contrasting evolutionary forces. Here we show that the evolution of the guardee RCR3 is characterized by gene duplication, frequent gene conversion, and balancing selection in the wild tomato species Solanum peruvianum. Investigating the functional characteristics of 54 natural variants through in vitro and in planta assays, we detected differences in recognition of the pathogen effector through interaction with the guardee, as well as substantial variation in the strength of the defense response. This variation is maintained by balancing selection at each copy of the RCR3 gene. Our analyses pinpoint three amino acid polymorphisms with key functional consequences for the coevolution between the guardee (RCR3) and its guard (Cf-2). We conclude that, in addition to coevolution at the "guardee-effector" interface for pathogen recognition, natural selection acts on the "guard-guardee" interface. Guardee evolution may be governed by a counterbalance between improved activation in the presence and prevention of auto-immune responses in the absence of the corresponding pathogen.  相似文献   

19.
BACKGROUND: Artificial selection results in phenotypic evolution. Maize (Zea mays L. ssp. mays) was domesticated from its wild progenitor teosinte (Zea mays subspecies parviglumis) through a single domestication event in southern Mexico between 6000 and 9000 years ago. This domestication event resulted in the original maize landrace varieties. The landraces provided the genetic material for modern plant breeders to select improved varieties and inbred lines by enhancing traits controlling agricultural productivity and performance. Artificial selection during domestication and crop improvement involved selection of specific alleles at genes controlling key morphological and agronomic traits, resulting in reduced genetic diversity relative to unselected genes. SCOPE: This review is a summary of research on the identification and characterization by population genetics approaches of genes affected by artificial selection in maize. CONCLUSIONS: Analysis of DNA sequence diversity at a large number of genes in a sample of teosintes and maize inbred lines indicated that approx. 2 % of maize genes exhibit evidence of artificial selection. The remaining genes give evidence of a population bottleneck associated with domestication and crop improvement. In a second study to efficiently identify selected genes, the genes with zero sequence diversity in maize inbreds were chosen as potential targets of selection and sequenced in diverse maize landraces and teosintes, resulting in about half of candidate genes exhibiting evidence for artificial selection. Extended gene sequencing demonstrated a low false-positive rate in the approach. The selected genes have functions consistent with agronomic selection for plant growth, nutritional quality and maturity. Large-scale screening for artificial selection allows identification of genes of potential agronomic importance even when gene function and the phenotype of interest are unknown. These approaches should also be applicable to other domesticated species if specific demographic conditions during domestication exist.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号