首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hantaviruses belong to the family Bunyaviridae and cause hemorrhagic fever with renal syndrome(HFRS) in humans. β_3 integrins, including α_Vβ_3 and α_(Ⅱb)β_3 integrins, act as receptors on endothelial cells and play key roles in cellular entry during the pathogenesis of hantaviruses. Previous study demonstrated that the polymorphisms of integrin α_(Ⅱb)β_3are associated with susceptibility to hantavirus infection and the disease severity of HFRS in Shaanxi Province of China, rather than in Finland. However, the polymorphisms of integrin α_vβ_3 in patients with HFRS was incompletely understood. Here, we aimed to investigate the associations between polymorphisms in human integrin α_vβ_3 and HFRS in Han Chinese individuals. Ninety patients with HFRS and 101 healthy controls were enrolled in this study. Analysis of five single nucleotide polymorphism(SNP) sites(rs3768777 and rs3738919 on ITGAV; rs13306487, rs5921, and rs5918 on ITGB3) was performed by Taq Man SNP genotyping assays and bi-directional PCR allele-specific amplification method. No significant differences were observed between the HFRS group and controls regarding the genotype and allele frequency distributions of any of the five SNP sites, and no associations were found between ITGAV polymorphisms/genotypes and disease severity. In conclusion, our results implied that these five SNPs in the integrin α_vβ_3 gene were not associated with HFRS susceptibility or severity in Han Chinese individuals in Hubei Province.  相似文献   

2.
Analysis of DNA methylation in different maize tissues   总被引:2,自引:0,他引:2  
DNA methylation plays an important role in gene expression regulation during biological development and tissue differentiation in plants. This study adopted methylation-sensitive Amplified fragment length polymorphism (AFLP) to compare the levels of DNA cytosine methylation at CCGG sites in tassel, bracteal leaf, and ear leaf from maize inbred lines, 18 White and 18 Red, respectively, and also examined specific methylation patterns of the three tissues. Significant differences in cytosine methylation level among the three tissues and the same changing tendency in two inbred lines were detected. Both MSAP (methylation sensitive amplification polymorphism) ratio and full methylation level were the highest in bracteal leaf, and the lowest in tassel. Meanwhile, different methylation levels were observed in the same tissue from the inbred lines, 18 White and 18 Red. Full methylation of internal cytosine was the dominant type in the maize genome. The differential methylation patterns in the three tissues were observed. In addition, sequencing of nine differentially methylated fragments and the subsequent blast search revealed that the cytosine methylated 5 ' -CCGG-3 ' sequences were distributed in repeating sequences, in the coding and noncoding regions. Southern hybridization was used to verify the methylation polymorphism. These results clearly demonstrated the power of the MSAP technique for large-scale DNA methylation detection in the maize genome, and the complexity of DNA methylation change during plant growth and development. The different methylation levels may be related to specific gene expression in various tissues.  相似文献   

3.
The basic premise of high yield in rice is to improve leaf photosynthetic efficiency and coordinate the sourcesink relationship in rice plants. Quantitative trait loci (QTLs) related to morphological traits and chlorophyll content of rice leaves were detected at the stages of heading to maturity, and a major QTL (qLSCHL4) related to flag leaf shape and chlorophyll content was detected at both stages in recombinant inbred lines constructed using the indica rice cultivar 93-11 and the japonica rice cultivar Nipponbare. Map-based cloning and expression analysis showed that LSCHL4 is allelic to NAL1, a gene previously reported in narrow leaf mutant of rice. Overexpression lines transformed with vector carrying LSCHL4 from Nipponbare and a near-isogenic line of 93-11 (NIL-9311) had significantly increased leaf chlorophyll content, enlarged flag leaf size, and improved panicle type. The average yield of NIL-9311 was 18.70% higher than that of 93-11. These results indicate that LSCHL4 had a pleiotropic function. Exploring and pyramiding more high-yield alleles resem- bling LSCHL4 for super rice breeding provides an effective way to achieve new breakthroughs in raising rice yield and generate new ideas for solving the problem of global food safety.  相似文献   

4.
Dong H  Deng Y  Mu J  Lu Q  Wang Y  Xu Y  Chu C  Chong K  Lu C  Zuo J 《Cell research》2007,17(5):458-470
Carotenoids, a class of natural pigments found in all photosynthetic organisms, are involved in a variety of physiological processes, including coloration, photoprotection, biosynthesis of abscisic acid (ABA) and chloroplast biogenesis. Although carotenoid biosynthesis has been well studied biochemically, the genetic basis of the pathway is not well understood. Here, we report the characterization of two allelic Arabidopsis mutants, spontaneous cell death1-1 (spcl-1) and spc1-2. The weak allele spc1-1 mutant showed characteristics of bleached leaves, accumulation of superoxide and mosaic cell death. The strong mutant allele spc1-2 caused a complete arrest of plant growth and development shortly after germination, leading to a seedling-lethal phenotype. Genetic and molecular analyses indicated that SPC1 encodes a putative ζ-carotene desaturase (ZDS) in the carotenoid biosynthesis pathway. Analysis of carotenoids revealed that several major carotenoid compounds downstream of SPC 1/ZDS were substantially reduced in spc1-1, suggesting that SPC 1 is a functional ZDS. Consistent with the downregulated expression of CAO and PORB, the chlorophyll content was decreased in spc1-1 plants. In addition, expression of Lhcb1. 1, Lhcbl. 4 and RbcS was absent in spc1-2, suggesting the possible involvement of carotenoids in the plastid-to-nucleus retrograde signaling. The spc1-1 mutant also displays an ABA-deficient phenotype that can be partially rescued by the externally supplied phytohormone. These results suggest that SPC1/ZDS is essential for biosynthesis of carotenoids and plays a crucial role in plant growth and development.  相似文献   

5.
Experiments were conducted to determine the interactive effects of salinity and certain growth regulators on growth and nitrogen assimilation in maize (Zea mays L. cv. GS-2). 100 mM NaCl inhibited the biomass accumulation, chlorophyll and carotenoid contents in leaves, nitrate content and uptake and nitrate reductase activity. The application of kinetin, ascorbic acid and 10 and 50 μM abscisic acid in the first experiment and 50 and 100 μM abscisic acid in the second experiment induced a substantial increase in the above parameters, the effect was highest with abscisic acid in salinized as well as non-salinized plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Xanthine oxidase (XO), a key enzyme in purine metabolism, produces reactive oxygen species causing vascular injuries and chronic heart failure. Here, copper's ability to alter XO activity and structure was investigated in vitro after pre-incubation of the enzyme with increasing Cue+ concentrations for various periods of time. The enzymatic activity was measured by following XO-catalyzed xanthine oxidation to uric acid under steady-state kinetics conditions. Structural alterations were assessed by electronic absorption, fluorescence, and circular dichroism spectroscopy. Results showed that Cu^2+ either stimulated or inhibited XO activity, depending on metal concentration and preincubation length, the latter also determining the inhibition type. Cu^2+-xo complex formation was characterized by modifications in XO electronic absorption bands, intrinsic fluorescence, and α-helical and β-sheet content. Apparent dissociation constant values implied high- and low-affinity Cu^2+ binding sites in the vicinity of the enzyme's reactive centers. Data indicated that Cu^2+ binding to high-affinity sites caused alterations around XO molybdenum and flavin adenine dinucleotide centers, changes in secondary structure, and moderate activity inhibition; binding to low affinity sites caused alterations around all XO reactive centers including FeS, changes in tertiary structure as reflected by alterations in spectral properties, and drastic activity inhibition. Stimulation was attributed to transient stabilization of XO optimal conformation. Results also emphasized the potential role of copper in the regulation of XO activity stemming from its binding properties.  相似文献   

7.
Epistasis is generally defined as the interaction between two or more genes or their mRNA or protein products to influence a single trait. Experimental evidence suggested that epistasis could be important in the determination of the genetic architecture of complex traits in domestic animals. Acetyl-coenzyme A carboxylase alpha (ACACA) and fatty acid binding protein 2 (FABP2) are both key factors of lipogenesis and transport. They may play a crucial role in the weight variability of abdominal adipose tissue in the growing chicken. In this study, the polymorphisms of c.2292GA in ACACA and c.-561AC in FABP2 were detected among individuals from two broiler lines which were divergently selected for abdominal fat content. Epistasis between the two SNPs on abdominal fat weight (AFW) and abdominal fat percentage (AFP) was analyzed. The additive × additive epistatic components between these two SNPs were found significant or suggestively significant on both AFW and AFP in lean lines of the 9th and 10th generation; whereas, it was not significantly associated with either AFW or AFP in fat lines. At the same time, there were not any other significant epistatic components found in both generations or in both lines. Significant epistatic effects between these two SNPs found only in the lean lines could partly be due to the fact that the abdominal fat traits in these two experimental lines have been greatly modified by strong artificial selection. The results suggested that the epistasis mode may be different between the lean and fat chicken lines. Our results could be helpful in further understanding the genetic interaction between candidate genes contributing to phenotypic variation of abdominal fat content in broilers.  相似文献   

8.
The control of flowering is not only important for reproduction,but also plays a key role in the processes of domestication and adaptation.To reveal the genetic architecture for flowering time and photoperiod sensitivity,a comprehensive evaluation of the relevant literature was performed and followed by meta analysis.A total of 25 synthetic consensus quantitative trait loci(QTL)and four hot-spot genomic regions were identified for photoperiod sensitivity including 11 genes related to photoperiod response or flower morphogenesis and development.Besides,a comparative analysis of the QTL for flowering time and photoperiod sensitivity highlighted the regions containing shared and unique QTL for the two traits.Candidate genes associated with maize flowering were identified through integrated analysis of the homologous genes for flowering time in plants and the consensus QTL regions for photoperiod sensitivity in maize(Zea mays L.).Our results suggest that the combination of literature review,meta-analysis and homologous blast is an efficient approach to identify new candidate genes and create a global view of the genetic architecture for maize photoperiodic flowering.Sequences of candidate genes can be used to develop molecular markers for various models of marker-assisted selection,such as marker-assisted recurrent selection and genomic selection that can contribute significantly to crop environmental adaptation.  相似文献   

9.
Dear Editor,
The physiological functions of carotenoids in plants go beyond their traditional roles as accessory light-har- vesting pigments, natural colorants, and quenchers of tri- plet chlorophyll and singlet oxygen (102). Recent studies have indeed emphasized the functional role of molecules derived from carotenoids as phytohormones (Ruyter-Spira et al., 20β) or messengers in stress signaling pathways (Havaux, 2014). In particular, chemical quenching of 102 by carotenoids within the photosystems involves oxidation of the carotenoid molecules, generating a variety of oxi- dized products (Ramel et al., 2012). β-Cyclocitral, a volatile C7 derivative of β-carotene, is one such molecule produced during high light stress, which was found to induce changes in the expression of 102-responsive genes (Ramel et al., 2012). Moreover, the β-cyclocitral-dependent gene repro- gramming was associated with an increased tolerance of the plants to photooxidative stress. These effects appeared to be specific to β-cyclocitral since they were not observed with β-ionone, a C9-oxidized derivative of ~-carotene, which was not able to induce or repress the expression of 1O2 gene markers. Based on those results, it was pro- posed that β-cyclocitral is a plastid messenger involved in the chloroplast-to-nucleus 1O2 signaling pathway lead- ing to acclimation to high light stress (Ramel et al., 2012). However, in vitro 102 oxidation of β-carotene is known to produce other volatile compounds besides β-cyclocitral and IB-ionone, such as dihydroactinidiolide (dhA, Figure 1A) and a-ionene (Ramel et al., 2012). The dhA molecule is a lac- tone (cyclic ester) resulting from the secondary oxidation of β-ionone through the intermediate 5,6-epoxy-β-ionone (Havaux, 2014). Both dhA and o-ionene were detected in plant leaves and fruits (e.g. Del Mar Caja et al., 2009; Ramel et al., 2012). Interestingly, dhA, but not o-ionene, was reported to accumulate in Arabidopsis leaves under hiclh liclht str  相似文献   

10.
By using assembled expressed sequence tags (ESTs) from 14 different eDNA libraries that contain 84 132 sequences reads, 556 Populus candidate single nucleotide polymorphisms (SNPs) were identified. Because traces were not available from dbEST (http://www.ncbi.nlm.nih.gov/dbEST/index.html), stringent filters were used to identify reliable candidate SNPs. Sequences analysis indicated that the main types of substitutions among candidate SNPs were A/G and T/C transitions, which accounted for 22.0% and 30.8%, respectively. One hundred and ten candidate SNPs were tested. As a result, 38 candidate SNPs were confirmed by directed sequencing of PCR products amplified from six different individuals. Thirteen new SNPs in intron regions were found and multiple SNPs were found to be located in both intron and exon regions of four contigs. Heterozygosis was found in all 47 candidate sites and five SNP sites were heterozygous in all six samples. This is the first report of SNP identification in a tree species which reveals that assembled ESTs from multiple libraries of the public database may provide a rich source of comparative sequences for an SNP search in the poplar genome.  相似文献   

11.
Qin G  Gu H  Ma L  Peng Y  Deng XW  Chen Z  Qu LJ 《Cell research》2007,17(5):471-482
Carotenoids play an important role in many physiological processes in plants and the phytoene desaturase gene (PDS3) encodes one of the important enzymes in the carotenoid biosynthesis pathway. Here we report the identification and analysis of a T-DNA insertion mutant of PDS3 gene. Functional complementation confirmed that both the albino and dwarfphenotypes ofthepds3 mutant resulted from functional disruption of the PDS3 gene. Chloroplast development was arrested at the proplastid stage in thepds3 mutant. Further analysis showed that high level ofphytoene was accumulated in the pds3 mutant. Addition of exogenous GA3 could partially rescue the dwarf phenotype, suggesting that the dwarf phenotype ofthepds3 mutant might be due to GA deficiency. Microarray and RT-PCR analysis showed that disrupting PDS3 gene resulted in gene expression changes involved in at least 20 metabolic pathways, including the inhibition of many genes in carotenoid, chlorophyll, and GA biosynthesis pathways. Our data suggest that the accumulated phytoene in the pds3 mutant might play an important role in certain negative feedbacks to affect gene expression of diverse cellular pathways.  相似文献   

12.
Success of improving the salt tolerance of genotypes requires effective and reliable screening traits in breeding programs. The objective was to assess the suitability of various physiological traits to screen wheat genotypes for salt tolerance. Thirteen wheat genotypes from Egypt, Germany, Australia and India were grown in soil with two salinity levels (control and 150 mmol/L NaCI) in a greenhouse. The physiological traits (ion contents in leaves and stems, i.e. Na^+, Cl^-, K^+, Ca^2+), the ratios of K^+/Na^+ and Ca^+/Na^+ in the leaves and stems, net photosynthesis rate, stomatal conductance, transpiration rate, chlorophyll content (SPAD value), and leaf water relations, were measured at different growth stages. The physiological traits except for Na^+ and Cl^- in stems and the leaf transpiration rate at 150 mmol/L NaCI showed a significant genotypic variation, indicating that the traits that have a significant genotypic variation may be possibly used as screening criteria. According to the analysis of linear regression of the scores of the physiological traits against those of grain yield, however, the physiological traits of Ca^2+ and Ca2^+/Na^+ at 45 d and final harvest with the greatest genotypic variation were ranked at the top. From a practical and economic point of view, SPAD value should be considered to be used as screening criteria and/or there is a need to develop a quick and practical approach to determine Ca^2+ in plant tissues.  相似文献   

13.
Boldness is defined as the tendency of an individual to take risks when exposed to novel objects or situations. The main aim of this work was to dilucidate if boldness was related to the development of the secondary sexual traits (SSTs) in the male of the fiver blenny Salariafluviatilis, a freshwater fish which takes care of eggs. As a second objective SSTs effect on pa rental status adoption was also be explored. Wild young fish were caught in the Segre River (Ebro basin) in November 2010. Fish were kept in five aquaria in groups of eight males and eight females with artificial nests. Boldness (boldness score and hesitancy) of males (initially with little SSTs development) was tested as the time required to exit a refuge when exposed to a new environ ment. Fish were mantained in the same aquaria for several months, and males' SSTs development and reproductive behaviour were monitored. Boldness score was negatively associated to cephalic crest development. Hesitancy was negatively related to male length and was also influenced by the interaction between male length and cephalic crest. Parental status acquisition was positively related to the male's length, marginally related to anal gland development, and nonrelated to cephalic crest. These re sults suggest an intrasexual role of the crest as an informative trait of boldness (honest signal) which might not necessarily be chosen by the females. It is also discussed that correlational selection could be responsible for linking boldness and growth rate in this species. Sexual selection, in addition to having directed the evolution of secondary sexual traits, might have favored certain personality traits (e.g. boldness) associated with the achievement of a larger body length .  相似文献   

14.
15.
The αMβ2 integrin and its role in neutrophil function   总被引:2,自引:0,他引:2  
ZHANGLI 《Cell research》1999,9(3):171-178
Neutrophils are the first cell type to arrive at the injury sites and play a critical role in host defense,by virtue of its ability to adhere and transmigrate through endothelium,to phagocytose foreign pathogens,and to produce free oxygen radicals and proteolytic enzymes.Yet,inappropriate neutrophil activation causes tissue damage and various inflammatory diseases.These physiological and pathological functions of neutrophils depend on the engagement of certain surface receptors,especially αMβ2,the major β2 integrin receptor present on neutrophil surface.Understanding of the molecular mechanisms underlying ligand binding by αMβ2,as well as the rolea of αMβ2ligand interactions in neutrophil functions will enable us to regulate more precisely neutrophil activities:that is,to promote their host defense functions,and at the same time to minimize their deleterious effects of normal cells.  相似文献   

16.
Chlorophyll fluorescence transient from initial to maximum fluorescence("P" step) throughout two intermediate steps("J" and "I")(JIP‐test) is considered a reliable early quantitative indicator of stress in plants. The JIP‐test is particularly useful for crop plants when applied in variable field environments. The aim of the present study was to conduct a quantitative trait loci(QTL) analysis for nine JIP‐test parameters in maize during flowering in four field environments differing in weather conditions. QTL analysis and identification of putative candidate genes might help to explain the genetic relationship between photosynthesis and different field scenarios in maize plants. The JIP‐test parameters were analyzed in the intermated B73 Mo17(IBM) maize population of 205 recombinant inbred lines. A set of 2,178 molecular markers across the whole maize genome was used for QTL analysis revealing 10 significant QTLs for seven JIP‐test parameters, of which five were co‐localized when combinedover the four environments indicating polygenic inheritance and pleiotropy. Our results demonstrate that QTL analysis of chlorophyll fluorescence parameters was capable of detecting one pleiotropic locus on chromosome 7, coinciding with the gene gst23 that may be associated with efficient photosynthesis under different field scenarios.  相似文献   

17.
Investigating how crop domestication and early farming mediated crop attributes, distributions, and interactions with antagonists may shed light on today's agricultural pest problems. Crop domestication generally involved artificial selection for traits desirable to early farmers, for example, in creased productivity or yield, and enhanced qualities, though invariably it altered the interactions between crops and insects, and expanded the geographical ranges of crops. Thus, some studies suggest that with crop domestication and spread, insect populations on wild crop ancestors gave rise to pestiferous insect populations on crops. Here, we addressed whether the emergence of corn leafhopper (Dalbulus ma id is) as an agricultural pest may be associated with domestication and early spread of maize (Zea mays mays). We used AFLP markers and mitochondrial COI sequences to assess population genetic structuring and haplotype relationships among corn leafhopper samples from maize and its wild relative Zea diploperennis from multiple locations in Mexico and Argentina. We uncovered seven corn leafhopper haplotypes contained within two haplogroups, one haplogroup containing haplotypes associated with maize and the other containing haplotypes associated with Z. diploperennis in a mountainous habitat. Within the first haplogroup, one haplotype was predominant across Mexican locations, and another across Argentinean locations;both were considered pestiferous. We suggested that the divergence times of the maize-associated haplogroup and of the "pestiferous" haplotypes are correlated with the chronology of maize spread following its domestication. Overall, our results support a hypothesis positing that maize domestication favored corn leafhopper genotypes preadapted for exploiting maize so that they became pestiferous, and that with the geographical expansi on of maize farming, corn leafhopper colonized Z. diploperennis, a host exclusive to secluded habitats that serves as a refuge for archaic corn leafhopper genotypic diversity. Broadly, our results help explain the extents to which crop domestication and early spread may have mediated the emergence of today's agricultural pests.  相似文献   

18.
19.
Water deficit-induced abscisic acid (ABA) accumulation is one of the most important stress signaling pathways in plant cells. Redox regulation of cellular signaling has currently attracted particular attention, but much less is known about its roles and mechanisms in plant signaling. Herein, we report that water deficit-induced ABA accumulation could be regulated by ascorbic acid (AA)-controlled redox status in leave apoplast. The AA content in non-stressed leaves was approximately 3 umol/g FW, corresponding to a mean concentration of 3 mmol/L in a whole cell. Because AA is mainly localized in the cytosol and chloroplasts, the volume of which is much smaller than that of the whole cell, AA content in cytosolic and chloroplast compartments should be much higher than 3 mmol/L. Water deficit-induced ABA accumulation in both leaf and root tissues of maize seedlings was significantly inhibited by AA and reduced glutathione (GSH) at concentrations of 500 umol/L and was completely blocked by 50 mmol/L AA and GSH. These results suggest that the AA-induced inhibition of ABA accumulation should not occur at sites where AA exists in high concentrations. Although water deficit led to a small increase in the dehydroascorbic acid (DHA) content, no significant changes in AA content were observed in either leaf or root tissues. When compared with the whole leaf cell, the AA content in the apoplastic compartment was much lower (i.e. approximately 70 nmol/g FW, corresponding to 0.7 mmol/L). Water deficit induced a significant decrease (approximately 2.5-fold) in the AA content and an increase (approximately 3.4-fold) in the DHA content in the apoplastic compartment, thus leading to a considerably decreased redox status there, which may have contributed to the relief of AA-induced inhibition of ABA accumulation, alternatively, promoting water deficit-induced ABA accumulation. Reactive oxygen species (ROS) could not mimic water deficit in inducing ABA accumulation, suggesting that the inhibition of ABA accumulation by AA or GSH was not related to their ROS-scavenging ability. The results of the present study suggest that the redox status in the apoplastic compartment, as determined by AA and DHA, may play a vital role in the regulation of the signaling process for water deficit-induced ABA accumulation.  相似文献   

20.
Improving grain quality, which is composed primarily of the appearance of the grain and its cooking and milling attributes, is a major objective of many rice-producing areas in China. In the present study, we conducted a marker-based genetic analysis of the appearance and milling quality of rice (Oryza sativa L.) grains using a doubled-haploid population derived from a cross between the indica inbred Zhenshan 97 strain and the japonica inbred Wuyujing 2 strain. Quantitative trait locus (QTL) analysis using a mixed linear model approach revealed that the traits investigated were affected by one to seven QTLs that individually explained 4.0%-30.7% of the phenotypic variation. Cumulatively, the QTL for each trait explained from 12.9% to 61.4% of the phenotypic variation. Some QTLs tended to have a pleiotropic or location-linked association as a cause of the observed phenotypic correlations between different traits. Improvement of the characteristics of grain appearance and grain weight, as well as an improvement in the milling quality of rice grains, would be expected by a recombination of different QTLs using marker-assisted selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号