首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Two methods have been developed for the analysis of four types of indefinite self-associations. Unlike previous treatments by others, the procedures can be applied to nonideal cases. The two methods were first tested with simulated data. and it was found that one could indeed distinguish between the four types of indefinite self-associations. For a more realistic test, sedimentation equilibrium experiments were performed on solutions of β-lactoglobulin A at 16°C in 0.15 ionic strength acetate buffer, pH 4.65. The self-association of the β-lactoglobulin A was best described by either method as a sequential indefinite self-association having two equilibrium constants and one second virial coefficient.  相似文献   

3.
B. Chu  A. Yeh  F. C. Chen  B. Weiner 《Biopolymers》1975,14(1):93-109
We report measurements of the diffusion coefficient of β-lactoglobulin A (βLG-A) at pH = 5.60 and 4.58 in 0.10 ionic strength acetate buffer by the techniques of analog photocurrent signal correlation and digital single-clipped photon correlation. At a concentration of 21 mg/ml and a pH of 4.58, the self-association of β-lactoglobulin can be represented by a simple dimer–octamer equilibrium model. We determined the translational diffusion coefficient of the dimer and that of the octamer using the scattering results of Kumosinski and Timasheff in a dimer–octamer mixture. Our analysis shows that the dimer βLG-A does not change its size if the pH is varied from 5.60 to 4.58 and both species remain constant in size for temperature changes from 3.5° to 25°C Hydrodynamically, the octamers behave like closed-packed spheres with an effective radius of about 45 Å according to the Stokes-Einstein relation.  相似文献   

4.
We have shown the dependence of the deamidation half-times of the peptides, GlyLeuGlnAlaGly and GlyArgGlnAlaGly upon pH, temperature, and ionic strength. Increase in temperature or ionic strength, variation of pH to pH′s higher or lower than pH 6, and the use of phosphate buffer rather than Tris buffer at high pH all decrease the half-time of dcamidation. Temperature increase of 20°C or pH change of 2 pH units decreases the half-time about fivefold, while increase of one ionic strength unit decreases the half-time about twofold. In pH 7.4, I = 0.2, 37.0°C phosphate buffer, the deamidation half-times are 663 ± 74 and 389 ± 56 days respectively for the two peptides, GlyLeuGlnAlaGly and GlyArgGlnAlaGly.These experiments should serve as a warning to peptide and protein experimenters that even the more stable glutaminyl residues are unstable with respect to deamidation in certain solvent conditions. These experiments also provide, along with previously reported experiments on asparaginyl peptides (7), some quantitative data to help with the extrapolation of in vitro deamidation experiments to in vivo deamidation conditions.  相似文献   

5.
Systematic heat of dilution studies of the self-association of flavin mononucleotide (FMN) have been conducted as a function of ionic strength (0.05 – 2.0 m) and pH (5–9) in aqueous solution. The data are adequately described by the expression QT = ΔH ? (ΔHK)12 (QTcT)12 for an isodesmic self-association. QT is the molar heat of dilution, ΔH and K are the derived enthalpy and equilibrium constants for the process FMN + (FMN)i?1 ? (FMN)i, and cT is the concentration of FMN expressed in monomer units. Typical values derived for the various thermodynamic parameters at 25 °C are ΔG = ?3.56 kcal mol?1, ΔH = ?3.72 kcal mol?1, and ΔS = ?0.54 cal (mol · deg)?1. These data, plus nuclear magnetic resonance evidence (Yagi, K., Ohishi, N., Takai, A., Kawano, K., and Kyogoku, Y., 1976, Biochemistry15, 2877–2880) argue in favor of an open-ended association of flavin molecules. The signs of the various thermodynamic parameters suggest that both hydrophobic and surface energy forces contribute significantly to the association, while the lack of any significant ionic strength dependence indicates the lack of any ionic centers in the association.  相似文献   

6.
The observed equilibrium constants (Kobs) for the reactions of d-2-phosphoglycerate phosphatase, d-2-Phosphoglycerate3? + H2O → d-glycerate? + HPO42?; d-glycerate dehydrogenase (EC 1.1.1.29), d-Glycerate? + NAD+ → NADH + hydroxypyruvate? + H+; and l-serine:pyruvate aminotransferase (EC 2.6.1.51), Hydroxypyruvate? + l-H · alanine± → pyruvate? + l-H · serine±; have been determined, directly and indirectly, at 38 °C and under conditions of physiological ionic strength (0.25 m) and physiological ranges of pH and magnesium concentrations. From these observed constants and the acid dissociation and metal-binding constants of the substrates, an ionic equilibrium constant (K) also has been calculated for each reaction. The value of K for the d-2-phosphoglycerate phosphatase reaction is 4.00 × 103m [ΔG0 = ?21.4 kJ/mol (?5.12 kcal/mol)]([H20] = 1). Values of Kobs for this reaction at 38 °C, [K+] = 0.2 m, I = 0.25 M, and pH 7.0 include 3.39 × 103m (free [Mg2+] = 0), 3.23 × 103m (free [Mg2+] = 10?3m), and 2.32 × 103m (free [Mg2+] = 10?2m). The value of K for the d-glycerate dehydrogenase reaction has been determined to be 4.36 ± 0.13 × 10?13m (38 °C, I = 0.25 M) [ΔG0 = 73.6 kJ/mol (17.6 kcal/mol)]. This constant is relatively insensitive to free magnesium concentrations but is affected by changes in temperature [ΔH0 = 46.9 kJ/mol (11.2 kcal/mol)]. The value of K for the serine:pyruvate aminotransferase reaction is 5.41 ± 0.11 [ΔG0 = ?4.37 kJ/mol (?1.04 kcal/mol)] at 38 °C (I = 0.25 M) and shows a small temperature effect [ΔH0 = 16.3 kJ/ mol (3.9 kcal/mol)]. The constant showed no significant effect of ionic strength (0.06–1.0 m) and a response to the hydrogen ion concentration only above pH 8.5. The value of Kobs is 5.50 ± 0.11 at pH 7.0 (38 °C, [K+] = 0.2 m, [Mg2+] = 0, I = 0.25 M). The results have also allowed the value of K for the d-glycerate kinase reaction (EC 2.7.1.31), d-Glycerate? + ATP4? → d-2-phosphoglycerate3? + ADP3? + H+, to be calculated to be 32.5 m (38 °C, I = 0.25 M). Values for Kobs for this reaction under these conditions and at pH 7.0 include 236 (free [Mg2+] = 0) and 50.8 (free [Mg2+] = 10?3m).  相似文献   

7.
β-Lactoglobulin forms a soluble complex with cytochrome c in mildly alkaline solutions of low ionic strength. Sedimentation velocity experiments suggest that the complex (maximum s20 = 3.7) consists of one cytochrome c molecule per β-lactoglobulin monomer unit. At pH 8 or higher, the presence of β-lactoglobulin causes reduction of ferri- to ferrocytochrome c. The initial rate of reduction at a single temperature depends primarily on the concentration of β-lactoglobulin, although the final percentage ferrocytochrome c obtained is constant at molar ratios of three or more β-lactoglobulin monomers to one cytochrome c molecule. The temperature dependence of the initial rate of iron reduction resembles that for alkaline denaturation of β-lactoglobulin. The displacement of N-dansylaziridine, a sulfhydryl specific dye, from bovine β-lactoglobulin during iron reduction, and the formation of nonreducing complexes between the analogous swine protein (no sulfhydryls) and cytochrome c suggest that the sulfhydryl group of β-lactoglobulin is the electron donor.  相似文献   

8.
《Analytical biochemistry》1985,145(2):217-221
An air-driven ultracentrifuge has been used to investigate the calcium-dependent association between calmodulin and bovine serum albumin. Procedures were described which allowed the interaction to be analyzed to yield the equilibrium constant. At low ionic strength (25 mm Tris-HCl, pH 7.5, pCa 6.68, 9°C) the equilibrium constant for the interaction was estimated to be 2.1 × 104m−1, while at high ionic strength (25 mm Tris-HCl, pH 7.5, 150 mm KCl, pCa 6.68, 9°C) the value was 4.5 × 103m−1. Under similar conditions, calmodulin was also found to interact with β-lactoglobulin A and gelatin, but no detectable association was observed with ovalbumin.  相似文献   

9.
The oxidation enthalpy of reduced flavin mononucleotide at pH 7.0 in 0.2 m phosphate buffer has been studied by determining the heat associated with the reaction: FMNH2 + 2 Fe(CN)?36 ? FMN + 2 Fe(CN)?46 + 2 H+. (a) (The quinone, semiquinone, and hydroquinone forms of FMN are represented as FMN, FMNH, and FMNH2, respectively.) Calorimetric experiments were performed in a flow microcalorimeter which was modified to prevent sample contamination by oxygen. The enthalpy observed for reaction (a), after correction for dilution and buffer effects, was ?39.2 ± 0.4 kcal (mole FMNH2)?1 at 25 °C. The potential difference, ΔE′, developed by reaction (a) was determined potentiometrically and corresponded to a free energy change, ΔG′, of ?30.3 kcal (mole FMNH2)?1. The resulting entropy change, ΔS′, was thus calculated to be ?29.8 e.u. Reaction (a) was also studied at temperatures of 7 °C and 35.5 °C. ΔCp′ for the reaction was calculated as ?155 ± 18 cal deg?1 (mole FMNH2)?1 at 20 °C. ΔH′ for the reaction (b), FMNH2 ? FMN + H2, (b) was calculated as +14.2 ± 0.7 kcal mole?1 at 25 °C, relative to the enthalpy of the hydrogen electrode being identically equal to zero at all values of pH and temperature. The free energy at pH 7.0 for reaction (b), calculated from the potential was found to be ?9.7 kcal mole?1, which resulted in an entropy for reaction (b) of 80.2 e.u. A thermal titration of reaction (a) was used to calculate the thermodynamic parameters for the formation of semiquinone dimer according to the reaction FMNH2 + FMN ? (·FMNH)2. (c) The free energy, enthalpy, and entropy changes for reaction (c) were estimated to be ?6.1 kcal mole?1, ?7 kcal mole?1, and ?3 e.u., respectively.  相似文献   

10.
Glial fibrillary acidic protein, which is specific to astroglia in the central nervous system, polymerizes in vitro into filaments similar to native ~ 100 Å filaments. Following purification from aqueous extracts of bovine brain by immunoaffinity chromatography, GFA 2 protein is highly soluble in very low ionic strength solutions. Sedimentation equilibrium analysis of protein solutions in prefilament solvent conditions (2 mm-Tris · HCl, pH 7.8, 20 °C, containing 0.5 mm-dithiothreitol) indicates a paucidisperse mixture of species in solution with a typical range of apparent weight-average molecular weights from about 186,000 to 227,000. Between pH 6.0 and 8.0 the solubility is a function of pH and ionic strength as well as temperature, and precipitation is favored by lowering the pH or temperature and by raising the ionic strength. GFA protein associates in the form of filaments over a narrow range of pH and ionic strength; optimal conditions for polymerization of a 0.1 mg/ml protein solution are 100 mm-imidazole-HCl buffer (pH 6.8), at a temperature of 37 °C, and there is no requirement for co-factors. Filaments appear primarily as tangles of smooth curvilinear structures approximately 100 Å in diameter and of indefinite length, although some lateral association of filaments into thick bundles is also observed. While the formation of filaments is not affected by the presence or absence of reducing agent, under oxidizing conditions disulfide linkages form between protein subunits. Disassembly is achieved by dialysis against 2 mm-Tris · HCl buffer (pH 8.5), but this process is significantly enhanced by the addition of 0.5 mM-dithiothreitol during assembly and disassembly.These experiments clarify the role of GFA protein as the subunit of astroglialspecific intermediate filaments. In addition, they suggest that the 100 Å filament, as other components of the cytoskeleton, may assemble and disassemble in the glial cytoplasm.  相似文献   

11.
The effects of temperature on the steady-state kinetics of β-trypsin hydrolysis of α-Ntosyl-l-arginine methyl ester (kcat, Km) and its inhibition by phenylguanidinium ion (Ki) were studied in the temperature range 27–37 °C, at 1 °C intervals, pH 8.0. Within this temperature range inhibition of β-trypsin by phenylguanidine was strictly competitive. The Eyring and van't Hoff plots were nonlinear; interpretation of the data was based on two possible alternatives: in the first, there occurs a thermal transition centered at 31 °C, characterized by ΔH° = 42.2 ± 8.7 kcal/mol and ΔS ° = 138 ± 29 e.u. According to the second interpretation the phenomenon would be determined by a large value of Δ Cp; its value was estimated to be ΔCp = ?7192 cal/deg · mol. A decision as to what interpretation is more adequate must wait until further experimental information is obtained.  相似文献   

12.
The observed equilibrium constants (Kobs) for the l-phosphoserine phosphatase reaction [EC 3.1.3.3] have been determined under physiological conditions of temperature (38 °C) and ionic strength (0.25 m) and physiological ranges of pH and free [Mg2+]. Using Σ and square brackets to indicate total concentrations Kobs = Σ L-serine][Σ Pi]Σ L-phosphoserine]H2O], K = L-H · serine±]HPO42?][L-H · phosphoserine2?]H2O]. The value of Kobs has been found to be relatively sensitive to pH. At 38 °C, K+] = 0.2 m and free [Mg2+] = 0; Kobs = 80.6 m at pH 6.5, 52.7 m at pH 7.0 [ΔGobs0 = ?10.2 kJ/mol (?2.45 kcal/mol)], and 44.0 m at pH 8.0 ([H2O] = 1). The effect of the free [Mg2+] on Kobs was relatively slight; at pH 7.0 ([K+] = 0.2 m) Kobs = 52.0 m at free [Mg2+] = 10?3, m and 47.8 m at free [Mg2+] = 10?2, m. Kobs was insignificantly affected by variations in ionic strength (0.12–1.0 m) or temperature (4–43 °C) at pH 7.0. The value of K at 38 °C and I = 0.25 m has been calculated to be 34.2 ± 0.5 m [ΔGobs0 = ?9.12 kJ/mol (?2.18 kcal/ mol)]([H2O] = 1). The K for the phosphoserine phosphatase reaction has been combined with the K for the reaction of inorganic pyrophosphatase [EC 3.6.1.1] previously estimated under the same physiological conditions to calculate a value of 2.04 × 104, m [ΔGobs0 = ?28.0 kJ/mol (?6.69 kcal/mol)] for the K of the pyrophosphate:l-serine phosphotransferase [EC 2.7.1.80] reaction. Kobs = [Σ L-serine][Σ Pi][Σ L-phosphoserine][H2O], K = [L-H · serine±]HPO42?][L-H · phosphoserine2?]H2O. Values of Kobs for this reaction at 38 °C, pH 7.0, and I = 0.25 m are very sensitive to the free [Mg2+], being calculated to be 668 [ΔGobs0 = ?16.8 kJ/mol (?4.02 kcal/mol)] at free [Mg2+] = 0; 111 [ΔGobs0 = ?12.2 kJ/mol (?2.91 kcal/mol)] at free [Mg2+] = 10?3, m; and 9.1 [ΔGobs0 = ?5.7 kJ/mol (?1.4 kcal/mol) at free [Mg2+] = 10?2, m). Kobs for this reaction is also sensitive to pH. At pH 8.0 the corresponding values of Kobs are 4000 [ΔGobs0 = ?21.4 kJ/mol (?5.12 kcal/mol)] at free [Mg2+] = 0; and 97.4 [ΔGobs0 = ?11.8 kJ/ mol (?2.83 kcal/mol)] at free [Mg2+] = 10?3, m. Combining Kobs for the l-phosphoserine phosphatase reaction with Kobs for the reactions of d-3-phosphoglycerate dehydrogenase [EC 1.1.1.95] and l-phosphoserine aminotransferase [EC 2.6.1.52] previously determined under the same physiological conditions has allowed the calculation of Kobs for the overall biosynthesis of l-serine from d-3-phosphoglycerate. Kobs = [Σ L-serine][Σ NADH][Σ Pi][Σ α-ketoglutarate][Σ d-3-phosphoglycerate][Σ NAD+][Σ L-glutamat0] The value of Kobs for these combined reactions at 38 °C, pH 7.0, and I = 0.25 m (K+ as the monovalent cation) is 1.34 × 10?2, m at free [Mg2+] = 0 and 1.27 × 10?2, m at free [Mg2+] = 10?3, m.  相似文献   

13.
《Inorganica chimica acta》1988,147(1):127-130
The thermodynamic parameters (log β101, ΔH101, and ΔS101) for the formation of the 1:1 complexes between lanthanide cations and 3- and 4-hydroxybenzoate anions were determined by potentiometric and calorimetric titrations in aqueous solutions of 0.10 M (NaClO4) ionic strength at 25 °C.  相似文献   

14.
Solutions of proteins S5 and S8 from the Escherichia coli 30 S ribosomal subunit have been examined by sedimentation equilibrium methods as a function of temperature for their behavior in solution as isolated components and in mixtures. The standard enthalpy and entropy at 4 °C for the isodesmic self-association of S5 were determined from a study over the temperature range of 3 to 33 °C to be 0.1 ± 0.9 kcal/mol and 18 ± 3 cal/(mol × deg), respectively. The protein S8 remained monomeric over the same range of temperature. The standard enthalpy and entropy at 4 °C for the association of S5 and S8 were determined on mixtures from a study over the temperature range of 3 to 27 °C to be ?0.4 ± 1.6 kcal/mol and 20 ± 6 cal/(mol × deg), respectively. Based on these values and the previously determined standard Gibbs free energies (S. H. Tindall and K. C. Aune, 1981, Biochemistry20, 4861–4866), the driving force for the self-association of S5 and the association of S5 with S8 could be interpreted as being derived from the expulsion of water upon ion pair formation at the interaction sites.  相似文献   

15.
《FEBS letters》1999,442(2-3):241-245
It is widely believed that β-parvalbumin (PV) isoforms are intrinsically less stable than α-parvalbumins, due to greater electrostatic repulsion and an abbreviated C-terminal helix. However, when examined by differential scanning calorimetry, the apo-form of the rat β-PV (i.e. oncomodulin) actually displays greater thermal stability than the α-PV. Whereas the melting temperature of the α isoform is 45.8°C at physiological pH and ionic strength, the Tm for the β isoform is more than 7° higher (53.6°C). This result suggests that factors besides net charge and C-terminal helix length strongly influence parvalbumin conformational stability. Extension of the F helix in the β-PV, by insertion of Ser-109, has a modest stabilizing effect, raising the Tm by 1.1°. Truncation of the α-PV F helix, by removal of Glu-108, has a more profound impact, lowering the Tm by 4.0°.  相似文献   

16.
X-ray diffraction studies were made on the multilamellar systems produced by incubation of phospholipid bilayers and the membrane protein, cytochrome b5, or non-membrane proteins (albumin, ovalbumin and β-lactoglobulin A) at pH 8.1 in aqueous 5 mM CaCl2 solutions.Detergent-extracted cytochrome b5 (soluble aggregate) forms two types of lamellar phase with dipalmitoyl phosphatidylcholine bilayers, depending upon the incubation temperature. One type, which has a repeat distance of 114Å, is formed above 34°C, where the binding of cytochrome b5 to the bilayers is hydrophobic. The other type, with a repeat distance of 153 Å, is formed below 34°C, where the binding is electrostatic. It is also suggested that cytochrome b5 is monomeric in the former phase but remains aggregated in the latter phase.When dimyristoyl phosphatidylcholine is used, the boundary temperature for the two types shifts to 12°C. These boundary temperatures coincide with the thermal pretransition points of hydrated dipalmitoyl phosphatidylcholine and dimyristoyl phosphatidylcholine, respectively.Trypsin-treated cytochrome b5 (monomeric) and the three non-membrane proteins exhibit only binding of the electrostatic type to the bilayers, independently of the incubation temperature. The observed repeat distances suggest that in these cases two layers of protein molecules are incorporated between the bilayers.  相似文献   

17.
The application of isothermal calorimetry to the study of self-association reactions between identical protein subunits has been explored to assess the types of information obtainable from heat of dilution curves (i.e., the molar heat of dilution as a function of total solute concentration). Relationships between the heat of dilution, subunit association constants, and enthalpies of formation for the various association complexes in a self-associating system have been formulated. A method is described for constructing heat of dilution curves from sequential step-wise dilution experiments in a batch-type calorimeter. The relationship between calorimetric and van't Hoff enthalpies is formulated for systems undergoing self-association reactions. Comparison between the two is shown by numerical simulation to provide a very sensitive test for the presence of intermediate species.Calorimetric measurements were made on the self-association of β?lactoglobulin-A at 5.0 °C, pH 4.65, in 0.1 m NaCl and in 0.1 m acetate. Heat of dilution curves constructed from these data were used to estimate the equilibrium constant and enthalpy of formation, assuming a monomer-tetramer association process. Values of 31 ± 4 kcal/mole tetramer for the enthalpy and 1.3 ± 1.0 × 1011 liter3/mole3 for the constant of tetramerization were determined from the calorimetric measurements in NaCl. The corresponding values for calorimetric measurements in acetate were 33 ± 4 kcal/mole and 1.6 ± 1.0 × 1011 liter3/mole3.The calorimetric results were compared with thermodynamic information obtained from association data between 5 and 25 °C in 0.1 m acetate using molecular sieve chromatography. Within experimental error, the molecular sieve data at 5 °C could be fit to a monomer-tetramer association reaction with a monomer molecular weight of 36,000. From these studies a van't Hoff enthalpy of 38 ± 4 kcal/mole tetramer and an equilibrium constant of 4.6 ± 1.0 × 1011 liter3 mole3 at 5 °C were obtained. Comparison between calorimetric and van't Hoff enthalpies indicates that the self-association of β-lactoglobulin-A under these conditions can be adequately described by a monomer-tetramer reaction. The results suggest that, a small fraction (e.g., 5–10%) of species having intermediate states of aggregation may be present, but preclude the presence of large fractions of intermediate species having appreciable enthalpies of association.  相似文献   

18.
Specific adsorption capacity of Sepharose 4B in affinity chromatography for two purified galactose-binding lectins, designated as IIIL and IIIH, from the seed of Ricinus communis (castor bean) was measured from 7 to 24°C. The adsorption coefficients for these two protein fractions as a function of temperature were also obtained. It was found that there is a characteristic transition of adsorption coefficient at 18°C for both lectins. Adsorption coefficients between Sepharose 4B and these two lectins were also expressed in terms of ΔG, ΔH, andΔS. It is suggested that the difference in the temperature dependence of the binding energy of these two lectins may be used for their separation at selected temperature.  相似文献   

19.
Two phosphoenolpyruvate carboxylase proteins (PC-I and PC-II) were extracted and purified close to homogeneity from corn leaves. PC-I contained about 85% and PC-II about 15% of the total phosphoenolpyruvate carboxylase activity. PC-I eluted from a DEAE-cellulose column with a buffer having lower ionic strength, had higher Km and V values with respect to phosphoenolpyruvate, Mg2+, and Mn2+, was more thermolabile and moved more slowly toward the anode during disc gel electrophoresis as compared to PC-II. The enzymes had sedimentation coefficient values (s20,W) of 9.7 and 11.6S and molecular weights, determined by equilibrium centrifugation on sucrose density gradients, of 225,650 and 270,800, respectively. The enzymes used HCO3? as the active “CO2” substrate, and the major protein (PC-I) had a temperature optimum for activity of 40 °C.  相似文献   

20.
The continuous scanning apparatus developed by Catsimpoolas was applied to an analysis of the concentration profiles of a protein, β-lactoglobulin B, while it was subjected to polyacrylamide gel electrophoresis (PAGE) in a multiphasic buffer system. Continuous optical scanning in PAGE permitted reliable estimation of the standard deviation of the concentration profile (σ), the relationship between σ2 and time, and the apparent diffusion coefficient, D′, derived from σ2, as the current density varied from 2 to 9 mA/cm2, protein load varied from 250 to 900 μg/cm2, and the ionic strength varied from 0.015 to 0.065 m. Under these conditions, D′ was linearly related to current density and protein load. Further, log (D′) was linearly related to gel concentration (%T) ranging from 6 to 14%. However, D′ was nonlinearly related to ionic strength. Due primarily to the ionic strength factor, the apparent diffusion coefficient of protein in gels appeared to be approximately 10-fold larger than under the conditions of high ionic strength conventionally used in sedimentation and diffusion studies. Extrapolation of D′ to 0% T, zero protein load, zero current density, and “infinite” ionic strength (assuming noninteraction of these factors), as well as correction for viscosity and temperature, yielded an estimated free-diffusion coefficient, D20,w, of 3.1 × 10?7 cm2/s, which is compatible with previously reported values. These studies indicate that the optimal resolution obtained by PAGE will be considerably lower than that predicted theoretically on the basis of free-diffusion coefficients, and suggest that electrostatic interaction between the proteins and/or deformation of voltage gradient and pH within the protein zones may contribute significantly to band spreading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号