首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ray PS  Das S 《Nucleic acids research》2004,32(5):1678-1687
Translation of the hepatitis C virus (HCV) RNA is mediated by the interaction of ribosomes and cellular proteins with an internal ribosome entry site (IRES) located within the 5′-untranslated region (5′-UTR). We have investigated whether small RNA molecules corresponding to the different stem–loop (SL) domains of the HCV IRES, when introduced in trans, can bind to the cellular proteins and antagonize their binding to the viral IRES, thereby inhibiting HCV IRES-mediated translation. We have found that a RNA molecule corresponding to SL III could efficiently inhibit HCV IRES-mediated translation in a dose-dependent manner without affecting cap-dependent translation. The SL III RNA was found to bind to most of the cellular proteins which interacted with the HCV 5′-UTR. A smaller RNA corresponding to SL e+f of domain III also strongly and selectively inhibited HCV IRES-mediated translation. This RNA molecule interacted with the ribosomal S5 protein and prevented the recruitment of the 40S ribosomal subunit. This study reveals valuable insights into the role of the SL structures of the HCV IRES in mediating ribosome entry. Finally, these results provide a basis for developing anti-HCV therapy using small RNA molecules mimicking the SL structures of the 5′-UTR to specifically block viral RNA translation.  相似文献   

2.
In opportunistic Gram-positive Staphylococcus aureus, a small protein called hibernation-promoting factor (HPFSa) is sufficient to dimerize 2.5-MDa 70S ribosomes into a translationally inactive 100S complex. Although the 100S dimer is observed in only the stationary phase in Gram-negative gammaproteobacteria, it is ubiquitous throughout all growth phases in S. aureus. The biological significance of the 100S ribosome is poorly understood. Here, we reveal an important role of HPFSa in preserving ribosome integrity and poising cells for translational restart, a process that has significant clinical implications for relapsed staphylococcal infections. We found that the hpf null strain is severely impaired in long-term viability concomitant with a dramatic loss of intact ribosomes. Genome-wide ribosome profiling shows that eliminating HPFSa drastically increased ribosome occupancy at the 5′ end of specific mRNAs under nutrient-limited conditions, suggesting that HPFSa may suppress translation initiation. The protective function of HPFSa on ribosomes resides at the N-terminal conserved basic residues and the extended C-terminal segment, which are critical for dimerization and ribosome binding, respectively. These data provide significant insight into the functional consequences of 100S ribosome loss for protein synthesis and stress adaptation.  相似文献   

3.
4.
5.
6.
7.
Summary The genomic RNA of hepatitis C virus (HCV) encodes the viral polyprotein precursor that undergoes proteolytic cleavage into structural and nonstructural proteins by cellular and the viral NS3 and NS2-3 proteases. Nonstructural protein 4A (NS4A) is a cofactor of the NS3 serine protease and has been demonstrated to inhibit protein synthesis. In this study, GST pull-down assay was performed to examine potential cellular factors that interact with the NS4A protein and are involved in the pathogenesis of HCV. A trypsin digestion followed by LC-MS/MS analysis revealed that one of the GST-NS4A-interacting proteins to be eukaryotic elongation factor 1A (eEF1A). Both the N-terminal domain of NS4A from amino acid residues 1–20, and the central domain from residues 21–34 interacted with eEF1A, but the central domain was the key player involved in the NS4A-mediated translation inhibition. NS4A(21–34) diminished both cap-dependent and HCV IRES-mediated translation in a dose-dependent manner. The translation inhibitory effect of NS4A(21–34) was relieved by the addition of purified recombinant eEF1A in an in vitro translation system. Taken together, NS4A inhibits host and viral translation through interacting with eEF1A, implying a possible mechanism by which NS4A is involved in the pathogenesis and chronic infection of HCV.  相似文献   

8.
Reduction in host-activated protein C levels and resultant microvascular thrombosis highlight the important functional role of protein C anticoagulant system in the pathogenesis of sepsis and septic shock. Thrombomodulin (TM) is a critical factor to activate protein C in mediating the anticoagulation and anti-inflammation effects. However, TM protein content is decreased in inflammation and sepsis, and the mechanism is still not well defined. In this report, we identified that the TM 5′ untranslated region (UTR) bearing the internal ribosome entry site (IRES) element controls TM protein expression. Using RNA probe pulldown assay, HuR was demonstrated to interact with the TM 5′UTR. Overexpression of HuR protein inhibited the activity of TM IRES, whereas on the other hand, reducing the HuR protein level reversed this effect. When cells were treated with IL-1β, the IRES activity was suppressed and accompanied by an increased interaction between HuR and TM 5′UTR. In the animal model of sepsis, we found the TM protein expression level to be decreased while concurrently observing the increased interaction between HuR and TM mRNA in liver tissue. In summary, HuR plays an important role in suppression of TM protein synthesis in IL-1β treatment and sepsis.  相似文献   

9.
10.
11.
12.
Ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis, is a highly inducible protein whose expression involves a complex and variable array of regulatory mechanisms. We investigated the influence of the 5'-untranslated region (5'UTR) of the rat ODC mRNA on translation of the mRNA in a cell-free system and in cultured mammalian cells. ODC mRNA containing the full-length 5'UTR was translated in reticulocyte lysates at approximately 5% of the rate of mRNA containing no ODC 5' leader sequences. The complete 5'UTR inhibited expression of a heterologous gene product, human growth hormone, to the same extent in cultured mammalian cells. Furthermore, the 5'-most 130 bases of the rat ODC 5'UTR, a conserved G/C-rich region predicted to form a stable stem-loop structure (delta G = -68 kcal/mol), repressed translation to the same extent as the entire 5'UTR, both in the lysates and in intact cells. The 3'-most 160 bases of the 5'UTR, containing a small upstream open reading frame, decreased expression by 50-65% both in vitro and in intact cells, compared with controls lacking any ODC 5'UTR sequences. Mutation of the initiation codon AUG beginning this upstream open reading frame to GCG restored expression to rates equivalent to those seen in constructions containing no ODC 5'UTR sequences. We conclude that the rat ODC mRNA 5'UTR can inhibit translation of ODC mRNA both in vitro and in vivo, and that the predicted stem-loop structure at the 5' end of the 5'UTR is both necessary and sufficient for this inhibition.  相似文献   

13.
14.
15.
16.
The 5′-untranslated region (5′-UTR) of mRNAs functions as a translation enhancer, promoting translation efficiency. Many in vitro translation systems exhibit a reduced efficiency in protein translation due to decreased translation initiation. The use of a 5′-UTR sequence with high translation efficiency greatly enhances protein production in these systems. In this study, we have developed an in vitro selection system that favors 5′-UTRs with high translation efficiency using a ribosome display technique. A 5′-UTR random library, comprised of 5′-UTRs tagged with a His-tag and Renilla luciferase (R-luc) fusion, were in vitro translated in rabbit reticulocytes. By limiting the translation period, only mRNAs with high translation efficiency were translated. During translation, mRNA, ribosome and translated R-luc with His-tag formed ternary complexes. They were collected with translated His-tag using Ni-particles. Extracted mRNA from ternary complex was amplified using RT-PCR and sequenced. Finally, 5′-UTR with high translation efficiency was obtained from random 5′-UTR library.  相似文献   

17.
18.
The use of internal ribosome entry sites (IRESs) is one of the unorthodox mechanisms exploited by viruses to initiate the translation of internal genes. Herein, we report a plant virus exploiting an IRES and its 3'-untranslated region (UTR) to express its internal genes, notably the 3'-proximal viral coat protein gene. Hibiscus chlorotic ringspot virus (HCRSV), a positive-strand non-polyadenylated RNA virus, was demonstrated to harbor a unique 100-nucleotide (nt) IRES, located 124 nt upstream of the coat protein gene, that could function in wheat germ extract, rabbit reticulocyte lysate, and mammalian cells. In comparison with other known IRESs of picornaviruses and eukaryotic mRNAs, this 100-nt IRES is distinctively short and simple. The IRES activity was tested in homologous and heterologous bicistronic constructs, and the expression of the 3'-proximal gene was enhanced when the 3'-UTR was present. When the IRES element was bisected, each half still possessed IRES activity and could initiate internal translation on its own. Site-directed mutagenesis and deletion analyses revealed that the primary sequence within the 5' half was crucial for IRES activity, whereas the primary sequence of the second half and a GNRA motif were non-essential. To our knowledge, this is the first report describing a mechanism whereby an IRES, located in the 3' portion of the virus genome, co-operates with the 3'-UTR to enhance gene expression differentially.  相似文献   

19.
20.
The OxyS regulatory RNA integrates the adaptive response to hydrogen peroxide with other cellular stress responses and protects against DNA damage. Among the OxyS targets is the rpoS-encoded sigma(s) subunit of RNA polymerase. Sigma(s) is a central regulator of genes induced by osmotic stress, starvation and entry into stationary phase. We examined the mechanism whereby OxyS represses rpoS expression and found that the OxyS RNA inhibits translation of the rpoS message. This repression is dependent on the hfq-encoded RNA-binding protein (also denoted host factor I, HF-I). Co-immunoprecipitation and gel mobility shift experiments revealed that the OxyS RNA binds Hfq, suggesting that OxyS represses rpoS translation by altering Hfq activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号