首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Phosphatidylinositol (PI) 3-kinase/Akt signaling activates NF-kappa B through pleiotropic, cell type-specific mechanisms. This study investigated the significance of PI 3-kinase/Akt signaling to tumor necrosis factor (TNF)-induced NF-kappa B activation in transformed, immortalized, and primary cells. Pharmacological inhibition of PI 3-kinase blocked TNF-induced NF-kappa B DNA binding in the 293 line of embryonic kidney cells, partially affected binding in MCF-7 breast cancer cells, HeLa and ME-180 cervical carcinoma cells, and NIH 3T3 cells but was without significant effect in H1299 and human umbilical vein endothelial cells, cell types in which TNF activated Akt. NF-kappa B is retained in the cytoplasm by inhibitory proteins, I kappa Bs, which are phosphorylated and targeted for degradation by I kappa B kinases (IKK alpha and IKK beta). Expression and the ratios of IKK alpha and IKK beta, which homo- and heterodimerize, varied among cell types. Cells with a high proportion of IKK alpha (the IKK kinase activated by Akt) to IKK beta were most sensitive to PI 3-kinase inhibitors. Consequently, transient expression of IKK beta diminished the capacity of the inhibitors to block NF-kappa B DNA binding in 293 cells. Also, inhibitors of PI 3-kinase blocked NF-kappa B DNA binding in Ikk beta-/- but not Ikk alpha-/- or wild-type cells in which the ratio of IKK alpha to IKK beta is low. Thus, noncoordinate expression of I kappa B kinases plays a role in determining the cell type-specific role of Akt in NF-kappa B activation.  相似文献   

6.
The cyclooxygenase 2 (COX-2) inhibitor celecoxib (also called celebrex), approved for the treatment of colon carcinogenesis, rheumatoid arthritis, and other inflammatory diseases, has been shown to induce apoptosis and inhibit angiogenesis. Because NF-kappa B plays a major role in regulation of apoptosis, angiogenesis, carcinogenesis, and inflammation, we postulated that celecoxib modulates NF-kappa B. In the present study, we investigated the effect of this drug on the activation of NF-kappa B by a wide variety of agents. We found that celecoxib suppressed NF-kappa B activation induced by various carcinogens, including TNF, phorbol ester, okadaic acid, LPS, and IL-1 beta. Celecoxib inhibited TNF-induced I kappa B alpha kinase activation, leading to suppression of I kappa B alpha phosphorylation and degradation. Celecoxib suppressed both inducible and constitutive NF-kappa B without cell type specificity. Celecoxib also suppressed p65 phosphorylation and nuclear translocation. Akt activation, which is required for TNF-induced NF-kappa B activation, was also suppressed by this drug. Celecoxib also inhibited the TNF-induced interaction of Akt with I kappa B alpha kinase (IKK). Celecoxib abrogated the NF-kappa B-dependent reporter gene expression activated by TNF, TNF receptor, TNF receptor-associated death domain, TNF receptor-associated factor 2, NF-kappa B-inducing kinase, and IKK, but not that activated by p65. The COX-2 promoter, which is regulated by NF-kappa B, was also inhibited by celecoxib, and this inhibition correlated with suppression of TNF-induced COX-2 expression. Besides NF-kappa B, celecoxib also suppressed TNF-induced JNK, p38 MAPK, and ERK activation. Thus, overall, our results indicate that celecoxib inhibits NF-kappa B activation through inhibition of IKK and Akt activation, leading to down-regulation of synthesis of COX-2 and other genes needed for inflammation, proliferation, and carcinogenesis.  相似文献   

7.
8.
9.
A critical step in the activation of NF-kappa B is the phosphorylation of I kappa Bs by the I kappa B kinase (IKK) complex. IKK alpha and IKK beta are the two catalytic subunits of the IKK complex and two additional molecules, IKK gamma/NEMO and IKAP, have been described as further integral members. We have analyzed the function of both proteins for IKK complex composition and NF-kappa B signaling. IKAP and IKK gamma belong to distinct cellular complexes. Quantitative association of IKK gamma was observed with IKK alpha and IKK beta. In contrast IKAP was complexed with several distinct polypeptides. Overexpression of either IKK gamma or IKAP blocked tumor necrosis factor alpha induction of an NF-kappa B-dependent reporter construct, but IKAP in addition affected several NF-kappa B-independent promoters. Whereas specific down-regulation of IKK gamma protein levels by antisense oligonucleotides significantly reduced cytokine-mediated activation of the IKK complex and subsequent NF-kappa B activation, a similar reduction of IKAP protein levels had no effect on NF-kappa B signaling. Using solely IKK alpha, IKK beta, and IKK gamma, we could reconstitute a complex whose apparent molecular weight is comparable to that of the endogenous IKK complex. We conclude that while IKK gamma is a stoichiometric component of the IKK complex, obligatory for NF-kappa B signaling, IKAP is not associated with IKKs and plays no specific role in cytokine-induced NF-kappa B activation.  相似文献   

10.
11.
12.
13.
14.
15.
16.
Canonical activation of NF-kappa B is mediated via phosphorylation of the inhibitory I kappa B proteins by the I kappa B kinase complex (IKK). IKK is composed of a heterodimer of the catalytic IKK alpha and IKK beta subunits and a presumed regulatory protein termed NEMO (NF-kappa B essential modulator) or IKK gamma. NEMO/IKK gamma is indispensable for activation of the IKKs in response to many signals, but its mechanism of action remains unclear. Here we identify TANK (TRAF family member-associated NF-kappa B activator) as a NEMO/IKK gamma-interacting protein via yeast two-hybrid analyses. This interaction is confirmed in mammalian cells, and the domains required are mapped. TANK was previously shown to assist NF-kappa B activation in a complex with TANK-binding kinase 1 (TBK1) or IKK epsilon, two kinases distantly related to IKK alpha/beta, but the underlying mechanisms remained unknown. Here we show that TBK1 and IKK epsilon synergize with TANK to promote interaction with the IKKs. The TANK binding domain within NEMO/IKK gamma is required for proper functioning of this IKK subunit. These results indicate that TANK can synergize with IKK epsilon or TBK1 to link them to IKK complexes, where the two kinases may modulate aspects of NF-kappa B activation.  相似文献   

17.
NF-kappa B activity is regulated by its association with the inhibitory I kappa B proteins, among which I kappa B alpha and I kappa B beta are the most abundant. I kappa B proteins are widely expressed in different cells and tissues and bind to similar combinations of NF-kappa B proteins. The degradation of I kappa B proteins allows nuclear translocation of NF-kappa B and hence plays a critical role in NF-kappa B activation. Previous studies have demonstrated that, although both I kappa B proteins are phosphorylated by the same I kappa B kinase (IKK) complex, and their ubiquitination and degradation following phosphorylation are carried out by the same ubiquitination/degradation machinery, their kinetics of degradation are quite different. To better understand the underlying mechanism of the differences in degradation kinetics, we have carried out a systematic, comparative analysis of the ability of the IKK catalytic subunits to phosphorylate I kappa B alpha and I kappa B beta. We found that, whereas IKK alpha is a weak kinase for the N-terminal serines of both I kappa B isoforms, IKK beta is an efficient kinase for those residues in I kappa B alpha. However, IKK beta phosphorylates the N-terminal serines of I kappa B beta far less efficiently, thereby providing an explanation for the slower rate of degradation observed for I kappa B beta. Mutational analysis indicated that the regions around the two N-terminal serines collectively influence the relative phosphorylation efficiency, and no individual residue is critical. These findings provide the first systematic analysis of the ability of I kappa B alpha and I kappa B beta to serve as substrates for IKKs and help provide a possible explanation for the differential degradation kinetics of I kappa B alpha and I kappa B beta.  相似文献   

18.
The NF-kappa B inhibitor I kappa B-epsilon is a new member of the I kappa B protein family, but its functional role in regulating NF-kappa B-mediated induction of adhesion molecule expression is unknown. In vascular endothelial cells, I kappa B-epsilon associates predominantly with the NF-kappa B subunit Rel A and to a lesser extent with c-Rel, whereas I kappa B-alpha and I kappa B-beta associate with Rel A only. Following stimulation with TNF-alpha, pyrrolidine dithiocarbamate (PDTC), N-acetylcysteine, and dexamethasone prevented I kappa B kinase-induced I kappa B-alpha, but not I kappa B-beta or I kappa B-epsilon phosphorylation and degradation. Since the activation of NF-kappa B is required for the induction of adhesion molecule expression, we examined the role of I kappa B-epsilon in the transactivation of promoters from VCAM-1, ICAM-1, and E-selectin. Using reporter gene constructs of adhesion molecule promoters, PDTC inhibited VCAM-1 and E-selectin, but to a lesser extent, ICAM-1 promoter activity. Subcloning of kappa B cis-acting elements of VCAM-1, E-selectin, and ICAM-1 into a heterologous promoter construct revealed that PDTC inhibited VCAM-1 and E-selectin, but to a lesser extent, ICAM-1 kappa B promoter activity. By electrophoretic mobility shift assay, NF-kappa B heterodimers containing c-Rel specifically bind to the kappa B motif in the ICAM-1, but not VCAM-1 or E-selectin promoter. Indeed, overexpression of c-Rel induced ICAM-1 kappa B promoter activity to a greater extent than that of E-selectin and overexpression of I kappa B-epsilon inhibited ICAM-1 and VCAM-1 promoter activity in endothelial cells. These findings indicate that c-Rel-associated I kappa B-epsilon is involved in the induction of ICAM-1 expression.  相似文献   

19.
20.
Interleukin-1 (IL-1) mediates numerous host responses through the rapid activation of nuclear factor-kappa B (NF-kappa B), but the signal pathways leading to NF-kappa B activation are regulated at multiple stages. Here, we propose a novel regulatory system for IL-1-induced NF-kappa B activation by a tyrosine kinase, c-Src. The kinase activity of c-Src increases in an IL-1-dependent manner and the ectopic expression of c-Src augments IL-1-induced NF-kappa B activation, suggesting the involvement of c-Src in IL-1 signaling. However, a Src family inhibitor, PP2 failed to inhibit IL-1-induced NF-kappa B activation, and the expression of a c-Src mutant lacking kinase activity (c-Src KD) augmented IL-1-induced NF-kappa B activation as well as wild type c-Src, indicating that the tyrosine kinase activity is not required for IL-1-induced NF-kappa B activation. Furthermore, a physiological interaction between c-Src and I kappa B kinase gamma (IKK gamma) was observed, implying the involvement of c-Src in the IKK-complex. While c-Src augmented IL-1-induced IKK activation independent of its kinase activity, the region comprising amino acids 361-440 in the c-Src kinase domain are required for NF-kappa B activation. The same region of c-Src is also required for IL-1-induced IKK activation and the association with IKK gamma. Taken together, our results suggest that c-Src plays a critical role in IL-1-induced NF-kappa B activation through the IKK complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号