首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Phytoseiidae classification is based on idiosoma chaetotaxy and the assumed evolutionary process is seta suppression. This article aims to determine how depilation could have taken place depending on seta position, subfamily and region. For this, the occurrence of 21 variable setae on dorsal and ventral shields was determined for 1996 species in seven biogeographical regions. The occurrence of eight rare setae assumed to be past relics and 11 rarely absent setae (assumed to be undergoing a loss process) was analysed. The subfamily Phytoseiinae has ‘lost’ the highest number of primitive setae, the subfamily Amblyseiinae has ‘retained’ the highest number and Typhlodrominae has an intermediate position, except for the seta z6. The subfamily Phytoseiinae shows the highest number of setae undergoing a loss process, whereas the subfamily Typhlodrominae has lost these setae in 674 species and subfamily Amblyseiinae in 415 species, making this latter subfamily that with the most retained dorsal setae. According to spatial seta occurrence, it could be hypothesized that Amblyseiinae originated from South Gondwana, Typhlodrominae from the Euro‐America region (Laurasia zone) and Phytoseiinae from the Ethiopian area. The presently admitted classification of Phytoseiidae is discussed with regard to the occurrence of rarely present setae (assumed to have been lost in high frequency). © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 606–624.  相似文献   

2.
Variance and covariance of ovipositional rates and developmental rates in the Phytoseiidae were analysed using comparative methods which consider phylogenetic effects. Nested analysis of variance showed that mean ovipositional rates and developmental rates of phytoseiid mites varied significantly between subfamilies, among genera within subfamilies, among subgenera within genera and among species within subgenera. For example, the mean ovipositional rate (eggs per day) was higher in the Amblyseiinae (2.04) than in the Phytoseiinae (1.39) and within the Amblyseiinae, it was higher in the genus Phytoseiulus (2.66) than in Amblyseius (1.80). Regressions using mean values of subgenera or higher taxa to account for phylogenetic effects showed significant correlation between mean ovipositional rates and developmental rates. The implications of this analysis for selecting species for future comparative analysis of phytoseiid life history variation are discussed.  相似文献   

3.
The commercially available strains of Phytoseiulus persimilis Athias-Henriot, the biological control agent of Tetranychus urticae Koch, perform poorly in the Western Mediterranean, probably because they are not well adapted to local climatic conditions. For that reason, efforts are being focused on the development of a biological control programme using native phytoseiid mites. Four species of red spider mites can be found in vegetable crops in eastern Spain: T. urticae, Tetranychus turkestani Ugarov and Nikolski, Tetranychus ludeni Zacher and the recently introduced Tetranychus evansi Baker and Pritchard. To evaluate their potential role as biological control agents, the present study evaluates the life-history of local populations of Neoseiulus californicus (McGregor) and P. persimilis when fed on T. urticae, T. turkestani, T. evansi, and T. ludeni in the laboratory. Results indicate that N. californicus and P. persimilis are able to feed and complete their development on the four tested red spider mite species. The predators may exhibit a particularly high capacity for population increase when fed on T. urticae, T. turkestani, and T. ludeni, thus may be able to provide effective control of these species in the field. When fed T. evansi, however, predator performance was poor; significant increase in development and preoviposition times, and a reduction in oviposition period and fecundity were recorded. The resultant low capacity for population growth suggests poor ability of the two tested predators to suppress T. evansi populations on commercial crops. It is unlikely therefore that P. persimilis and N. californicus, now being widely used to control T. urticae in greenhouse crops in Central Europe, will be able to halt any spread of T. evansi to greenhouse crops in temperate areas.  相似文献   

4.
The tomato spider mite Tetranychus evansi Baker and Pritchard (Acari: Tetranychidae), is a worldwide pest of solanaceous crops that has recently invaded many parts of the world. In the present study we examined the ecological impact of its arrival in the Mediterranean region. The spider mite and phytoseiid mite assemblages in various crop and non-crop plants in three areas of Valencia (Spain) were studied a few months before and 10 years after the invasion of T. evansi. According to rarefaction analyses, the invasion of T. evansi did not affect neither the total number of species in the mite community examined (spider mite and phytoseiid species) nor the number of species when the two communities were examined separately. However, after the invasion, the absolute and relative abundance of the native Tetranychus species was significantly reduced. Before the invasion, T. urticae and T. turkestani were the most abundant spider mites, accounting for 62.9 and 22.8 % of the specimens. After the invasion, T. evansi became the most abundant species, representing 60 % of the total spider mites recorded, whereas the abundance of T. urticae was significantly reduced (23 %). This reduction took place principally on non-crop plants, where native species were replaced by the invader. Null model analyses provided evidence for competition structuring the spider mite community on non-crop plants after the invasion of T. evansi. Resistance to acaricides, the absence of efficient native natural enemies, manipulation of the plant defenses and the web type produced by T. evansi are discussed as possible causes for the competitive displacement.  相似文献   

5.
We introduced a mass-reared pyrethroid-resistant strain of the predatory phytoseiid mite Amblyseius fallacis (Garman) into an Ontario peach orchard in an attempt to control populations of the phytophagous mites Panonychus ulmi Koch and Tetranychus urticae Koch (Acari: Tetranychidae). Releases of 1,000 and 2,000 mites per tree were made, at three different times. The release of 2,000 mites per tree in June and in July resulted in significantly higher phytoseiid densities than was observed on control trees. However, densities of P. ulmi or T. urticae were not significantly affected by any release rate or by timing. The release of 1,000 A. fallacis per tree, or of any density in August, did not significantly increase phytoseiid abundance. In the following year, population dynamics of both phytoseiid and phytophagous mites were not significantly affected by the previous year's release. Amblyseius fallacis can be a useful predator in some fruit orchards. However, further research is necessary into the timing and rate of release, modified spray programmes, and with different crops, in order to clarify the role of this species for biological control in Ontario peach orchards.  相似文献   

6.
In choice test experiments on strawberry leaf disc arenas the phytoseiid mites Neoseiulus californicus and N. cucumeris were more effective than Typhlodromus pyri as predators of the phytophagous mites Tetranychus urticae and Phytonemus pallidus. There were no preferences shown for either prey by any of these predators. In multiple predator leaf disc experiments both Phytoseiulus persimilis and N. cucumeris significantly reduced numbers of T. urticae eggs and active stages; this effect was seen when the two species were present alone or in combination with other predator species. Neoseiulus californicus was less effective at reducing T. urticae numbers, and T. pyri was not effective; no interaction between predator species was detected in these experiments. When T. urticae alone was present as prey on potted plants, P. persimilis and N. californicus were the only phytoseiids to significantly reduce T. urticae numbers. These two predator species provided effective control of T. urticae when P. pallidus was also present; however, none of the predators reduced numbers of P. pallidus. There were no significant negative interactions when different species of predators were present together on these potted plants. In field experiments, releases of both P. persimilis and N. cucumeris significantly reduced T. urticae numbers. However, there was a significant interaction between these predator species, leading to poorer control of T. urticae when both species were released together. These results show the importance of conducting predator/prey feeding tests at different spatial scales.  相似文献   

7.
Spider-Mite Problems and Control in Taiwan   总被引:3,自引:0,他引:3  
Problems with spider mites first appeared in Taiwan in 1958, eight years after the importation of synthetic pesticides, and the mites evolved into major pests on many crops during the 1980s. Of the 74 spider mite species recorded from Taiwan 10 are major pests, with Tetranychus kanzawai most important, followed by T. urticae, Panonychus citri, T. cinnabarinus, T. truncatus and Oligonychus litchii. Most crops suffer from more than one species. Spider mites reproduce year-round in Taiwan. Diapause occurs only in high-elevation areas. Precipitation is the most important abiotic factor restricting spider-mite populations. Control is usually accomplished by applying chemicals. Fifty acaricides are currently registered for the control of spider mites. Acaricide resistance is a serious problem, with regional variation in resistance levels. Several phytoseiid mites and a chrysopid predator have been studied for control of spider mites with good effect. Efforts to market these predators should be intensified so that biological control can be a real choice for farmers.  相似文献   

8.
Tetranychus evansi Baker and Pritchard and Tetranychus urticae Koch (Acari: Tetranychidae) are important pests of Solanaceae in many countries. Several studies have demonstrated that T. urticae is an acceptable prey to many predatory mites, although the suitability of this prey depends on the host plant. T. evansi, has been shown to be an unfavorable prey to most predatory mites that have been tested against it. The predator Phytoseiulus fragariae Denmark and Schicha (Acari: Phytoseiidae) has been found in association with the two species in Brazil. The objective of this work was to compare biological parameters of P. fragariae on T. evansi and on T. urticae as prey. The study was conducted under laboratory conditions at 10, 15, 20, 25 and 30°C. At all temperatures, survivorship was lower on T. evansi than on T. urticae. No predator reached adulthood at 10°C on the former species; even on the latter species, only about 36% of the predators reached adulthood at 10°C. For both prey, in general, duration of each life stage was shorter, total fecundity was lower and intrinsic rate of population increase (r m ) was higher with increasing temperatures. The slower rate of development of P. fragariae on T. evansi resulted in a slightly higher thermal requirement (103.9 degree-days) on that prey than on T. urticae (97.1 degree-days). The values of net reproduction rate (R 0), intrinsic rate of increase (r m ) and finite rate of increase (λ) were significantly higher on T. urticae, indicating faster population increase of the predator on this prey species. The highest value of r m of the predator was 0.154 and 0.337 female per female per day on T. evansi and on T. urticae, respectively. The results suggested that P. fragariae cannot be considered a good predator of T. evansi.  相似文献   

9.
The tomato red spider mite, Tetranychus evansi (Acari: Tetranychidae) was recently introduced in Africa and Europe, where there is an increasing interest in using natural enemies to control this pest on solanaceous crops. Two promising candidates for the control of T. evansi were identified in South America, the fungal pathogen, Neozygites floridana and the predatory mite Phytoseiulus longipes. In this study, population dynamics of T. evansi and its natural enemies together with the influence of environmental conditions on these organisms were evaluated during four crop cycles in the field and in a protected environment on nightshade and tomato plants with and without application of chemical pesticides. N. floridana was the only natural enemy found associated with T. evansi in the four crop cycles under protected environment but only in the last crop cycle in the field. In the treatments where the fungus appeared, reduction of mite populations was drastic. N. floridana appeared in tomato plants even when the population density of T. evansi was relatively low (less than 10 mites/3.14 cm2 of leaf area) and even at this low population density, the fungus maintained infection rates greater than 50%. The application of pesticides directly affected the fungus by delaying epizootic initiation and contributing to lower infection rates than unsprayed treatments. Rainfalls did not have an apparent impact on mite populations. These results indicate that the pathogenic fungus, N. floridana can play a significant role in the population dynamics of T. evansi, especially under protected environment, and has the potential to control this pest in classical biological control programs.  相似文献   

10.
Phyto traps were attached to twigs, main branches and trunks of Japanese pear trees in central Japan in autumn of 2004, to evaluate the effectiveness of the trap as a tool to study overwintering phenology of arboreal phytoseiid mites. A subset of the traps was inspected and replaced at two-weeks intervals (“short-term Phyto trap”), in order to evaluate movement of phytoseiid mites on the trees in a short-term. The remaining traps were left undisturbed and collected monthly from January to May 2005 (“long-term Phyto trap”), to know what species overwinter in the traps and when they leave them. Most phytoseiid mites were collected in the traps on twigs. The most abundant phytoseiid species was Typhlodromus vulgaris Ehara. In the short-term traps on twigs, adult females and males of T. vulgaris were collected until mid-November 2004, when the pear trees became completely defoliated, but few mites were collected from December to April. On the other hand, adult females of T. vulgaris were abundant in the long-term traps on twigs sampled from January to April, but other stages of mites were never collected. These results indicate that T. vulgaris had moved to the long-term traps by late November, and that only adult females had overwintered in the traps. These females began to move and reproduce in early May. By that time immature developmental stages of T. vulgaris were also recorded in the short- and long-term Phyto traps. Our results confirmed that the Phyto trap was a useful tool for estimating overwintering phenology of phytoseiid mites on trees.  相似文献   

11.
The abundance and diversity of phytoseiid mites were surveyed from April to September 2003 to 2005 in vineyards (Grenache and Syrah cultivars) co-planted with rows of Sorbus domestica or Pinus pinea and in monoculture plots of grapes in the South of France. Densities of phytoseiid mites were different on the two tree species, with P. pinea a more suitable host than S. domestica. Typhlodromus (Typhlodromus) exhilaratus was the dominant species occurring on grapes and on co-planted rows of S. domestica and P. pinea, whereas T. (T.) phialatus was the most abundant species in monoculture plots of both S. domestica and P. pinea. Factors determining the dominance of T. (T.) phialatus over T. (T.) exhilaratus in monoculture trees are discussed. In this study, agroforestry management did not affect phytoseiid diversity in vineyards, but did affect phytoseiid density, especially in 2005. The results obtained in 2003 and 2004 are not easy to discuss in this regard because of the low densities of mites observed during these 2 years (very dry climatic conditions and pesticide applications).  相似文献   

12.
The tomato red spider mite, Tetranychus evansi, is reported as a severe pest of tomato and other solanaceous crops from Africa, from Atlantic and Mediterranean Islands, and more recently from the south of Europe (Portugal, Spain and France). A population of the predaceous mite Phytoseiulus longipes has been recently found in Brazil in association with T. evansi. The objective of this paper was to assess the development and reproduction abilities of this strain on T. evansi under laboratory conditions at four temperatures: 15, 20, 25 and 30°C. The duration of the immature phase ranged from 3.1 to 15.4 days, at 30 and 15°C, respectively. Global immature lower thermal threshold was 12.0°C. Immature survival was high at all temperatures tested (minimum of 88% at 30°C). The intrinsic rate of increase (r m) of P. longipes ranged from 0.091 to 0.416 female/female/day, at 15 and 30°C, respectively. P. longipes would be able to develop at a wide range of temperatures feeding on T. evansi and has the potential to control T. evansi populations.  相似文献   

13.
Eight phytoseiid species were tested to evaluate and compare their potential as predators ofTetranychus evansi Baker & Pritchard andT. urticae (Koch). The study was conducted using arenas of excised nightshade (Solanum douglasii Dunal) and Lima bean (Phaseolus vulgaris L.) leaves infested with eitherTetranychus species. When the prey wasT. evansi, the predatorsAmblyseius californicus (McGregor) andPhytoseiulus persimilis Athias-Henriot from Ventura, California, showed the highest oviposition rates. However, those rates were 4 to 6 times lower than rates for the same predators feeding onT. urticae. OnlyA. californicus and the strain ofP. persimilis from Beni-Mellal, Morocco, had survivorship higher than 50% 8 days after the beginning of the experiment. The results indicated thatT. evansi is an unfavorable prey for all the phytoseiids tested.
Résumé Huit espèces d'Acariens phytoseiides étaient testées en vue de comparer leurs potentialités prédatrices vis-à-vis deTetranychus evansi Baker & Pritchard et deTetranychus urticae (Koch). L'étude était réalisée sur des feuilles détachées deSolanum douglasii Dunal et dePhaseolus vulgaris L. Les feuilles avaient été infestées avec l'une ou l'autre des espèces deTetranychus. Amblyseius californicus (McGregor) etPhytoseiulus persimilis Athias-Henriot, de Ventura, ont donné les taux d'oviposition les plus élevés avecT. evansi, mais ces taux étaient 4 à 6 fois inférieurs à ceux obtenus lorsque la proie étaitT. urticae. SeulsA. californicus et la souche deP. persimilis de Beni-Mellal avaient une survie supérieure à 50%, 8 jours après le début du test. Les résultats indiquent queT. evansi n'est pas une proie favorable pour toutes les espèces testées.
  相似文献   

14.
The responses of 3 phytoseiid mite speciesPhytoseiulus persimilis Athias-Henriot,Phytoseius finitimus Ribaga andAmblyseius gossipi Elbadry to allelochemics emitted by prey mite speciesTetranychus urticae Koch,Brevipalpus pulcher (Canestrini & Fanzago) andEriophyes dioscoridis Soliman & Abou-Awad were studied using a test of two-choice assays. The repellent effect elicited by the tenuipalpid mite,B. pulcher and the eriophyid mite,E. dioscoridis againstP. persimilis could be an evidence for the existence of allomones produced by these 2 prey species. The negative response ofP. persimilis to the different stadia ofB. pulcher and the attraction ofP. finitimus toward the same prey suggest that the volatile semiochemicals produced by this prey act as kairomones forP. finitimus and as allomones forP. persimilis. The strong attraction ofP. finitimus andA. gossipi to the different stadia ofT. urticae and the considerable attraction of either predator toB. pulcher compared to the neutral response toE. dioscoridis reveal that both predators show a hierarchy of preference for the kairomones of the 3 prey species studied.   相似文献   

15.
Extensive sampling of strawberry plants in everbearing and June-bearing strawberry plantations and on potted plants showed that different species of mites were spatially separated. Of the two phytophagous species recorded, Tetranychus urticae was most abundant on old leaves and Phytonemus pallidus on folded leaves and flower/fruit clusters. Predatory phytoseiid mites were found on all plant parts but different species were spatially separated; Neoseiulus cucumeris and N. aurescens were found mostly on folded leaves and clusters, and N. californicus and Phytoseiulus persimilis on old and medium aged leaves. No Typhlodromus pyri were found in the field plantations. These patterns of distribution did not change over sampling dates in summer and early autumn. An understanding of this within-plant zonation of mite species is important when studying predator–prey interactions and when designing sampling strategies for strawberry. A programme to sample the entire mite system on strawberry should be stratified to include all the above mentioned parts of the plant. Different sampling protocols, as appropriate, are required for sampling different pest species and their associated predators.  相似文献   

16.
Seventeen isolates of Metarhizium anisopliae (Metschnikoff) Sorokin and two isolates of Beauveria bassiana (Balsamo) Vuillemin were evaluated for their pathogenicity against the tobacco spider mite, Tetranychus evansi Baker & Pritchard. In the laboratory all the fungal isolates were pathogenic to the adult female mites, causing mortality between 22.1 and 82.6%. Isolates causing more than 70% mortality were subjected to dose–response mortality bioassays. The lethal concentration causing 50% mortality (LC50) values ranged between 0.7×107 and 2.5×107 conidia ml−1. The lethal time to 50% mortality (LT50) values of the most active isolates of B. bassiana and M. anisopliae strains varied between 4.6 and 5.8 days. Potted tomato plants were artificially infested with T. evansi and treated with B. bassiana isolate GPK and M. anisopliae isolate ICIPE78. Both fungal isolates reduced the population density of mites as compared to untreated controls. However, conidia formulated in oil outperformed the ones formulated in water. This study demonstrates the prospects of pathogenic fungi for the management of T. evansi.  相似文献   

17.
We observed the number of predatory mites (Phytoseiidae:Typhlodromus caudiglans) on the foliage of 20 North American species of grapes (Vitis spp) plus the domesticated EuropeanVitis vinifera, all grown in a common garden. We found relatively few phytophagous mites. The numbers of phytophagous mites were not correlated with the plant characteristics that we measured. We found approximately five times as many predatory mites as phytophagous mites and the numbers of these phytoseiid predators were not affected by the availability of prey. Similarly, numbers of phytoseiids were unaffected by plant gender and, hence, the availability of pollen, another source of food. The numbers of phytoseiids were not clustered according to the taxonomic grouping of the tested plant species. Leaf surface characteristics explained over 25% of the variance in the numbers of phytoseiids. Numbers of phytoseiids were positively associated with the density of vein hairs, the density of bristles in leaf axils, and the presence of leaf domatia. These results suggest that sheltered habitats rather than food availability may limit the numbers of phytoseiid mites on grapevines.  相似文献   

18.
Plant defense suppression is an offensive strategy of herbivores, in which they manipulate plant physiological processes to increase their performance. Paradoxically, defense suppression does not always benefit the defense‐suppressing herbivores, because lowered plant defenses can also enhance the performance of competing herbivores and can expose herbivores to increased predation. Suppression of plant defense may therefore entail considerable ecological costs depending on the presence of competitors and natural enemies in a community. Hence, we hypothesize that the optimal magnitude of suppression differs among locations. To investigate this, we studied defense suppression across populations of Tetranychus evansi spider mites, a herbivore from South America that is an invasive pest of solanaceous plants including cultivated tomato, Solanum lycopersicum, in other parts of the world. We measured the level of expression of defense marker genes in tomato plants after infestation with mites from eleven different T. evansi populations. These populations were chosen across a range of native (South American) and non‐native (other continents) environments and from different host plant species. We found significant variation at three out of four defense marker genes, demonstrating that T. evansi populations suppress jasmonic acid‐ and salicylic acid‐dependent plant signaling pathways to varying degrees. While we found no indication that this variation in defense suppression was explained by differences in host plant species, invasive populations tended to suppress plant defense to a smaller extent than native populations. This may reflect either the genetic lineage of T. evansi—as all invasive populations we studied belong to one linage and both native populations to another—or the absence of specialized natural enemies in invasive T. evansi populations.  相似文献   

19.
A survey was conducted to identify possible alternative plant habitats of the most common phytoseiid predators associated with the cassava green mite, Mononychellus tanajoa (Bondar), in their native environment in northeast Brazil. Thirty-two phytoseiid species were collected, including Amblyseius aripo (DeLeon), Amblyseius idaeus (Denmark and Muma) and Amblyseius limonicus Garman and McGregor s.l., the three predators previously shown as the most common on cassava. In increasing order, A. idaeus, Phytoseius guianensis DeLeon and A. aripo were the most common phytoseiids collected on the plant habitats examined. A. limonicus s.l. was one of the least common phytoseiids on plants other than cassava. Altermative plant habitats seem important in harboring A. aripo and A. idaeus, but not A. limonicus s.l..  相似文献   

20.
Interspecific predation and cannibalism are common types of interaction in phytoseiid predator guilds, but the extent and nature of these interactions have not been determined yet in phytoseiid guilds composed of African native and neotropical exotic phytoseiid predators found in cassava habitat in southern Africa. We determined in laboratory experiments the level of cannibalism and interspecific predation among the three phytoseiid mite species Euseius fustis, Iphiseius degenerans, and Typhlodromalus aripo in the absence of food and in the presence of limited or abundant quantities of two food types – Mononychellus tanajoa and maize pollen – commonly found on cassava in Africa. When confined without food, only two T. aripo females laid each two eggs within 5 days, and this species survived longer than I. degenerans and E. fustis. In the presence of con- or hetero-specific larvae or protonymphs, the three species fed more on the former than on the latter, and more on hetero-specifics than on con-specifics. Oviposition rates of the three species did not exceed 0.7 egg/female/day on con- and hetero-specific immatures. Typhlodromalus aripo and E. fustis survived longer on con-specific and hetero-specific larvae and on hetero-specific protonymphs than in the absence of any food, while T. aripo survived longer than the two other species on the same diets. Provision of limited quantity of food decreased interspecific predation rate by I. degenerans and T. aripo, but not by E. fustis, and increased oviposition rate and longevity of all three species. Provision of abundant food, however, eliminated cannibalism by all three species and further reduced interspecific predation rates, but their oviposition and longevity remained relatively unchanged compared with limited food provision. Potential consequences of cannibalism and interspecific predation among phytoseiid mites on cassava for the biological control of M. tanajoa are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号