首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
The aim of this work was to identify the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) isozyme(s) present in white adipose tissue. Ion-exchange chromatography of PFK-2 from rat epididymal fat pads yielded an elution pattern compatible with the presence of both the L (liver) and M (muscle) isozymes. This was consistent with a study of the phosphorylation of the purified adipose tissue enzyme by cAMP-dependent protein kinase, by specific labelling of the preparation with [2-32P]fructose 2,6-bisphosphate and by reaction with antibodies. Characterization of the PFK-2/FBPase-2 mRNAs showed that mature adipocytes express the mRNA that codes for the L isozyme and the two mRNAs that code for the M isozyme. Preadipocytes expressed mRNA that codes for the M isozyme. Incubation of rat epididymal fat pads with adrenaline stimulated glycolysis but decreased fructose 2,6-bisphosphate concentrations without significant inactivation of PFK-2. These results support previous findings showing that fructose 2,6-bisphosphate is not involved in the adrenaline-induced stimulation of glycolysis in white adipose tissue.  相似文献   

3.
In liver, the 470-residue bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) catalyses the synthesis and degradation of fructose 2,6-bisphosphate, a potent stimulator of glycolysis. In rat hepatoma (HTC) cells, this enzyme has kinetic, antigenic, and regulatory properties, such as insensitivity to cyclic AMP-dependent protein kinase and lack of associated FBPase-2 activity, that differ from those in liver. To compare the sequence of the HTC enzyme with that of the liver enzyme, we have cloned the corresponding fully-coding cDNA from HTC cells. This cDNA predicts a protein of 448 residues in which the first 32 residues of liver PFK-2/FBPase-2 including the cyclic AMP target sequence have been replaced by a unique N-terminal decapeptide. The rest of the protein is identical with the liver enzyme. An N-terminally truncated recombinant peptide of 380 residues containing the PFK-2 and FBPase-2 domains was expressed in Escherichia coli as a beta-galactosidase fusion protein. It was recognized by anti-PFK-2 antibodies but its enzymic activities were barely detectable. In contrast, a cDNA fully-coding for the HTC enzyme could be expressed in E. coli as a beta-galactosidase-free peptide that exhibited both PFK-2 and FBPase-2 activities. This peptide had those PFK-2 kinetic properties of the HTC enzyme that differ from the liver enzyme. These data, together with immunoblot experiments, suggest that the lack of associated FBPase-2 activity in HTC cells results from a post-translational modification of the enzyme rather than from the difference in amino acid sequence. As well as this peculiar type of PFK-2/FBPase-2 mRNA, HTC cells also contained low concentrations of the liver-type mRNA. Unlike in liver, neither mRNA was induced by dexamethasone in these cells.  相似文献   

4.
Distinct 6-phosphofructo-2-kinase (PFK-2)/fructose 2,6-bisphosphatase (FBPase-2) cDNAs were cloned from bovine heart, showing that PFK-2/FBPase-2 gene B, which contains 16 exons, codes for at least five mRNAs. Three of them (B1, B2, B4) could encode the 58,000-Mr isozyme. In B2 mRNA, exon 15 encodes four more residues than in Bl. In B4 mRNA, exon 15 encodes six more residues than in B1, butexon 16 (20 residues) is missing. B3 mRNA corresponds to the 54,000-Mr isozyme. It lacks exon 15 and also differs from the other mRNAs in the 5' noncoding region. B5 mRNA encodes a truncated form. When expressed in E. coli, the recombinant isoforms corresponding to all these mRNAs except B5 exhibited PFK-2 activity.  相似文献   

5.
Manzano A  Pérez JX  Nadal M  Estivill X  Lange A  Bartrons R 《Gene》1999,229(1-2):83-89
6-Phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFK-2/FBPase-2) is a bifunctional enzyme responsible for the synthesis and breakdown of Fru-2,6-P2, a key metabolite in the regulation of glycolysis. Several genes encode distinct PFK-2/FBPase-2 isozymes that differ in their tissue distribution and enzyme regulation. In this paper, we present the isolation of a cDNA from a human testis cDNA library that encodes a PFK-2/FBPase-2 isozyme. Sequencing data show an open reading frame of 1407 nucleotides that codifies for a protein of 469 amino acids. This has a calculated molecular weight of 54kDa and 97% similarity with rat testis PFK-2/FBPase-2, with complete conservation of the amino acid residues involved in the catalytic mechanism. Fluorescence in-situ hybridization (FISH) localized testis PFK-2/FBPase-2 gene (PFKFB4) in human chromosome 3 at bands p21-p22. A Northern blot analysis of different rat tissues showed the presence of a 2.4-kb mRNA expressed specifically in testis. In mammalian COS-1 cells, the human testis cDNA drives expression of an isozyme with a molecular weight of 55kDa. This isozyme shows clear PFK-2 activity. Taken together, these results provide evidence for a new PFK-2/FBPase-2 gene coding for a human testis isozyme.  相似文献   

6.
7.
8.
To elucidate the specificity of glucose metabolism in chicken skeletal muscle, changes in mRNA levels of hexokinase I (HKI), hexokinase II (HKII), phosphofructokinase-1 (PFK-1) and glycogen synthase (GS) were characterized in acute and persistent hypoglycemia induced by tolbutamide administration. In acute hypoglycemia, induced by a single dose of tolbutamide (100 mg/kg body mass), HKII, PFK-1 and GS mRNA levels remained unchanged; however, levels of HKI mRNA and glucose transporter 1 (GLUT1) were significantly increased 4 h after administration. In persistent hypoglycemia, induced by sequential administration of tolbutamide (100 mg/kg body mass) 3 times a day for 5 days, GS mRNA was significantly increased at day 5, while HKI, HKII and PFK-1 mRNA levels remained unchanged. These results suggest that HKI is responsible for glucose transport into skeletal muscle in acute hypoglycemia and that glucose preferentially enters the glycogenic pathway before the glycolytic pathway in persistently hypoglycemic chickens.  相似文献   

9.
BACKGROUND: The role of protein phosphorylation in the Pasteur effect--the phenomenon whereby anaerobic conditions stimulate glycolysis--has not been addressed. The AMP-activated protein kinase (AMPK) is activated when the oxygen supply is restricted. AMPK acts as an energy-state sensor and inhibits key biosynthetic pathways, thus conserving ATP. Here, we studied whether AMPK is involved in the Pasteur effect in the heart by phosphorylating and activating 6-phosphofructo-2-kinase (PFK-2), the enzyme responsible for the synthesis of fructose 2,6-bisphosphate, a potent stimulator of glycolysis. RESULTS: Heart PFK-2 was phosphorylated on Ser466 and activated by AMPK in vitro. In perfused rat hearts, anaerobic conditions or inhibitors of oxidative phosphorylation (oligomycin and antimycin) induced AMPK activation, which correlated with PFK-2 activation and with an increase in fructose 2,6-bisphosphate concentration. Moreover, in cultured cells transfected with heart PFK-2, oligomycin treatment resulted in a parallel activation of endogenous AMPK and PFK-2. In these cells, the activation of PFK-2 was due to the phosphorylation of Ser466. A dominant-negative construct of AMPK abolished the activation of endogenous and cotransfected AMPK, and prevented both the activation and phosphorylation of transfected PFK-2 by oligomycin. CONCLUSIONS: AMPK phosphorylates and activates heart PFK-2 in vitro and in intact cells. AMPK-mediated PFK-2 activation is likely to be involved in the stimulation of heart glycolysis during ischaemia.  相似文献   

10.
A wortmannin-sensitive and insulin-stimulated protein kinase (WISK) that phosphorylates and activates heart 6-phosphofructo-2-kinase (PFK-2) was purified from serum-fed HeLa cells and found to contain protein kinase Czeta (PKCzeta). Both WISK and recombinant PKCzeta were inhibited by a pseudo-substrate peptide inhibitor of PKCzeta. WISK and PKCzeta phosphorylated and activated recombinant heart PFK-2 by increasing its Vmax. The phosphorylation sites in heart PFK-2 for WISK were Ser466 and Thr475, whereas PKCzeta phosphorylated only Thr475. In perfused rat hearts, insulin activated protein kinase B (PKB) 16-fold compared with the untreated controls. However in the same experiments, no change in phosphorylation state of the activation loop Thr410 residue of PKCzeta was observed. By contrast, in incubations of isolated rat epididymal adipocytes, where insulin activated PKB 30-fold compared with the untreated controls, a 50% increase in PKCzeta Thr410 phosphorylation was detected. Lastly in HEK 293T cells transfected with heart PFK-2, co-transfection with a kinase-inactive PKCzeta construct failed to prevent insulin-induced PFK-2 activation. Therefore, it is unlikely that PKCzeta is required for PFK-2 activation by insulin in heart.  相似文献   

11.
Fructose 2,6-bisphosphate is present at high concentrations in many established lines of transformed cells. It plays a key role in the maintenance of a high glycolytic rate by coupling hormonal and growth factor signals with metabolic demand. The concentration of fructose 2,6-bisphosphate is controlled by the activity of the homodimeric bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2). We report here the PFKFB-3 gene expression control by insulin in the human colon adenocarcinoma HT29 cell line. The incubation of these cells with 1 microM insulin resulted in an increase in the PFK-2 mRNA level after 6 h of treatment, this effect being blocked by actinomycin D. Furthermore, insulin induced ubiquitous PFK-2 protein levels, that were evident after a lag of 3 h and could be inhibited by incubation with cycloheximide.  相似文献   

12.
Three distinct clones encoding full-length 6-phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase (FBPase-2) were characterized from a rat liver cDNA library. Clone 22c was 1859 bp long and coded for the 470 amino acids of the bifunctional subunit of the liver homodimer. This polypeptide is phosphorylated on serine 32 by cyclic-AMP-dependent protein kinase. Clone 4c (2681 bp) had a coding region identical to that of clone 22c but it included a putative intron of 959 bp. In clone 5c (1750 bp), the sequence upstream from amino acid 33 differed from that in clone 22c and coded for a unique N-terminal portion of 10 amino acids. Poly(A)-rich RNA from rat tissues was hybridized with cDNA probes corresponding to the unique N-terminal portions of clones 22c and 5c. Dot and Northern blots showed signals indicative of three distinct PFK-2/FBPase-2 mRNAs. There were a 6.8-kb mRNA typical of cardiac tissue, a 2.1-kb mRNA typical of liver, corresponding to clone 22c, and a 1.9-kb mRNA typical of skeletal muscle, corresponding to clone 5c. Primer extension analysis showed that clones 22c and 5c were nearly complete since their respective 5'-untranslated sequences were at most 96/97 bp and 44 bp shorter than the corresponding mRNAs. These data provide a molecular basis for the existence of PFK-2/FBPase-2 isozymes.  相似文献   

13.
The rat cDNA for the muscle-type (M) isozyme of 6-phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase (FBPase-2) contains two putative translation initiation sites. To determine whether the M isozyme expressed in rat skeletal muscle corresponds to the short (PFK2M-sf) or the long (PFK2M-lf) isoform, we have expressed them in Escherichia coli. A third construction was also expressed in which the second ATG codon was deleted (PFK2M-lf delta ATG) to ensure that initiation started at the first ATG. The properties of these recombinant proteins were compared with those of the PFK-2/FBPase-2 present in rat skeletal muscle and liver. The recombinant proteins displayed PFK-2 and FBPase-2 activities and the M(r) values of the subunits measured by SDS-polyacrylamide gel electrophoresis were compatible with the calculated ones. The purified recombinant lf form contained not only the expected lf band (54,500 M(r)) but also the sf band (52,000 M(r)), indicating that the expression system could synthesize the long and the short isoforms from the same mRNA. The kinetic properties of the recombinant sf form were not different from those of the rat muscle enzyme. By contrast, lf delta ATG PFK-2 displayed a higher Km for its substrates and a lower Vmax. Immunoblotting with an antibody directed against the long isoform revealed a 54,500 M(r) band both in the lf and the lf delta ATG recombinant, but no band in rat skeletal muscle extracts. In these extracts, one band of 52,000 and a minor one of 54,500 M(r) were detected by an anti PFK-2/FBPase-2 antibody. The 54,500 M(r) band was recognized by an antibody directed against the L isozyme, suggesting that a small amount of the latter is expressed in skeletal muscle. Thus, the M isozyme differs from the L isozyme by replacement of the first 32 amino acids of the L isozyme by an unrelated nonapeptide.  相似文献   

14.
Previous studies have shown that (i) the insulin-induced activation of heart 6-phosphofructo-2-kinase (PFK-2) is wortmannin-sensitive, but is insensitive to rapamycin, suggesting the involvement of phosphatidylinositol 3-kinase; and (ii) protein kinase B (PKB) activates PFK-2 in vitro by phosphorylating Ser-466 and Ser-483. In this work, we have studied the effects of phosphorylation of these residues on PFK-2 activity by replacing each or both residues with glutamate. Mutation of Ser-466 increased the V(max) of PFK-2, whereas mutation of Ser-483 decreased citrate inhibition. Mutation of both residues was required to decrease the K(m) for fructose 6-phosphate. We also studied the insulin-induced activation of heart PFK-2 in transfection experiments performed in human embryonic kidney 293 cells. Insulin activated transfected PFK-2 by phosphorylating Ser-466 and Ser-483. Kinase-dead (KD) PKB and KD 3-phosphoinositide-dependent kinase-1 (PDK-1) cotransfectants acted as dominant negatives because both prevented the insulin-induced activation of PKB as well as the inactivation of glycogen-synthase kinase-3, an established substrate of PKB. However, the insulin-induced activation of PFK-2 was prevented only by KD PDK-1, but not by KD PKB. These results indicate that the insulin-induced activation of heart PFK-2 is mediated by a PDK-1-activated protein kinase other than PKB.  相似文献   

15.
Glucokinase (GK) and 6-phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase (FBP-2) are each powerful regulators of hepatic carbohydrate metabolism that have been reported to influence each other's expression, activities, and cellular location. Here we present the first physical evidence for saturable and reversible binding of GK to the FBP-2 domain of PFK-2/FBP-2 in a 1:1 stoichiometric complex. We confirmed complex formation and stoichiometry by independent methods including affinity resin pull-down assays and fluorescent resonance energy transfer. All suggest that the binding of GK to PFK-2/FBP-2 is weak. Enzymatic assays of the GK:PFK-2/FBP-2 complex suggest a concomitant increase of the kinase-to-bisphosphatase ratio of bifunctional enzyme and activation of GK upon binding. The kinase-to-bisphosphatase ratio is increased by activation of the PFK-2 activity whereas FBP-2 activity is unchanged. This means that the GK-bound PFK-2/FBP-2 produces more of the biofactor fructose-2,6-bisphosphate, a potent activator of 6-phosphofructo-1-kinase, the committing step to glycolysis. Therefore, we conclude that the binding of GK to PFK-2/FBP-2 promotes a coordinated up-regulation of glucose phosphorylation and glycolysis in the liver, i.e. hepatic glucose disposal. The GK:PFK-2/FBP-2 interaction may also serve as a metabolic signal transduction pathway for the glucose sensor, GK, in the liver. Demonstration of molecular coordination of hepatic carbohydrate metabolism has fundamental relevance to understanding the function of the liver in maintaining fuel homeostasis, particularly in managing excursions in glycemia produced by meal consumption.  相似文献   

16.
The effects of 4 beta-phorbol 12-myristate 13-acetate (PMA), bombesin and insulin on 6-phosphofructo-2-kinase (PFK-2) activity, on fructose 2,6-bisphosphate concentration and on the phosphorylation state of PFK-2 were investigated in primary cultures of hepatocytes from foetal and adult rats. Bombesin stimulated PFK-2 activity and increased hexose phosphate (glucose 6-phosphate and fructose 6-phosphate) and fructose 2,6-bisphosphate content in hepatocytes both in the foetal and adult state. However, PMA-treated foetal cells exhibited a marked stimulation in fructose 2,6-bisphosphate concentration and in PFK-2 activity as well as in the content of hexose phosphates, while no response was found in the case of adult hepatocytes. Moreover, the effect of PMA on foetal hepatocytes was suppressed when cells were incubated with cycloheximide, but not when this effect was elicited by bombesin or insulin. These results, and those obtained on the phosphorylation state of PFK-2, suggest that there are different pathways that modulate fructose 2,6-bisphosphate content and, therefore, the control mechanisms of glycolysis and gluconeogenesis at this regulatory step, both in adult and foetal rat liver.  相似文献   

17.
The enzyme phosphofructokinase-1 (PFK-1) catalyzes the first committed step of glycolysis and is regulated by a complex array of allosteric effectors that integrate glycolytic flux with cellular bioenergetics. Here, we demonstrate the direct, potent, and reversible inhibition of purified rabbit muscle PFK-1 by low micromolar concentrations of long chain fatty acyl-CoAs (apparent Ki~1 μM). In sharp contrast, short chain acyl-CoAs, palmitoylcarnitine, and palmitic acid in the presence of CoASH were without effect. Remarkably, MgAMP and MgADP but not MgATP protected PFK-1 against inhibition by palmitoyl-CoA indicating that acyl-CoAs regulate PFK-1 activity in concert with cellular high energy phosphate status. Furthermore, incubation of PFK-1 with [1-(14)C]palmitoyl-CoA resulted in robust acylation of the enzyme that was reversible by incubation with acyl-protein thioesterase-1 (APT1). Importantly, APT1 reversed palmitoyl-CoA-mediated inhibition of PFK-1 activity. Mass spectrometric analyses of palmitoylated PFK-1 revealed four sites of acylation, including Cys-114, Cys-170, Cys-351, and Cys-577. PFK-1 in both skeletal muscle extracts and in purified form was inhibited by S-hexadecyl-CoA, a nonhydrolyzable palmitoyl-CoA analog, demonstrating that covalent acylation of PFK-1 was not required for inhibition. Tryptic footprinting suggested that S-hexadecyl-CoA induced a conformational change in PFK-1. Both palmitoyl-CoA and S-hexadecyl-CoA increased the association of PFK-1 with Ca2+/calmodulin, which attenuated the binding of palmitoylated PFK-1 to membrane vesicles. Collectively, these results demonstrate that fatty acyl-CoA modulates phosphofructokinase activity through both covalent and noncovalent interactions to regulate glycolytic flux and enzyme membrane localization via the branch point metabolic node that mediates lipid flux through anabolic and catabolic pathways.  相似文献   

18.
Fructose 2,6-bisphosphate (F-2,6-P2) stimulated glycolysis in cell-free extracts of both normal and ras-transfected rat-1 fibroblasts. The extract of the transformed cell glycolyzed more rapidly in both the absence and the presence of F-2,6-P2 than the extract of the parent fibroblast. Addition of mitochondrial ATPase (F1) or inorganic phosphate (Pi) further stimulated lactate production in both cell lines. F-2,6-P2 stimulated the 6-phosphofructo-1-kinase (PFK-1) activity in extracts of normal and transfected cells. The activity in extracts of transformed cells tested with a fructose 6-phosphate regenerating system was considerably higher than in the extract of normal cells. Stimulation of PFK-1 activity by cAMP of both cell lines was not as pronounced as that by F-2,6-P2. In the absence of F-2,6-P2 the PFK-1 activity was strongly inhibited in the transformed cell by ATP concentrations higher than 1 mM, whereas in the normal cell only a marginal inhibition was noted even at 2 or 3 mM ATP. F-2,6-P2 reversed the inhibition of PFK-1 by ATP. Nicotinamide adenine dinucleotide (NAD) at 100 microM (in the presence of 2 mM ATP and 1 microM F-2,6-P2) stimulated PFK-1 activity only in the transformed cell, whereas nicotinamide adenine dinucleotide phosphate (NADP) inhibited PFK-1 activity (in the presence or absence of 1 microM F-2,6-P2) in extracts of both cell lines. No previous observations of stimulation or inhibition by NAD or NADP on PFK-1 activity appear to have been reported. A threefold increase in the intracellular concentration of F-2,6-P2 was observed after transfection of rat-1 fibroblast by the ras oncogene. We conclude from these data that the PFK-1 activity of ras-transfected rat-1 fibroblasts shows a greater response to certain stimulating and inhibitory regulating factors than that of the parent cell.  相似文献   

19.
6-Phosphofructo-1-kinase (PFK-1) from a variety of species and organs can undergo phosphorylation by cAMP-dependent protein kinase. In most studies the stoichiometry of the phosphorylation reaction was far below the expected minimum value of 4 mol phosphate/mol PFK-1 tetramer. The present study with rat liver PFK-1 and purified catalytic subunit of cAMP-dependent protein kinase was undertaken in order to find the maximum phosphorylation stoichiometry under well-defined conditions. Irrespective of whether PFK-1 had been first treated with purified protein phosphatase 2C or not, no more than 1.66 +/- 0.22 mol phosphate/mol PFK-1 tetramer was incorporated, the highest single value being 2 mol phosphate/PFK-1 tetramer. This stoichiometry was found to be independent from the method of protein evaluation (gel dye-binding assay or amino acid analysis) and from the concentration of PFK-1 in the phosphorylation system (15.6 nM-0.53 microM). The stoichiometry was not affected by the presence of allosteric ligands, fructose-1,6-bisphosphatase or the PFK-1-inactivating protein. The possibility could be excluded that partial proteolysis was responsible for the incomplete phosphorylation. Two-dimensional polyacrylamide gel electrophoresis gave no indication of the existence of two different subunits in rat liver PFK-1. Possible reasons why rat liver PFK-1 undergoes 'half-of-the-sites' phosphorylation are discussed.  相似文献   

20.
Control analysis of the glycolytic flux was carried out in two fast-growth tumor cell types of human and rodent origin (HeLa and AS-30D, respectively). Determination of the maximal velocity (V(max)) of the 10 glycolytic enzymes from hexokinase to lactate dehydrogenase revealed that hexokinase (153-306 times) and phosphofructokinase-1 (PFK-1) (22-56 times) had higher over-expression in rat AS-30D hepatoma cells than in normal freshly isolated rat hepatocytes. Moreover, the steady-state concentrations of the glycolytic metabolites, particularly those of the products of hexokinase and PFK-1, were increased compared with hepatocytes. In HeLa cells, V(max) values and metabolite concentrations for the 10 glycolytic enzyme were also significantly increased, but to a much lesser extent (6-9 times for both hexokinase and PFK-1). Elasticity-based analysis of the glycolytic flux in AS-30D cells showed that the block of enzymes producing Fru(1,6)P2 (i.e. glucose transporter, hexokinase, hexosephosphate isomerase, PFK-1, and the Glc6P branches) exerted most of the flux control (70-75%), whereas the consuming block (from aldolase to lactate dehydrogenase) exhibited the remaining control. The Glc6P-producing block (glucose transporter and hexokinase) also showed high flux control (70%), which indicated low flux control by PFK-1. Kinetic analysis of PFK-1 showed low sensitivity towards its allosteric inhibitors citrate and ATP, at physiological concentrations of the activator Fru(2,6)P2. On the other hand, hexokinase activity was strongly inhibited by high, but physiological, concentrations of Glc6P. Therefore, the enhanced glycolytic flux in fast-growth tumor cells was still controlled by an over-produced, but Glc6P-inhibited hexokinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号