首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cerein 8A is a bacteriocin produced by the soil bacterium Bacillus cereus 8A, isolated from native woodlands of Brazil. The influence of temperature and media on the growth of B. cereus 8A and the production of this bacteriocin was studied during batch cultivation. Maximum activity was detected by cultivation in brain/heart infusion broth, reaching 3200 activity units ml–1. Bacteriocin was also produced in peptone, MRS, Mueller–Hinton and nutrient broth, while no activity was observed during cultivation in thioglycollate or tryptic soy broth. Temperature had a strong influence on bacteriocin production, which was higher at 30 °C than at 25 °C. An important decrease in bacteriocin activity was observed at 37 °C. The relationship between growth and specific production rates, as a function of the temperature, showed different kinetics of production and there were several peaks in the specific production rates during growth. Bacteriocin was produced at the stationary phase, indicating it is synthesized as a secondary metabolite.  相似文献   

2.
Summary The production of amylolytic enzymes by a thermophilic cellulolytic fungus,Myceliophthora thermophila D14 was investigated by batch cultivation in Czapek-Dox medium at 45° C. Among various nitrogenous compounds used, NaNO3 and KNO3 were found to be the best for amylase production. Starch, cellobiose and maltose induced the synthesis of amylase while glucose, fructose, galactose, lactose, arabinose, xylose, sorbitol, mesoinositol and sucrose did not. Calcium ions had the most stimulating effect on enzyme formation amongst many ions investigated. The synthesis of amylolytic enzymes was dependent on growth and occurred predominantly in the mid-stationary phase. The enzyme was active in a broad temperature range (50° C–60° C) and displayed activity optima at 60° C and pH 5.6.  相似文献   

3.
Summary A salicylate-hydroxylase-producing strain of Pseudomonas putida with an unusual capability to grow at toxic levels of salicylate up to 10 g l–1 has been isolated. It grew well under continuous culture conditions, with optimum growth at pH 6.5 and a temperature of 25° C. The use of an ammonium salt as a nitrogen source, instead of nitrate, resulted in a 30–40% increase in its biomass yield coefficient. Optimum growth under continuous culture conditions was achieved using 4 g l–1 salicylate at 25° C, pH 6.5 and 0.2 h–1 dilution rate. High salicylate hydroxylase enzyme activity [236 units (U) l–1] and productivity (424.8 U h–1) were obtained at a dilution rate of 0.45 h–1 using a mineral medium containing 4 g l–1 of salicylate. Operating under continuous culture conditions with oxygen limitation and a slight accumulation of residual salicylate (0.2 g l–1) resulted in a decrease in culture performance and enzyme productivity. Correspondence to: R. Marchant  相似文献   

4.
A temperature increase from 35° to 40–42°C enhances the rise of cytoplasmic serine proteinase (ISP1) activity in Bacillus megaterium incubated in a sporulation medium. A temperature shift from 27°C in the growth medium to 35°C in the sporulation medium has the same effect. Elevated temperature stimulates the increase of ISP1 level when applied immediately after the transfer of cells from the growth to the sporulation medium (at T0) or at T3, when sporulation becomes irreversible. The cytoplasmic PMSF-resistant activity or the proteolytic activity associated with the membrane fraction is stimulated only slightly or not at all. A temperature increase to 45–47°C suppresses the rise of proteolytic activities in all cell fractions. In addition to the elevation of the ISP1 activity by an upward temperature shift, the rise of this enzyme in nongrowing cells is also stimulated by osmotic stress. In growing populations, in contrast to the rise of the ISP1 activity caused by elevated temperature in nongrowing cells, this proteinase is induced by low temperatures (24–27°C). The ISP1 activity roughly correlates with the enzyme protein concentration determined by immunoblotting.  相似文献   

5.
In situ growth of heterotrophic nanoflagellates (HNF) in Lake Donghu, a eutrophic shallow lake in mainland China, was studied from January 1999 to March 2000 using a modified Weisse protocol. The study results indicated that the growth rates of HNF showed pronounced seasonal variation (–0.37–1.25 d–1), reaching the maximum during spring to early summer. When the water temperature was higher than 25.5°C, HNF growth was inversely proportional to water temperature. There was an effect by bacterial abundance and autotrophic picoplankton on HNF growth that depended on location. HNF biomass was the highest in late spring, and the HNF production ranged from –2.25 to 35.45 mg l–1 d–1 with mean of 3.17 mg l–1d–1. When considered in the context of biomass and production data for zooplankton in Lake Donghu, it was evident that HNF contributed significantly to the total zooplankton production in Lake Donghu. These in situ studies indicate that temperature and food supply are the major determinants of HNF abundance and productivity.  相似文献   

6.
The effects of nitrogen (N), phosphorus (P), zinc (Zn) or iron (Fe) limitations on lipid and especially -linolenic acid (ALA) synthesis in the oleaginous yeast Rhodotorula glutinis have been investigated. Exhaustion of the limiting element in the medium resulted in an enhancement of both the fatty acid cell content (FA/X) and the corresponding productivity. Except for Fe-limited media, lipid accumulation was always coupled with an increase in the yield of ALA synthesis, whereas in all the limiting conditions the productivity of ALA declined. Kinetic investigations showed that this decline resulted from a sharp decrease in the specific rates of ALA synthesis associated with slowing down of growth. A comparative study showed that the highest yields and specific rates of fatty acid and ALA synthesis were induced by P-limitation early in the lipid accumulation phase. However, above a FA/X of 15%, N-limiting conditions become more attractive for producing lipids. During P-limited growth a down-shift of temperature from 30° C to 25° C was shown ao reduce the range of FA/X values at which the specific rate of fatty acid synthesis was maximal but without any other effect on fatty acid formation. In contrast, the decreased temperature resulted in enhanced ALA production by maintaining the specific rate of synthesis near to the maximal value of 3.6 mg g X –1 h–1, where X* is free fatty acid biomass, and increased the corresponding yield by a factor of up to three. Correspondence to: A. Pareilleux  相似文献   

7.
The astaxanthin synthesis in the yeast Phaffia rhodozyma was shown to depend on the rate of growth occurring in the first two days of cultivation. The growth rate of the yeast culture studied was preset by the cultivation conditions, among which the C : N ratio was decisive. The intense anabolic processes coupled with active culture growth during the first 24 h significantly inhibited the synthesis of the key enzymes involved in astaxanthin synthesis, which led to a marked decrease in the carotenoid production. It was demonstrated that, for the maximum yield of astaxanthin to be obtained from 1 l of nutrient medium, it is necessary to carry out cultivation, beginning with the first day, at a growth rate significantly lower than µmax. The optimum budding rate of the mutant strain Ph. rhodozyma VKPM Y-2409 consistent with the maximum astaxanthin synthesis was determined. The specific astaxanthin productivity of the strain studied was about 7.0 mg/g of dry biomass at a budding rate of <0.5.Translated from Mikrobiologiya, Vol. 73, No. 6, 2004, pp. 751–757.Original Russian Text Copyright © 2004 by Vustin, Belykh, Kishilova.  相似文献   

8.
The effects of temperature shifts on the synthesis of an extracellular proteinase and extracellular proteins inBacillus megaterium were studied. A shiftdown (42° to 28°C) brought about an immediate increase of proteinase synthesis by 70%. A shiftup (28° to 42°C) caused a temporary suppression of enzyme formation, which was, at least partially, owing to the inhibition of its mRNA synthesis. The shiftup also brought about a temporary decrease of excretion of all extracellular proteins.  相似文献   

9.
Effect of temperature on bacterial gellan production   总被引:5,自引:0,他引:5  
The effect of temperature on the production of the polysaccharide gellan by the bacterium Sphingomonas paucimobilis ATCC 31461 was studied in relation to carbon source. When glucose served as the carbon source, gellan formation by the strain was highest after 72 h of growth at an incubation temperature of 30–31 °C. Polysaccharide production by the sphingomonad cells grown on corn syrup for 72 h was maximal at an incubation temperature of 31 °C. The highest cellular productivity in elaborating gellan was observed at 31 °C after 72 h of growth independent of the carbon source utilized.  相似文献   

10.
The production of extracellular inulinase (\-1,2-d-fructan fructanohydrolase, EC 3.2.1.7) was studied in fed-batch cultures of the yeast Kluyveromyces marxianus CBS 6556 at 30 and at 40° C. At both temperatures, the final biomass concentration exceeded 100 g·l–1 and more than 2 g enzyme. L–1 of culture supernatant was produced. The biomass yield on O2 at 40° C was substantially lower than at 30°C. Nevertheless, at 40° C a growth rate of 0.20 h–1 could be maintained for a longer period than at 30° C. The unexpected higher O2-transfer rate at 40°C is probably due to a lower viscosity of the culture broth. The 40°C fermentation took only 33 h as compared to 42 h at 30° C. These results indicate that K. marxianus is a promising host for the extracellular production of heterologous proteins under the control of the inulinase promoter.  相似文献   

11.
Summary The production of an extracellular trypsin inhibitor, TI-23, was found to parallel the growth of Streptomyces sp. 23 at different cultivation temperatures, reaching a maximum level at late exponential phase. Although the different temperatures (18°, 28° and 37°C) did not greatly affect the growth of the microorganism, they proved to be an important factor for extracellular inhibitory activity. Maximum specific rates of both cell growth and production of the inhibitor were recorded during the cultivation of Streptomyces sp. 23 at 37°C. TI-23 proved to be a monomeric glycoprotein containing 17% carbohydrate and differing in amino acid composition from the known extracellular proteinase inhibitors of streptomycetes. The molecular mass of the inhibitor was estimated to be about 13 kDa and the isoelectric point 4.3. The inhibition spectrum of TI-23 included trypsin as well as some microbial alkaline proteinases.  相似文献   

12.
Summary In view of the interest in high productivity fermentations at increased temperatures, the effect of temperature on the kinetics of ethanol production by Saccharomyces uvarum was investigated in the range 25–43°C. Using a mathematical model and a nonlinear computer simulation package, the kinetic parameters at each temperature were estimated. It was found that the optimal temperature for growth was 34°C, while the specific ethanol production rate was maximal at 37–43°C. Up to 37°C, the inhibitory effects of ethanol on growth and specific ethanol production rate were unaffected by temperature. However, above this temperature, ethanol inhibition increased significantly.  相似文献   

13.
Summary A strain ofFusarium moniliforme, previously used for microbial protein production, excreted lactase (-D-galactosidase, EC.3.2.1 23) when cultivated either in a whey liquid medium or on a wheat bran solid medium. The enzyme produced in both media had pH and temperature optima of 4–5 and 50–60°C respectively and was particularly suitable for processing acid whey.In the whey culture, maximum lactase yield was observed after 95 h of growth at 30°C and whey lactose concentration of 9%. The addition of ammonium, potassium and sodium ions to the growth medium considerably enhanced lactase production. A maximum enzyme yield corresponding to hydrolysis of 3 nmoles o-nitrophenyl--D-galactopyranoside sec–1 ml–1 of growth medium, at pH 5 and 60°C, was obtained.In the wheat bran culture, the maximum enzyme yield was obtained after 140 h of growth at 28–30°C. A marked increase in the enzyme production was observed when nitrate or phosphate was added to the growth medium. Also, the addition of certain agricultural by-products (molasses, whey) enhanced lactase production. The observed maximum yield corresponding to the hydrolysis of 182 nmoles of ONPG sec–1 g–1 of wheat bran, at pH 5 and 60°C, is comparable to that reported for certain microorganisms used commercially for lactase production.  相似文献   

14.
The production of three extracellular enzymes during the solubilisation of ball-milled wheat straw by seven actinomycete strains, was examined. A general correlation was observed between the production of extracellular enzymes (xylanases, endoglucanases and peroxidases) and the formation of the solubilised lignocellulose intermediate product (APPL), with the thermophilic actinomycete Thermomonospora fusca BD25 exhibiting greatest extracellular enzyme activity and highest APPL production. Production of all three enzymes; endoxylanase, endoglucanase and peroxidase, and lignocellulose solubilisation, occured during primary growth with maximum activity at the end of the exponential phase (48–96 h). The inducibility and stability of extracellular enzymes from T. fusca were further characterised. When xylan replaced ball-milled wheat straw as the growth substrate, reduced enzyme activities were observed (28–96% reduction in enzyme activities), whereas carboxymethylcellulose was found to be a poor inducer of all three enzyme activities (80–100% reduction in enzyme activities). The pH and temperature optima for extracellular enzyme activities from T. fusca was found to be pH 7.0–8.0 and 60°C, respectively. Analysis of concentrated crude supernatant from T. fusca by native polyacrylamide gel electrophoresis revealed the existence of two non-haem peroxidases. The stability of the extracellular lignocellulose-degrading enzymes for T. fusca suggest their suitability for future biotechnological processes such as biobleaching.  相似文献   

15.
Summary A strain of Penicillium chrysogenum producting about 8 g/l of penicillin V, was cultivated in a 10-1 bioreactor. Under carbon (C)-limitation during the production phase a glucose/ammonium sulphate mixture was fed using microprocessor control. When the temperature was shifted from 25° C to 30° C at the end of the active growth phase, the specific penicillin production rate was increased by 30%, while the yield remained constant. Maximal productivity without sporulation was obtained when the net growth rate of the active (respiring and producing) biomass, estimated by measuring the respiration rate under defined conditions, was equal to or higher than 0.004 h–1. A model was developed for penicillin fermentation during C-limitation possessing the following properties: (1) the model is based on ordinary differential equations; (2) the influence of different nutrients is considered; (3) the model recognizes two cell types (active and inactive); (4) the model describes the influence of a temperature shift at the end of the vigorous growth phase. Offprint requests to: D. Siegmund  相似文献   

16.
Summary Of the eighteen different carbon sources, solka floc was optimal for the induction of cellulases by the thermophilic fungusThielavia terrestris. The temperature optimum for growth was between 44–52°C. The effect of initial and controlled pH on fungal growth and cellulase production was investigated and the results obtained showed that the maximum volumetric productivity (6.07 I.U./1 per h) of filter paper activity was achieved when the pH was controlled at 4.5–5.0.  相似文献   

17.
A thermotolerant methylotrophicBacillus sp. (KISRI TM1A, NCIMB 40040), isolated from the Kuwaiti environment and belonging to the group II spore-forming, bacilli, could not be correlated with any knownBacillus sp. It may, therefore, be a new species. It grew at temperatures from 37° to 58°C from pH 6.5 to 9.0 and on methanol up to 40 g l–1. It grew well in a chemostat. Its biomass yield coefficient was improved by about 30% by optimization of medium and growth conditions, reaching a maximum of 0.44g g–1 at 45°C pH 6.8 to 7.0, dilution rate 0.25 h–1 with methanol at 10 g l–1. Average crude protein and amino acid content were 84% and 60%, respectively, and maximum productivity attained under laboratory conditions was 5.06 g l–1h–1. It was concluded that this strain has good potential for use in single-cell protein production.  相似文献   

18.
Ahn SJ  Yoo JH  Lee HC  Kim SY  Noh BS  Kim JH  Lee JK 《Biotechnology letters》2003,25(14):1179-1183
Mutagenesis of Erwinia rhapontici was performed to enhance the production of isomaltulose from sucrose. A mutant strain, BN 68089, was obtained through a screening process involving automated and miniaturized cultivation in Bioscreen C. This high-throughput, miniaturized screening system was optimized to identify the mutant strain, which had a conversion yield (90%) and productivity (194 g l–1 h–1). The BN 68089 mutant cells were immobilized in sodium alginate and when operated in a packed bed reactor gave a yield of 89% and a productivity of 144 g l–1 h–1 of at 30 °C, the optimal temperature. Immobilized BN 68089 cells exhibited 8% and 15% higher yield and productivity, respectively, than those of the wild-type strain.  相似文献   

19.
Summary Cryptococcus albidus var. albidus CBS 4517 was able to accumulate lipid under nitrogen-limited as well as excess-nitrogen conditions. The highest lipid-producting capacity was, however, observed in nitrogen-limited cultivations. In nitrogen-limited batch cultures, a lipid content of 34% (w/w) in biomass and a maximum specific lipid productivity of 37 mg lipid/g lipid-free biomass·h, was determined. The yield of lipid from glucose was about 0.15 g/g in nitrogen-limited and 0.11 g/g in excess-nitrogen cultures.In a nitrogen-limited fed-batch culture, 12.4 g/l lipid was produced at 90 h of cultivation and the cells contained 46.3% (w/w) lipid.Higher lipid yield and cellular lipid content were observed when inorganic nitrogen sources were used compared with organic. The choice of carbon source was seen to influence growth as well as lipid production and the highest yields of lipid were obtained when glucose, maltose or mannitol was used.A cultivation temperature of 20°C provided the highest lipid productivity compared to 25°C and 30°C. Addition of citrate to the growth medium was seen to have a stimulating effect on the specific lipid productivity.  相似文献   

20.
The effect of low temperature on the protein metabolism of wheat primary leaves was examined. In seedlings transferred from 25 to 5 °C, total soluble protein accumulation, in vivo protein synthesis and breakdown, in vitro protein breakdown, and SDS-PAGE profiles of proteinases in gelatine-containing gels were analysed. Leaf protein content increased within a 7-d period (70 % over the initial value) in plants exposed to 5 °C. The fast protein accumulation observed on days 0 – 2 was mainly attributed to a decreased breakdown. In further days, parallelly to a slowdown in the rate of protein accumulation, the leaf proteolytic activity increased. The incubation temperature also had an influence on the proteolytic activity: Q 10 values for the 15 – 5 °C range were 80 – 200 % higher than those observed for the 25 – 15 °C range. On the other hand, the in vivo protein synthesis capacity, at either 25 or 55 °C, was not significantly modified in cold-treated plants. In addition to the enhanced activities of two serine-proteinases (previously found in control plants by SDS-PAGE analysis), cold-treated plants displayed a new proteinase, which had not been detected so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号