共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract EAAT1 is a major glutamate transporter in the CNS and is required for normal neurotransmission and neuroprotection from excitotoxicity. In the present study, we have identified a novel form of the human EAAT1, named here as EAAT1ex9skip, which lacks the entire exon 9. Quantitative PCR analysis indicates that this variant is expressed throughout the CNS, both in grey matter and axonal tracts, at levels ranging between 10% and 20% of the full-length EAAT1 form. When expressed in HEK293 cells, EAAT1ex9skip mRNA is translated into a truncated protein localized in the endoplasmic reticulum. EAAT1ex9skip has no functional glutamate uptake activity but instead, exerts a dominant negative effect over full-length EAAT1 function. In turn, co-expression of full-length EAAT1 and EAAT1ex9skip variants reduces the insertion of the former into the plasma membrane. Together, these results indicate that the EAAT1ex9skip splice variant is a negative regulator of full-length EAAT1 function in the human brain. 相似文献
2.
Suifen He Wenlong Zhang Xiuping Zhang 《Journal of biomolecular structure & dynamics》2020,38(12):3599-3609
AbstractIn the mammalians, the 4b-4c loop of excitatory amino acid transporters (EAATs) spans more than 50 amino-acid residues that are absent in glutamate transporter homologue of Pyrococcus horikoshii (GltPh). This part of insertion is unique for metazoans and indispensable to the localization of EAATs. The excitatory amino acid transporter (EAAT) 1 is one of the two glial glutamate transporters, which are responsible for efficiently clearing glutamate from the synaptic cleft to prevent neurotoxicity and cell death. Although the crystal structure of EAAT1cryst (a human thermostable EAAT1) was resolved in 2017, the structure-function relationship of the 4b-4c loop has not been elucidated in EAAT1cryst. To investigate the role of the 4b-4c loop, we performed alanine-scanning mutagenesis in the mutants and observed dramatically decreased transport activities in T192A, Y194A, N242A, and G245A mutants. The surface expression of T192A and Y194A mutants even decreased by more than 80%, and most of them were detained in the cytoplasm. However, when T192 and Y194 were substituted with conservative residues, the transport activities and the surface expressions of T192S and Y194F were largely recovered, and their kinetic parameters (Km values) were comparable to the wild-type EAAT1 as well. In contrast, N242 and G245 substituted with conservative residues could not rescue the uptake function, suggesting that N242 and G245 may play irreplaceable roles in the glutamate uptake process. These results indicate that the 4b-4c loop of EAAT1 may not only affect the glutamate uptake activity, but also influence the surface localization of EAAT1 by T192 and Y194.Communicated by Ramaswamy H. Sarma 相似文献
3.
Meisner F Neuen-Jacob E Sopper S Schmidt M Schlammes S Scheller C Vosswinkel D Ter Meulen V Riederer P Koutsilieri E 《Journal of neurochemistry》2008,104(1):202-209
Glutamate-mediated neurodysfunction in human immunodeficiency virus (HIV) infection has been primarily suggested by in vitro studies. The regulation of glutamatergic neurotransmission in inflammation is a complex interaction between activation of immune mediators and adaptive changes in the functional elements of the glutamatergic synapse. We have used simian immunodeficiency virus (SIV)-infected macaques to answer the questions (i) whether perturbation of glutamate neurotransmission is evident during progression of immunodeficiency disease and (ii) what are the mechanisms underlying this impairment. Disease progression in SIV-infected macaques both in the periphery and in the brain was documented by clinical and general pathological examination, plasma and brain viral RNA load, T-cell analysis and brain histopathology. We report for the first time, disruption of excitatory amino acid transporters (EAATs), the cardinal glutamate clearing system, during SIV infection and a dramatic loss of EAATs associated with development of rapid acquired immunodeficiency syndrome (AIDS). EAATs impairment was correlated with activation status of microglia. Our data support the glutamate hypothesis for the development of HIV dementia and suggest that the pathogenetic mechanism for the neurodysfunction is the impairment of glutamate clearing which occurs in the stage of AIDS and which is associated with activated microglia. 相似文献
4.
Uptake of glutamate from the synaptic cleft is mediated by high affinity transporters and is driven by Na(+), K(+), and H(+) concentration gradients across the membrane. Here, we characterize the molecular mechanism of the intracellular pH change associated with glutamate transport by combining current recordings from excitatory amino acid carrier 1 (EAAC1)-expressing HEK293 cells with a rapid kinetic technique with a 100-micros time resolution. Under conditions of steady state transport, the affinity of EAAC1 for glutamate in both the forward and reverse modes is strongly dependent on the pH on the cis-side of the membrane, whereas the currents at saturating glutamate concentrations are hardly affected by the pH. Consistent with this, the kinetics of the pre-steady state currents, measured after saturating glutamate concentration jumps, are not a function of the pH. In addition, we determined the deuterium isotope effect on EAAC1 kinetics, which is in agreement with proton cotransport but not OH(-) countertransport. The results can be quantitatively explained with an ordered binding model that includes a rapid proton binding step to the empty transporter followed by glutamate binding and translocation of the proton-glutamate-transporter complex. The apparent pK of the extracellular proton binding site is approximately 8. This value is shifted to approximately 6.5 when the substrate binding site is exposed to the cytoplasm. 相似文献
5.
Bogen IL Risa Ø Haug KH Sonnewald U Fonnum F Walaas SI 《Journal of neurochemistry》2008,105(6):2524-2534
The relations between glutamate and GABA concentrations and synaptic vesicle density in nerve terminals were examined in an animal model with 40–50% reduction in synaptic vesicle numbers caused by inactivation of the genes encoding synapsin I and II. Concentrations and synthesis of amino acids were measured in extracts from cerebrum and a crude synaptosomal fraction by HPLC and 13 C nuclear magnetic resonance spectroscopy (NMRS), respectively. Analysis of cerebrum extracts, comprising both neurotransmitter and metabolic pools, showed decreased concentration of GABA, increased concentration of glutamine and unchanged concentration of glutamate in synapsin I and II double knockout (DKO) mice. In contrast, both glutamate and GABA concentrations were decreased in crude synaptosomes isolated from synapsin DKO mice, suggesting that the large metabolic pool of glutamate in the cerebral extracts may overshadow minor changes in the transmitter pool. 13 C NMRS studies showed that the changes in amino acid concentrations in the synapsin DKO mice were caused by decreased synthesis of GABA (20–24%) in cerebral neurons and increased synthesis of glutamine (36%) in astrocytes. In a crude synaptosomal fraction, the glutamate synthesis was reduced (24%), but this reduction could not be detected in cerebrum extracts. We suggest that lack of synaptic vesicles causes down-regulation of neuronal GABA and glutamate synthesis, with a concomitant increase in astrocytic synthesis of glutamine, in order to maintain normal neurotransmitter concentrations in the nerve terminal cytosol. 相似文献
6.
7.
Yasushi Shigeri † Keiko Shimamoto ‡ Yoshimi Yasuda-Kamatani ‡ Rebecca P. Seal † Noboru Yumoto Terumi Nakajima‡ Susan G. Amara† 《Journal of neurochemistry》2001,79(2):297-302
D,L-threo-beta-Benzyloxyaspartate (D,L-TBOA), an analog of threo-beta-hydroxyaspartate (THA) possessing a bulky substituent, is a potent non-transportable blocker for the excitatory amino acid transporters, EAAT1, 2 and 3, while L-threo-beta-methoxyaspartate (L-TMOA) is a blocker for EAAT2, but a substrate for EAAT1 and EAAT3. To characterize the actions of these THA analogs and the function of EAAT4 and EAAT5, we performed electrophysiological analyses in EAAT4 or EAAT5 expressed on Xenopus oocytes. In EAAT4-expressing oocytes, D,L-TBOA acted as a non-transportable blocker, while L-TMOA like D,L-THA was a competitive substrate. In contrast, D,L-THA, D,L-TBOA and L-TMOA all strongly attenuated the glutamate-induced currents generated by EAAT5. Among them, L-TMOA showed the most potent inhibitory action. Moreover, D,L-THA, D,L-TBOA and L-TMOA themselves elicited outward currents at negative potentials and remained inward at positive potentials suggesting that D,L-TBOA and L-TMOA, as well as D,L-THA, not only act as non-transportable blockers, but also block the EAAT5 leak currents. These results indicate that EAATs 4 and 5 show different sensitivities to THA analogs although they share properties of a glutamate-gated chloride channel. 相似文献
8.
In the present study, we investigated the role of membrane cholesterol in the function of glutamate transporters. Depletion of membrane cholesterol by methyl-beta-cyclodextrin resulted in reduced Na(+)-dependent glutamate uptake in primary cortical cultures. Glial glutamate transporter EAAT2-mediated uptake was more sensitive to this effect. Cell surface biotinylation and immunostaining experiments revealed that the loss of cholesterol significantly altered the trafficking of EAAT2 to the plasma membrane as well as their membrane distribution. These effects were also observed in neuronal glutamate transporter EAAT3 but to a lesser extent. Furthermore, the treatment of mouse brain plasma membrane vesicles with methyl-beta-cyclodextrin resulted in a significant reduction in glutamate uptake, suggesting that cholesterol depletion has a direct effect on the function of the glutamate transporters. Plasma membrane cholesterol is localized within discreet microdomains known as lipid rafts. Analyses of purified lipid raft microdomains revealed that a large portion of total EAAT2 and a minor portion of total EAAT1, EAAT3, and EAAT4 were associated with lipid rafts. Artificial aggregation of lipid rafts in vivo resulted in the formation of larger EAAT2-immunoreactive clusters on the cell surface. The purified lipid raft-associated fractions were capable of Na(+)-dependent glutamate uptake. Our data suggest that the glutamate transporters, especially EAAT2, are associated with cholesterol-rich lipid raft microdomains of the plasma membrane and that the association with these cholesterol-rich microdomains is important for excitatory amino acid transporter localization and function. 相似文献
9.
This work describes the isolation of a full-length (VfAAP2) and three partial amino acid transporter genes (VfAAPa, VfAAPb, VfAAPc) from broad bean (Vicia faba L.). The function of VfAAP2 was tested by heterologous expression in a yeast mutant deficient in proline uptake. VfAAP2 mediates proton-dependent proline uptake with an apparent Km of about 1 mM. Analysis of substrate specificity by competition experiments showed that aromatic amino acids, neutral aliphatic acids and L-citrulline are the best competitors, whereas basic amino acids do not compete with proline. Northern analysis indicates that all VfAAPs exhibit different patterns of expression. VfAAP2 is most strongly expressed in the stem and at a lower level in sink leaves and pods. VfAAPa, VfAAPb and VfAAPc are most strongly expressed in the flowers, but their expression in the other organs varies. 相似文献
10.
Excitatory amino acid transporters (EAATs) terminate glutamatergic synaptic transmission by removing glutamate from the synaptic cleft into neuronal and glial cells. EAATs are not only secondary active glutamate transporters but also function as anion channels. Gating of EAAT anion channels is tightly coupled to transitions within the glutamate uptake cycle, resulting in Na(+)- and glutamate-dependent anion currents. A point mutation neutralizing a conserved aspartic acid within the intracellular loop close to the end of transmembrane domain 2 was recently shown to modify the substrate dependence of EAAT anion currents. To distinguish whether this mutation affects transitions within the uptake cycle or directly modifies the opening/closing of the anion channel, we used voltage clamp fluorometry. Using three different sites for fluorophore attachment, V120C, M205C, and A430C, we observed time-, voltage-, and substrate-dependent alterations of EAAT3 fluorescence intensities. The voltage and substrate dependence of fluorescence intensities can be described by a 15-state model of the transport cycle in which several states are connected to branching anion channel states. D83A-mediated changes of fluorescence intensities, anion currents, and secondary active transport can be explained by exclusive modifications of substrate translocation rates. In contrast, sole modification of anion channel opening and closing is insufficient to account for all experimental data. We conclude that D83A has direct effects on the glutamate transport cycle and that these effects result in changed anion channel function. 相似文献
11.
Heterodimeric amino acid transporters mediate the transfer of amino acids between organs and between different cell types.
Members of this particular family of amino acid transporters are constituted by a heavy chain and an associated light chain.
The heavy chain is a type II membrane protein with an intracellular amino terminus, a single transmembrane helix, and a large
extracellular domain. The light chain, in contrast, is a typical helix-bundle protein with 12 putative transmembrane helices.
Two different heavy chains, designated 4F2hc and rbAT, and seven different light chains have been identified to date. Deletion
studies indicate that the extracellular domain of the heavy chain has two subdomains. The carboxy-terminal tip of 4F2hc is
critical for recognition of certain light chains, whereas the carboxy-terminal tip of rbAT is involved in substrate transport.
Sequence alignments suggest that the major part of the extracellular domain forms an α/β domain similar to bacterial α-amylases.
A structural model of the rbAT extracellular domain is presented that is in agreement with experimental observations from
several mutations and that aligns well with the α-amylase domain. 相似文献
12.
Involvement of metabotropic glutamate receptors in excitatory amino acid and GABA release following spinal cord injury in rat 总被引:3,自引:0,他引:3
Charles D. Mills Guo-Ying Xu David J. McAdoo Claire E. Hulsebosch 《Journal of neurochemistry》2001,79(4):835-848
Spinal cord injury (SCI) leads to an increase in extracellular excitatory amino acid (EAA) concentrations resulting in glutamate receptor-mediated excitotoxic events. The glutamate receptors include ionotropic (iGluRs) and metabotropic (mGluR) receptors. Of the three groups of mGluRs, group-I activation can initiate intracellular pathways that lead to further transmitter release. Groups II and III mGluRs function mainly as autoreceptors to regulate neurotransmitter release. In an effort to examine the role of mGluRs in the increase in EAAs following SCI, we administered AIDA, a potent group-I mGluR antagonist immediately after injury. To determine subtype specific roles of the group-I mGluRs, we evaluated EAA release following LY 367385 (mGluR1 antagonist) and MPEP (mGluR5 antagonist) administration. To evaluate group-II and -III mGluRs we administered APDC (group-II agonist) and L-AP4 (group-III agonist) immediately following injury; additionally, we initiated treatment with CPPG (group-II/-III antagonist) and LY 341495 (group-II antagonist) 5 min prior to injury. Subjects were adult male Sprague-Dawley rats (225-250 g), impact injured at T10 with an NYU impactor (12.5 mm drop). Agents were injected into the epicenter of injury, amino acids where collected by microdialysis fibers inserted 0.5 mm caudal from the edge of the impact region and quantified by HPLC. Treatment with AIDA significantly decreased extracellular EAA and GABA concentrations. MPEP reduced EAA concentrations without affecting GABA. Combining LY 367385 and MPEP resulted in a decrease in EAA and GABA concentrations greater than either agent alone. L-AP4 decreased EAA levels, while treatment with LY 341495 increased EAA levels. These results suggest that mGluRs play an important role in EAA toxicity following SCI. 相似文献
13.
Electrogenic glutamate transport by the excitatory amino acid carrier 1 (EAAC1) is associated with multiple charge movements across the membrane that take place on time scales ranging from microseconds to milliseconds. The molecular nature of these charge movements is poorly understood at present and, therefore, was studied in this report in detail by using the technique of laser-pulse photolysis of caged glutamate providing a 100-micros time resolution. In the inward transport mode, the deactivation of the transient component of the glutamate-induced coupled transport current exhibits two exponential components. Similar results were obtained when restricting EAAC1 to Na(+) translocation steps by removing potassium, thus, demonstrating (1) that substrate translocation of EAAC1 is coupled to inward movement of positive charge and, therefore, electrogenic; and (2) the existence of at least two distinct intermediates in the Na(+)-binding and glutamate translocation limb of the EAAC1 transport cycle. Together with the determination of the sodium ion concentration and voltage dependence of the two-exponential charge movement and of the steady-state EAAC1 properties, we developed a kinetic model that is based on sequential binding of Na(+) and glutamate to their extracellular binding sites on EAAC1 explaining our results. In this model, at least one Na(+) ion and thereafter glutamate rapidly bind to the transporter initiating a slower, electroneutral structural change that makes EAAC1 competent for further, voltage-dependent binding of additional sodium ion(s). Once the fully loaded EAAC1 complex is formed, it can undergo a much slower, electrogenic translocation reaction to expose the substrate and ion binding sites to the cytoplasm. 相似文献
14.
Sialin, the protein coded by SLC17A5, is responsible for membrane potential (Δψ)-driven aspartate and glutamate transport into synaptic vesicles in addition to H+/sialic acid co-transport in lysosomes. Rodent sialin mutants harboring the mutations associated with Salla disease in humans did not transport aspartate and glutamate whereas H+/sialic acid co-transport activity was about one-third of the wild-type protein. In this study, we investigate the effects of various mutations on the transport activities of human sialin. Proteoliposomes containing purified heterologously expressed human sialin exhibited both Δψ-driven aspartate and glutamate transport activity and H+/sialic acid co-transport activity. Aspartate and glutamate transport was not detected in the R39C and K136E mutant forms of SLC17A5 protein associated with Salla disease, whereas H+/sialic acid co-transport activity corresponded to 30-50% of the recombinant wild-type protein. In contrast, SLC17A5 protein harboring the mutations associated with infantile sialic acid storage disease, H183R and Δ268SSLRN272 still showed normal levels of Δψ-driven aspartate and glutamate transport even though H+/sialic acid co-transport activity was absent. Human sialin carrying the G328E mutation that causes both phenotypes, and P334R and G378V mutations that cause infantile sialic acid storage disease showed no transport activity. These results support the idea that people suffering from Salla disease have been defective in aspartergic and glutamatergic neurotransmissions. 相似文献
15.
Localization and expression of the glutamate transporter,excitatory amino acid transporter 4, within astrocytes of the rat retina 总被引:7,自引:0,他引:7
Mechanisms for the removal of glutamate are vital for maintaining normal function of the retina. Five excitatory amino acid transporters have been characterized to date from neuronal tissue, all of which are expressed within the retina except excitatory amino acid transporter 4 (EAAT4). In this study we examined the expression and localization of the glutamate transporter EAAT4 in the rat retina using RT-PCR and immunocytochemistry. RT-PCR using rat EAAT4 specific primers revealed a prominent 296-bp product in the retina, cortex and cerebellum. The identity of the EAAT4 fragment was confirmed by DNA sequencing. We examined the tissue expression levels of EAAT4 in cortex, retina and cerebellum using real-time PCR. The highest expression level was found in the cerebellum. Expression in the cortex was approximately 3.1% that of the cerebellum and the retina was found to have approximately 0.8% the total cerebellar EAAT4 content. In order to examine the specific cell types within the retina that express EAAT4, we performed immunocytochemistry using a rat EAAT4 specific antiserum. Cellular processes within the nerve fibre layer of the retina were intensely labelled for EAAT4. Double labelling EAAT4 with glial fibrillary acidic protein (GFAP) revealed extensive colocalization indicating that EAAT4 is localized within astrocytes within the retina. Double labelling of EAAT4 and the glutamate transporter EAAT1 (GLAST) revealed extensive colocalization suggesting that astrocytes in the retina express at least two types of glutamate transporters. These results suggest that astrocytes within the retina are well placed to provide mechanisms for glutamate removal as well as controlling cellular excitability.This work was supported by grants from the National Health and Medical Research Council (Grant #208950) and Retina Australia. 相似文献
16.
17.
Christopher M. Anderson Richard J. Bridges † A. Richard Chamberlin ‡ Keiko Shimamoto § Yoshimi Yasuda-Kamatani§ Raymond A. Swanson 《Journal of neurochemistry》2001,79(6):1207-1216
Na(+)-dependent excitatory amino acid transporters (EAATs) normally function to remove extracellular glutamate from brain extracellular space, but EAATs can also increase extracellular glutamate by reversal of uptake. Effects of inhibitors on EAATs can be complex, depending on cell type, whether conditions favor glutamate uptake or uptake reversal and whether the inhibitor itself is a substrate for the transporters. The present study assessed EAAT inhibitors for their ability to inhibit glutamate uptake, act as transporter substrates and block uptake reversal in astrocyte and neuron cultures. L-threo-beta-hydroxyaspartate (L-TBHA), DL-threo-beta-benzyloxyaspartate (DL-TBOA), L-trans-pyrrolidine-2,4-dicarboxylic acid (L-trans-2,4-PDC) (+/-)-cis-4-methy-trans-pyrrolidine-2,4-dicarboxylic acid (cis-4-methy-trans-2,4-PDC) and L-antiendo-3,4-methanopyrrolidine-2,4-dicarboxylic acid (L-antiendo-3,4-MPDC) inhibited L-[14C]glutamate uptake in astrocytes with equilibrium binding constants ranging from 17 microM (DL-TBOA and L-TBHA) - 43 microM (cis-4-methy-trans-2,4-PDC). Transportability of inhibitors was assessed in astrocytes and neurons. While L-TBHA, L-trans-2,4-PDC, cis-4-methy-trans-2,4-PDC and L-antiendo-3,4-MPDC displayed significant transporter substrate activities in neurons and astrocytes, DL-TBOA was a substrate only in astrocytes. This effect of DL-TBOA was concentration-dependent, leading to complex effects on glutamate uptake reversal. At concentrations low enough to produce minimal DL-TBOA uptake velocity (< or = 10 microM), DL-TBOA blocked uptake reversal in ATP-depleted astrocytes; this blockade was negated at concentrations that drove substantial DL-TBOA uptake (> 10 microM). These findings indicate that the net effects of EAAT inhibitors can vary with cell type and exposure conditions. 相似文献
18.
Delany Torres-Salazar Jie Jiang Christopher B. Divito Jennie Garcia-Olivares Susan G. Amara 《The Journal of biological chemistry》2015,290(38):22977-22990
In the mammalian central nervous system, excitatory amino acid transporters (EAATs) are responsible for the clearance of glutamate after synaptic release. This energetically demanding activity is crucial for precise neuronal communication and for maintaining extracellular glutamate concentrations below neurotoxic levels. In addition to their ability to recapture glutamate from the extracellular space, EAATs exhibit a sodium- and glutamate-gated anion conductance. Here we show that substitution of a conserved positively charged residue (Arg-388, hEAAT1) in transmembrane domain 7 with a negatively charged amino acid eliminates the ability of glutamate to further activate the anion conductance. When expressed in oocytes, R388D or R388E mutants show large anion currents that display no further increase in amplitude after application of saturating concentrations of Na+ and glutamate. They also show a substantially reduced transport activity. The mutant transporters appear to exist preferentially in a sodium- and glutamate-independent constitutive open channel state that rarely transitions to complete the transport cycle. In addition, the accessibility of cytoplasmic residues to membrane-permeant modifying reagents supports the idea that this substrate-independent open state correlates with an intermediate outward facing conformation of the transporter. Our data provide additional insights into the mechanism by which substrates gate the anion conductance in EAATs and suggest that in EAAT1, Arg-388 is a critical element for the structural coupling between the substrate translocation and the gating mechanisms of the EAAT-associated anion channel. 相似文献
19.
Janos K. Lanyi 《Journal of cellular biochemistry》1977,6(2):169-177
Cell envelope vesicles prepared from H. halobium contain bacteriorhodopsin and upon illumination protons are ejected. Coupled to the proton motive force is the efflux of Na+. Measurements of 22Na flux, exterior pH change, and membrane potential, ΔΨ (with the dye 3,3′-dipentyloxadicarbocyanine) indicate that the means of Na+ transport is sodium/proton exchange. The kinetics of the pH changes and other evidence suggests that the antiport is electrogenic (H+/Na+ > 1). The resulting large chemical gradient for Na+ (outside > inside), as well as the membrane potential, will drive the transport of 18 amino acids. The 19th, glutamate, is unique in that its accumulation is indifferent to ΔΨ: this amino acid is transported only when a chemical gradient for Na+ is present. Thus, when more and more NaCl is included in the vesicles glutamate transport proceeds with longer and longer lags. After illumination the gradient of H+ collapses within 1 min, while the large Na+ gradient and glutamate transporting activity persists for 10–15 min, indicating that proton motive force is not necessary for transport. A chemical gradient of Na+, arranged by suspending vesicles loaded with KCl in NaCl, drives glutamate transport in the dark without other sources of energy, with Vmax and Km comparable to light-induced transport. These and other lines of evidence suggest that the transport of glutamate is facilitated by symport with Na+, in an electrically neutral fashion, so that only the chemical component of the Na+ gradient is a driving force. The transport of all amino acids but glutamate is bidirectional. Actively driven efflux can be obtained with reversed Na+ gradients (inside > outside), and passive efflux is considerably enhanced by intravesicle Na+. These results suggest that the transport carriers are functionally symmetrical. On the other hand, noncompetitive inhibition of transport by cysteine (a specific inhibitor of several of the carriers) is only obtained from the vesicle exterior and only for influx: these results suggest that in some respects the carriers are asymmetrical. A protein fraction which binds glutamate has been found in cholate-solubilized H. halobium membranes, with an apparent molecular weight of 50,000. When this fraction (but not the others eluted from an Agarose column) is reconstituted with soybean lipids to yield lipoprotein vesicles, facilitated transport activity is regained. Neither binding nor reconstituted transport depend on the presence of Na+. The kinetics of the transport and of the competitive inhibition by glutamate analogs suggest that the protein fraction responsible is derived from the intact transport system. 相似文献
20.
Glial uptake of neurotransmitter glutamate (GLU) from the extracellular fluid was studied in vivo in rat brain by (13)C NMR and microdialysis combined with gas-chromatography/mass-spectrometry. Brain GLU C5 was (13)C enriched by intravenous [2,5-(13)C]glucose infusion, followed by [(12)C]glucose infusion to chase (13)C from the small glial GLU pool. This leaves [5-(13)C]GLU mainly in the large neuronal metabolic pool and the vesicular neurotransmitter pool. During the chase, the (13)C enrichment of whole-brain GLU C5 was significantly lower than that of extracellular GLU (GLU(ECF)) derived from exocytosis of vesicular GLU. Glial uptake of neurotransmitter [5-(13)C]GLU(ECF) was monitored in vivo through the formation of [5-(13)C,(15)N]GLN during (15)NH(4)Ac infusion. From the rate of [5-(13)C,(15)N]GLN synthesis (1.7 +/- 0.03 micromol/g/h), the mean (13)C enrichment of extracellular GLU (0.304 +/- 0.011) and the (15)N enrichment of precursor NH(3) (0.87 +/- 0.014), the rate of synthesis of GLN (V'(GLN)), derived from neurotransmitter GLU(ECF), was determined to be 6.4 +/- 0.44 micromol/g/h. Comparison with V(GLN) measured previously by an independent method showed that the neurotransmitter provides 80-90% of the substrate GLU pool for GLN synthesis. Hence, under our experimental conditions, the rate of 6.4 +/- 0.44 micromol/g/h also represents a reasonable estimate for the rate of glial uptake of GLU(ECF), a process that is crucial for protecting the brain from GLU excitotoxicity. 相似文献