首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We used the differential display technique on total RNAs from roots of Arabidopsis thaliana (L.) Heynh. plants which had or had not been induced for 2 h by nitrate. One isolated cDNA clone, designated Nrt2:1At, was found to code for a putative high-affinity nitrate transporter. Two genomic sequences homologous to Nrt2:1At were found to be localized on the same fragment of chromosome 1 in the Arabidopsis genome. Expression analyses of both low- and high-affinity nitrate transporter genes, respectively Nrt1:1At (previously named Chl1) and Nrt2:1At, were carried out on plants grown under different nitrogen regimes. In this paper, we show that both genes are induced by very low levels of nitrate (50 μM KNO3). However, stronger induction was observed with Nrt2:1At than with Nrt1:1At. Moreover, these two genes, although both over-expressed in a nitrate-reductase-deficient mutant, were differently regulated when N-sufficient wild-type or mutant plants were transferred to an N-free medium. Indeed, the steady-state amounts of Nrt1:1At mRNA declined whereas the amount of Nrt2:1At mRNA increased, probably reflecting the de-repression of the high-affinity transport system during N-starvation. Received: 4 May 1998 / Accepted: 26 August 1998  相似文献   

2.
3.
The protein kinase p34cdc2 is required at the onset of DNA replication and for entry into mitosis. The catalytic subunit and its regulatory proteins, notably the cyclins, are conserved from yeast to man. This suggests that the control mechanisms necessary for progression through the cell cycle in fission yeast are conserved throughout evolution. This work describes the characterization of a fission yeast strain that is dependent for cell cycle progression on the activity of the p34CDC2 protein kinase from chicken. The response of the chicken p34CDC2 protein kinase to cell cycle components of fission yeast was examined. Cells expressing the chicken p34CDC2 protein divide at reduced size at 31° C. Cells are temperature sensitive at 35.5° C and die as a result of mitotic catastrophe. This phenotype can be rescued by delaying cell cycle progression at the G1-S transition by adding low concentrations of hydroxyurea. Schizosaccharomyces pombe cells that are dependent on chicken p34CDC2 are cold sensitive. At 19° C to 25° C cells arrest in the G1 phase, while traversal of the G2-M transition is not blocked at low temperature. Expression of chicken p34CDC2 in the cold-sensitive G2-M mutant cdc2A21 suppresses the G1 arrest. Received: 14 October 1998 / Accepted: 15 March 1999  相似文献   

4.
5.
DNA damage checkpoints delay mitotic cell‐cycle progression in response to DNA stress, stalling the cell cycle to allow time for repair. CDKB is a plant‐specific cyclin‐dependent kinase (CDK) that is required for the G2/M transition of the cell cycle. In Arabidopsis, DNA damage leads the degradation of CDKB2, and the subsequent G2 arrest gives cells time to repair damaged DNA. G2 arrest also triggers transition from the mitotic cycle to endoreduplication, leading to the presence of polyploid cells in many tissues. In contrast, in rice (Oryza sativa), polyploid cells are found only in the endosperm. It was unclear whether endoreduplication contributes to alleviating DNA damage in rice (Oryza sativa). Here, we show that DNA damage neither down‐regulates Orysa;CDKB2;1 nor induces endoreduplication in rice. Furthermore, we found increased levels of Orysa;CDKB2;1 protein upon DNA damage. These results suggest that CDKB2 functions differently in Arabidopsis and rice in response to DNA damage. Arabidopsis may adopt endoreduplication as a survival strategy under genotoxic stress conditions, but rice may enhance DNA repair capacity upon genotoxic stress. In addition, polyploid cells due to endomitosis were present in CDKB2;1 knockdown rice, suggesting an important role for Orysa;CDKB2;1 during mitosis.  相似文献   

6.
The expression of the mitotic cyclin Arath; CYCB1;1 and of the cyclin-dependent kinase Arath; CDC2a was located by beta-glucuronidase histochemical detection and in situ hybridization, and was quantified by 4-methylumbelliferyl beta- D-glucuronide assay in tobacco stem tissues during both in vivo differentiation and in vitro dedifferentiation. The changes in localization of endogenous cytokinins were also determined during both processes using quantitative analysis and in situ immunocytochemistry. The CDC2a promoter was expressed continuously during stem development, with particularly high expression in the shoot apical meristem and in the internal and external primary phloem. CYCB1 expression was not restricted to the dividing cells; its expression in the shoot apical meristem was particularly high in the leaf-forming peripheral cells but the gene was also expressed throughout development in the internal and external phloem in which the rate of cell division was reduced or zero. Following in vitro culture, the internal phloem cells appeared to be particularly competent to re-enter the cell cycle within a short lag phase while the pith tissue reactivated later. In culture, cells that resumed division were found to accumulate cytokinins. The high competency of primary phloem to dedifferentiate was associated with its capacity to express CDC2a and CYCB genes and the presence of high cytokinin levels, providing some insights into the determinants of competency for resuming cell division.  相似文献   

7.
8.
Visualization of the spatiotemporal pattern of cell division is crucial to understand how multicellular organisms develop and how they modify their growth in response to varying environmental conditions. The mitotic cell cycle consists of four phases: S (DNA replication), M (mitosis and cytokinesis), and the intervening G1 and G2 phases; however, only G2/M‐specific markers are currently available in plants, making it difficult to measure cell cycle duration and to analyze changes in cell cycle progression in living tissues. Here, we developed another cell cycle marker that labels S‐phase cells by manipulating Arabidopsis CDT1a, which functions in DNA replication origin licensing. Truncations of the CDT1a coding sequence revealed that its carboxy‐terminal region is responsible for proteasome‐mediated degradation at late G2 or in early mitosis. We therefore expressed this region as a red fluorescent protein fusion protein under the S‐specific promoter of a histone 3.1‐type gene, HISTONE THREE RELATED2 (HTR2), to generate an S/G2 marker. Combining this marker with the G2/M‐specific CYCB1GFP marker enabled us to visualize both S to G2 and G2 to M cell cycle stages, and thus yielded an essential tool for time‐lapse imaging of cell cycle progression. The resultant dual‐color marker system, Cell Cycle Tracking in Plant Cells (Cytrap), also allowed us to identify root cells in the last mitotic cell cycle before they entered the endocycle. Our results demonstrate that Cytrap is a powerful tool for in vivo monitoring of the plant cell cycle, and thus for deepening our understanding of cell cycle regulation in particular cell types during organ development.  相似文献   

9.
Endosperm development in maize (Zea mays L.) and related cereals comprises a cell proliferation stage followed by a period of rapid growth coupled to endoreduplication. Regulation of the cell cycle in developing endosperm is poorly understood. We have characterized various subunits of cyclin-dependent kinase (CDK) complexes, master cell cycle regulators in all eukaryotes. A-, B-, and D-type cyclins as well as A- and B-type cyclin-dependent kinases were characterized with respect to their RNA and protein expression profiles. Two main patterns were identified: one showing expression throughout endosperm development, and another characterized by a sharp down-regulation with the onset of endoreduplication. Cyclin CYCB1;3 and CYCD2;1 proteins were distributed in the cytoplasm and nucleus of cells throughout the endosperm, while cyclin CYCD5 protein was localized in the cytoplasm of peripheral cells. CDKB1;1 expression was strongly associated with cell proliferation. Expression and cyclin-binding patterns suggested that CDKA;1 and CDKA;3 are at least partially redundant. The kinase activity associated with the cyclin CYCA1 was highest during the mitotic stage of development, while that associated with CYCB1;3, CYCD2;1 and CYCD5 peaked at the mitosis-to-endoreduplication transition. A-, B- and D-type cyclins were more resistant to proteasome-dependent degradation in endoreduplicating than in mitotic endosperm extracts. These results indicated that endosperm development is characterized by differential expression and activity of specific cyclins and CDKs, and suggested that endoreduplication is associated with reduced cyclin proteolysis via the ubiquitin–proteasome pathway.  相似文献   

10.
We screened for mutations that resulted in lethality when the G1 cyclin Cln2p was overexpressed throughout the cell cycle in Saccharomyces cerevisiae. Mutations in five complementation groups were found to give this phenotype, and three of the mutated genes were identified as MEC1, NUP170, and CDC14. Mutations in CDC14 may have been recovered in the screen because Cdc14p may reduce the cyclin B (Clb)-associated Cdc28 kinase activity in late mitosis, and Cln2p may normally activate Clb-Cdc28 kinase activity by related mechanisms. In agreement with the idea that cdc14 mutations elevate Clb-Cdc28 kinase activity, deletion of the gene for the Clb-Cdc28 inhibitor Sic1 caused synthetic lethality with cdc14-1, as did the deletion of HCT1, which is required for proteolysis of Clb2p. Surprisingly, deletion of the gene for the major B-type cyclin, CLB2, also caused synthetic lethality with the cdc14-1 mutation. The clb2 cdc14 strains arrested with replicated but unseparated DNA and unseparated spindle pole bodies; this phenotype is distinct from the late mitotic arrest of the sic1::TRP1 cdc14-1 and the cdc14-1 hct1::LEU2 double mutants and of the cdc14 CLN2 overexpressor. We found genetic interactions between CDC14 and the replication initiator gene CDC6, extending previous observations of interactions between the late mitotic function of Cdc14p and control of DNA replication. We also describe genetic interactions between CDC28 and CDC14. Received: 24 May 1999 / Accepted: 19 October 1999  相似文献   

11.
Leucine-rich repeat (LRR)-containing transmembrane receptor-like kinases (RLKs) are important components of plant signal transduction. The Arabidopsis thaliana somatic embryogenesis receptor-like kinase 1 (AtSERK1) is an LRR-RLK proposed to participate in a signal transduction cascade involved in embryo development. By yeast two-hybrid screening we identified AtCDC48, a homologue of the mammalian AAA-ATPase p97 and GF14, a member of the Arabidopsis family of 14-3-3 proteins as AtSERK1 interactors. In vitro, the AtSERK1 kinase domain is able to transphosphorylate and bind both AtCDC48 and GF14. In yeast, AtCDC48 interacts with GF14 and with the PP2C phosphatase KAPP. In plant protoplasts AtSERK1 interacts with GF14.  相似文献   

12.
Cell proliferation is integrated into developmental progression in multicellular organisms, including plants, and the regulation of cell division is of pivotal importance for plant growth and development. Here, we report the identification of an Arabidopsis SMALL ORGAN 2 (SMO2) gene that functions in regulation of the progression of cell division during organ growth. The smo2 knockout mutant displays reduced size of aerial organs and shortened roots, due to the decreased number of cells in these organs. Further analyses reveal that disruption of SMO2 does not alter the developmental timing but reduces the rate of cell production during leaf and root growth. Moreover, smo2 plants exhibit a constitutive activation of cell cycle‐related genes and over‐accumulation of cells expressing CYCB1;1:β‐glucuronidase (CYCB1;1:GUS) during organogenesis, suggesting that smo2 has a defect in G2–M phase progression in the cell cycle. SMO2 encodes a functional homologue of yeast TRM112, a plurifunctional component involved in a few cellular events, including tRNA and protein methylation. In addition, the mutation of SMO2 does not appear to affect endoreduplication in Arabidopsis leaf cells. Taken together we postulate that Arabidopsis SMO2 is a conserved yeast TRM112 homologue and SMO2‐mediated cellular events are required for proper progression of cell division in plant growth and development.  相似文献   

13.
Flowering plants contain a large number of cyclin families, each containing multiple members, most of which have not been characterized to date. Here, we analyzed the role of the B1 subclass of mitotic cyclins in cell cycle control during Arabidopsis development. While we reveal CYCB1;5 to be a pseudogene, the remaining four members were found to be expressed in dividing cells. Mutant analyses showed a complex pattern of overlapping, development‐specific requirements of B1‐type cyclins with CYCB1;2 playing a central role. The double mutant cycb1;1 cycb1;2 is severely compromised in growth, yet viable beyond the seedling stage, hence representing a unique opportunity to study the function of B1‐type cyclin activity at the organismic level. Immunolocalization of microtubules in cycb1;1 cycb1;2 and treating mutants with the microtubule drug oryzalin revealed a key role of B1‐type cyclins in orchestrating mitotic microtubule networks. Subsequently, we identified the GAMMA‐TUBULIN COMPLEX PROTEIN 3‐INTERACTING PROTEIN 1 (GIP1/MOZART) as an in vitro substrate of B1‐type cyclin complexes and further genetic analyses support a potential role in the regulation of GIP1 by CYCB1s.  相似文献   

14.
15.
DNA endoreduplication in Zea mays L. (cv. A619 × W64A) endosperm peaks between 16 and 18 d after pollination (DAP). The physiological function of DNA endoreduplication is not known but it is believed to be important in maize kernel development. In the present study, we investigated how 2, 4 or 6 d of high temperature (35 °C) affected DNA endoreduplication and maize kernel development in comparison with control kernels grown at 25 °C. Data were collected on fresh weight (FW), nuclei number, mitotic index, and DNA endoreduplication. Maize endosperm FW and nuclei number were reduced by exposure to 4 or 6 d of high temperature. At 18 DAP, the 2 d high temperature treatment (HTT) caused a reduction in FW and nuclei number, but had no effect on DNA endoreduplication and average DNA content per endosperm. However, when the exposure to high temperature was increased to 4 or 6 d, FW, nuclei number and the magnitude of DNA endoreduplication were progressively reduced, and the peak mitotic index was delayed compared with the control endosperm. At 18 DAP, the 4 d treatment showed 54·7% of the cells were 3 or 6 C, whereas only 41·2% were 12 C or higher. Six days of high temperature also resulted in a reduction in endosperm FW, nuclei number and a delay in the peak of mitotic index. DNA endoreduplication occurred in the kernels exposed to this treatment, although the magnitude was severely reduced compared with the control kernels. Nuclear DNA content was highly correlated (r = 0·93) with kernel FW, suggesting an important role of DNA endoreduplication in determining endosperm FW. The data suggest that high temperature during endosperm cell division exerted negative effects on DNA endoreduplication by dramatically reducing the nuclei number, leaving fewer nuclei available for DNA endoreduplication. However, the data also suggest that prolonged exposure to high temperature restricts entry of mitotic cells into the endoreduplication phase of the cell cycle.  相似文献   

16.
17.
18.
19.
The cell division cycle in several pelagic dinoflagellate species has been shown to be phased with the diurnal cycle, suggesting that their cell cycle may be regulated by a circadian clock. In this study, we examined the cell cycle of an epibenthic dinoflagellate, Gambierdiscus toxicus Adachi and Fukuyo (Dinophyceae), and found that cell division was similarly phased to the diurnal cycle. Cell division occurred during a 3-h window beginning 6 h after the onset of the dark phase. Cell cycle progression in higher eukaryotes is regulated by a cell cycle regulatory protein complex consisting of cyclin and the cyclin-dependent kinase CDC2. In this report, we identified a CDC2-like kinase in G. toxicus that displays activity in vitro against a known substrate of CDC2 kinase, histone H1. As in higher eukaryotes, CDC2 kinase was expressed constitutively in G. toxicus throughout the cell cycle, but it was activated only late in the dark phase, concurrent with the presence of mitotic cells. These results indicate that cell division in G. toxicus is regulated by molecular controls similar to those found in higher eukaryotes.  相似文献   

20.
Summary Somatic polyploidy of species-specific and tissue-specific degrees occurs in almost all plant species studied so far, but nearly nothing is known about the control mechanisms switching the mitotic cycle to an endoreduplication cycle. In order to search for a possible role of the cdc2 kinase, cell suspension cultures of the Runner bean, Phaseolus coccineus (Leguminosae) were treated with K-252a, an inhibitor of protein kinase activity. The treatment resulted in continuous cell cycles without mitosis, and hence induced polyploidy levels up to 2048C. It is, therefore, suggested that phosphorylation of a protein kinase, probably of the cell cycle-important p34cdc2 type, is involved in the control of endoreduplication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号